

FCC TEST REPORT

REPORT NO.: RF980910H02

MODEL NO.: EMTA 6528-4WB, EMTA 6528-4WBe4S

RECEIVED: Sep. 10, 2009

TESTED: Oct. 05 to 26, 2009

ISSUED: Nov. 17, 2009

APPLICANT: Innomedia Inc.

ADDRESS: 4800 Great America Parkway Suite 400 Santa Clara California United States 95054

	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory
ISSUED DT.	Ltd., Taoyuan Branch Hsin Chu Laboratory

ADDRESS: No. 81-1, Lu Liao Keng, 9th Ling, Wu Lung Tsuen, Chiung Lin Hsiang, Hsin Chu Hsien 307, Taiwan

This test report consists of 60 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by TAF or any government agencies. The test results in the report only apply to the tested sample.

Table of Contents

1.	CERTIFICATION	4
2.	SUMMARY OF TEST RESULTS	5
2.1	MEASUREMENT UNCERTAINTY	6
3.	GENERAL INFORMATION	7
3.1	GENERAL DESCRIPTION OF EUT	7
3.2	DESCRIPTION OF TEST MODES	10
3.2.1	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	11
3.3	GENERAL DESCRIPTION OF APPLIED STANDARDS	13
3.4	DESCRIPTION OF SUPPORT UNITS	14
3.5	CONFIGURATION OF SYSTEM UNDER TEST	16
4.	TEST TYPES AND RESULTS	18
4.1	CONDUCTED EMISSION MEASUREMENT	18
4.1.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	18
4.1.2	TEST INSTRUMENTS	18
4.1.3	TEST PROCEDURES	
4.1.4	DEVIATION FROM TEST STANDARD	
4.1.5	TEST SETUP	20
4.1.6	EUT OPERATING CONDITIONS	20
4.1.7	TEST RESULTS	21
4.2	RADIATED EMISSION MEASUREMENT	23
4.2.1	LIMITS OF RADIATED EMISSION MEASUREMENT	23
4.2.2	TEST INSTRUMENTS	24
4.2.3	TEST PROCEDURES	25
4.2.4	DEVIATION FROM TEST STANDARD	25
4.2.5	TEST SETUP	26
4.2.6	EUT OPERATING CONDITIONS	26
4.2.7	TEST RESULTS	27
4.3	6dB BANDWIDTH MEASUREMENT	
4.3.1	LIMITS OF 6dB BANDWIDTH MEASUREMENT	42
4.3.2	TEST INSTRUMENTS	42
4.3.3	TEST PROCEDURE	43
4.3.4	DEVIATION FROM TEST STANDARD	43
4.3.5	TEST SETUP	
4.3.6	EUT OPERATING CONDITIONS	43
4.3.7	TEST RESULTS	
4.4	MAXIMUM PEAK OUTPUT POWER	
4.4.1	LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT	46
4.4.2	INSTRUMENTS	46
4.4.3	TEST PROCEDURES	46

4.4.4	DEVIATION FROM TEST STANDARD	3
4.4.5	TEST SETUP	3
4.4.6	EUT OPERATING CONDITIONS	7
4.4.7	TEST RESULTS	3
4.5	POWER SPECTRAL DENSITY MEASUREMENT)
4.5.1	LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT)
4.5.2	TEST INSTRUMENTS49)
4.5.3	TEST PROCEDURE)
4.5.4	DEVIATION FROM TEST STANDARD)
4.5.5	TEST SETUP)
4.5.6	EUT OPERATING CONDITION	
4.5.7	TEST RESULTS	1
4.6	CONDUCTED OUT-BAND EMISSION MEASUREMENT	3
4.6.1	LIMITS OF CONDUCTED OUT-BAND EMISSION MEASUREMENT	3
4.6.2	TEST INSTRUMENTS	
4.6.3	TEST PROCEDURE	3
4.6.4	DEVIATION FROM TEST STANDARD	1
4.6.5	EUT OPERATING CONDITION	
4.6.6	TEST RESULTS	1
5.	INFORMATION ON THE TESTING LABORATORIES)
6.	APPENDIX-A- MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES THE EUT BY THE LAB	

1. CERTIFICATION

PRODUCT:	Wireless VOIP Gateway	
BRAND NAME:	innomedia	
MODEL NO.:	EMTA 6528-4WB, EMTA 6528-4WBe4S	
TEST SAMPLE:	R&D SAMPLE	
TESTED:	Oct. 05 to 26, 2009	
APPLICANT:	Innomedia Inc.	
STANDARDS:	FCC Part 15, Subpart C (Section 15.247), ANSI C63.4-2003	

The above equipment (Model: EMTA 6528-4WB) has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

PREPARED BY : Midol- Veny, DATE: Nov. 17, 2009 (Midoli Peng, Specialist) TECHNICAL , DATE: Nov. 17, 2009 ACCEPTANCE (Hank Chung, Deputy Manager) **APPROVED BY** , **DATE:** Nov. 17, 2009 (May Chen, Deputy Manager)

2. SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 15, Subpart C (Section 15.247)				
Standard Section	Test Type and Limit	Result	Remark	
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is –12.66dB at 3.754MHz	
15.247(a)(2)	Spectrum Bandwidth of a Direct Sequence Spread Spectrum System Limit: min. 500kHz	PASS	Meet the requirement of limit.	
15.247(b)	Maximum Peak Output Power Limit: max. 30dBm	PASS	Meet the requirement of limit.	
15.247(d)	Radiated Emissions Limit: Table 15.209	PASS	Meet the requirement of limit. Minimum passing margin is –0.9dB at 2390.00MHz	
15.247(e)	Power Spectral Density Limit: max. 8dBm	PASS	Meet the requirement of limit.	
15.247(d)	Conducted Out-Band Emission Measurement Limit: 20dB less than the peak value of fundamental frequency	PASS	Meet the requirement of limit.	
15.203	Antenna Requirement	PASS	No antenna connector is used.	

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Measurement	Value
Conducted emissions	2.45 dB
Radiated emissions (30MHz-1GHz)	3.94 dB
Radiated emissions (1GHz -18GHz)	2.49 dB
Radiated emissions (18GHz -40GHz)	2.70 dB

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

DRODUCT		
PRODUCT	Wireless VOIP Gateway	
MODEL NO.	EMTA 6528-4WB, EMTA 6528-4WBe4S	
FCC ID	NEN6528-4WB	
POWER SUPPLY	DC 15V from power adapter or DC 11.1V from battery	
MODULATION TYPE	CCK, DQPSK, DBPSK for DSSS 64QAM, 16QAM, QPSK, BPSK for OFDM	
MODULATION TECHNOLOGY	DSSS, OFDM	
TRANSFER RATE	802.11b:11/5.5/2/1Mbps 802.11g: 54/48/36/24/18/12/9/6Mbps	
FREQUENCY RANGE	2412 ~ 2462MHz	
NUMBER OF CHANNEL	11	
MAXIMUM OUTPUT POWER	802.11b: 89.1mW 802.11g: 323.6mW	
ANTENNA TYPE	Please see note 2	
ANTENNA CONNECTOR	Please see note 2	
DATA CABLE	NA	
I/O PORTS	RJ-45 Port x 4(Ethernet (10,100Mbps)) RJ-11 Port x 4 UPS Port x 1(USB 2.0) Cable Port x 1	
ASSOCIATED DEVICES	Adapter x 1 Battery x 1	

NOTE:

1. The EUT has two model names which are identical to each other in all aspects except for the following:

Brand name	Model No.	
innomedia	EMTA 6528-4WB	
IIIIOIIIeula	EMTA 6528-4WBe4S	

From the above models, model: **EMTA 6528-4WB** was selected as representative model for the test and its data was recorded in this report.

2. There is one antenna provided to this EUT, please refer to the following table:

Model	Antenna Type	Gain(dBi)	Connector	Frequency range (MHz to MHz)
PRS-1180	Dipole	2.0	UFL	2400~2500

3. The EUT was powered by following power adapter or battery:

Adapter		
Brand:	Sunny	
Model No.:	SYS1359-4515-T3	
Input power :	100-240Vac, 50/60Hz, 1.5A	
Output power :	15Vdc, 3A	
Battery 1		
Brand:	MOLICEL	
Model No.:	ME202CJ	
Output power :	11.1Vdc, 6600mAh	
Battery 2		
Brand:	GPI	
Model No.:	DR202	
Output power :	11.1Vdc, 6600mAh	

4. The EUT was pre-tested in chamber under the following modes:

Test Mode	Description
Mode A	Level-set (Put on tabletop) + LAN Port: 100Mbps + Wireless + Adapter + Battery + Phone talking + UPS cable
Mode B	Tower-set (Wall-mounted) + LAN Port: 100Mbps + Wireless + Adapter + Battery + Phone talking + UPS cable
Mode C	Level-set (Put on tabletop) + LAN Port: 10Mbps + Wireless + Adapter + Battery + Phone talking + UPS cable

For radiated test, the worse case was found in **Mode A**. Therefore only the test data of the mode was recorded in this report.

5. The above EUT information was declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 DESCRIPTION OF TEST MODES

Operated in 2400 ~ 2483.5MHz band:

Eleven channels are provided for 802.11b, 802.11g:

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
1	2412MHz	7	2442MHz
2	2417MHz	8	2447MHz
3	2422MHz	9	2452MHz
4	2427MHz	10	2457MHz
5	2432MHz	11	2462MHz
6	2437MHz		

3.2.1 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

EUT		APPLICA	ABLE TO	DECODIPTION	
CONFIGURE MODE	PLC	RE < 1G	RE ³ 1G	APCM	DESCRIPTION
-	\checkmark	\checkmark	\checkmark	\checkmark	-
Where PLC: Power Line Conducted Emission RE < 1G: Radiated Emission below 1GHz					

RE ³ **1G:** Radiated Emission above 1GHz

APCM: Antenna Port Conducted Measurement

POWER LINE CONDUCTED EMISSION TEST:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE	TESTED	MODULATION	MODULATION	DATA RATE
	CHANNEL	CHANNEL	TECHNOLOGY	TYPE	(Mbps)
802.11g	1 to 11	11	OFDM	BPSK	6

RADIATED EMISSION TEST (BELOW 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	-	MODULATION TECHNOLOGY		DATA RATE (Mbps)
802.11g	1 to 11	11	OFDM	BPSK	6

RADIATED EMISSION TEST (ABOVE 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY		DATA RATE (Mbps)
802.11b	1 to 11	1, 6, 11	DSSS	DBPSK	1
802.11g	1 to 11	1, 6, 11	OFDM	BPSK	6

CONDUCTED OUT-BAND EMISSION MEASUREMENT:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
802.11b	1 to 11	1, 11	DSSS	DBPSK	1
802.11g	1 to 11	1, 11	OFDM	BPSK	6

ANTENNA PORT CONDUCTED MEASUREMENT:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	DATA RATE (Mbps)
802.11b	1 to 11	1, 6, 11	DSSS	DBPSK	1
802.11g	1 to 11	1, 6, 11	OFDM	BPSK	6

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
RE ³ 1G	24deg. C, 67%RH, 965 hPa	120Vac, 60Hz	Eric Lee
RE<1G	27deg. C, 59%RH, 965 hPa	120Vac, 60Hz	Frank Lliu
PLC	26deg. C, 70%RH, 965 hPa	120Vac, 60Hz	Leo Peng
APCM	25deg. C, 60%RH, 965 hPa	120Vac, 60Hz	Eric Lee

3.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a Wireless VOIP Gateway. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C. (15.247) ANSI C63.4-2003

All test items have been performed and recorded as per the above standards.

NOTE: The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

3.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

For c	For conducted emission test					
NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID	
1	NOTEBOOK COMPUTER	DELL	PP18L	12252644560	FCC DoC	
2	NOTEBOOK COMPUTER	DELL	PPT	17044664176	E2K24GBRL	
3	TERMINATION SYSTEM	ARRIS	713918	NA	NA	
4	ATTENUATOR	NA	NA	NA	NA	
5	TELEPHONE	CAOKE	TC-203	TC0005431	NA	
6	TELEPHONE	CAOKE	TC-203	TC0003748	NA	
7	TELEPHONE	НТТ	HTT-806	9545065	FCC DoC	
8	TELEPHONE	нтт	HTT-806	9543663	FCC DoC	

For c	For conducted emission test			
NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS			
1	UTP cable (10m)			
2	NA			
3	NA			
4	Coaxial cable (10m)			
5	RJ-11 cable (1.8m)			
6	RJ-11 cable (1.8m)			
7	RJ-11 cable (1.8m)			
8	RJ-11 cable (1.8m)			

NOTE: All power cords of the above support units are non shielded (1.8m).

For others test					
NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	NOTEBOOK COMPUTER	DELL	PP19L	CN-OHC416-70166-5CA- 0448	PIW632500516610
2	NOTEBOOK COMPUTER	DELL	PP21L	CN-0GD366-70166-5B3-0 9ZX	QDS-BRCM1016
3	TERMINATION SYSTEM	ARRIS	713918	NA	NA
4	ATTENUATOR	NA	NA	NA	NA
5	TELEPHONE	Romeo	TE-812	97280903	NA
6	TELEPHONE	Romeo	TE-812	97280926	NA
7	TELEPHONE	DAISHO	DS-03	NA	NA
8	TELEPHONE	DAISHO	DS-03	NA	NA
9	HUB	AVSYS	110H8	01-20E-000006	FCC DoC

For o	For others test				
NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS				
1	UTP cable (10m)				
2	NA				
3	NA				
4	Coaxial cable (10m)				
5	RJ-11 cable (1.8m)				
6	RJ-11 cable (1.8m)				
7	RJ-11 cable (1.8m)				
8	RJ-11 cable (1.8m)				
9	UTP cable (10m) x2				

NOTE: All power cords of the above support units are non shielded (1.8m).

5. TELEPHONE

6. TELEPHONE

7. TELEPHONE

8. TELEPHONE

3.5 CONFIGURATION OF SYSTEM UNDER TEST

For conducted emission test

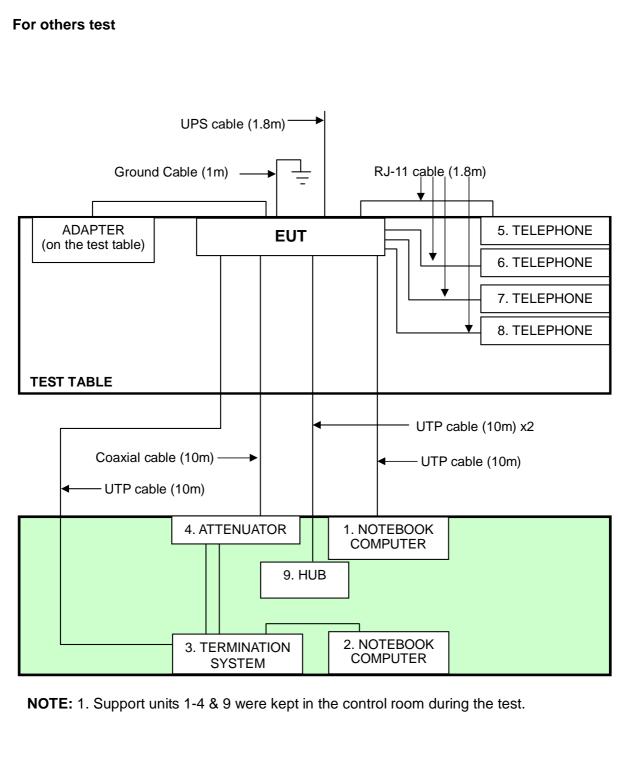
UPS cable (1.8m) Ground Cable (1m) ADAPTER (on the test table) TEST TABLE UPS cable (1.8m) Ground Cable (1m) Contraction of the test table (1.8m) Contraction of test (1.8m)

 TEST TABLE
 UTP cable (10m) x3

 Coaxial cable (10m)
 UTP cable (10m) x3

 Coaxial cable (10m)
 UTP cable (10m)

 4. ATTENUATOR
 1. NOTEBOOK


 COMPUTER
 1000hm

 0 ad
 2. NOTEBOOK

 COMPUTER
 2. NOTEBOOK

 NOTE: 1. Support units 1-4 were kept in the control room during the test.

4.TEST TYPES AND RESULTS

4.1 CONDUCTED EMISSION MEASUREMENT

4.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBµV)		
0.15-0.5	Quasi-peak	Average	
0.5-5 5-30	66 to 56 56 60	56 to 46 46 50	

NOTE: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4.1.2 TEST INSTRUMENTS

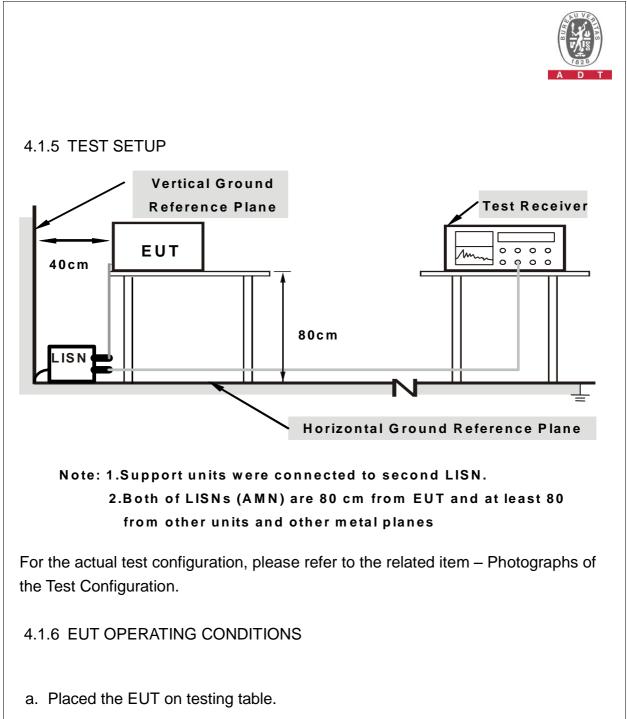
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
ROHDE & SCHWARZ Test Receiver	ESCS 30	100287	Mar. 05, 2009	Mar. 04, 2010
Line-Impedance Stabilization Network (for EUT)	KNW-407	8-1395-12	May 04, 2009	May 03, 2010
Line-Impedance Stabilization Network (for Peripheral)	ENV-216	100072	June 08, 2009	June 07, 2010
RF Cable (JYEBAO)	5DFB	COACAB-001	Dec 15, 2008	Dec 14, 2009
50 ohms Terminator	50	3	Nov. 05, 2008	Nov. 04, 2009
Software	BV ADT_Cond_V7.3.7	NA	NA	NA

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in Shielded Room No. A.

3 The VCCI Con A Registration No. is C-817.



4.1.3 TEST PROCEDURES

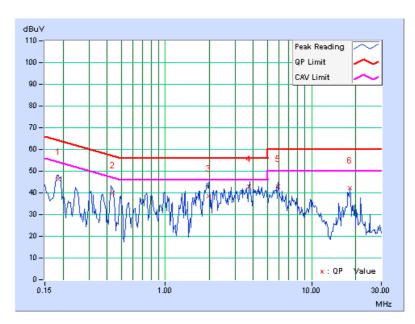
- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) were not recorded.

4.1.4 DEVIATION FROM TEST STANDARD

No deviation

- b. Prepared other computer systems to act as communication partners and placed them outside of testing area.
- c. The communication partners run test program "ART 52 build 6.exe" to enable EUT under transmission/receiving condition continuously via one UTP cable and one Coaxial cable transmission.
- d. Support units 5~8 (Telephone) are calling to each other via EUT.

4.1.7 TEST RESULTS

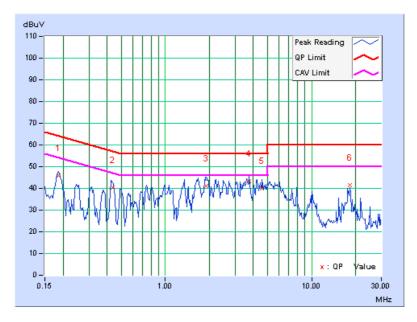

802.11b	DSSS	MODUL	ATION:	

PHA	\SE	L	Line (L)	6dB BA	NDWIDTH	9 kHz	
	Freq.	Corr.	Reading Value	Emission Level	Limit	Margin	

			va	lue						
No		Factor	[dB	(uV)]	[dB ((uV)]	[dB	(uV)]	(d	B)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.185	0.20	45.93	-	46.13	-	64.25	54.25	-18.12	-
2	0.435	0.08	39.86	-	39.94	-	57.15	47.15	-17.21	-
3	1.973	0.07	38.61	-	38.68	-	56.00	46.00	-17.32	-
4	3.753	0.13	42.88	-	43.01	-	56.00	46.00	-12.99	-
5	5.906	0.17	42.63	-	42.80	-	60.00	50.00	-17.20	-
6	18.242	0.44	41.61	-	42.05	-	60.00	50.00	-17.95	-

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.



PHASE Neutral (N)					6dB BANDWIDTH 9 kHz					
	Freq.	Corr. Reading Emission Limi		nit	Margin					
No		Factor	[dB	(uV)]	[dB	(uV)]	[dB	(uV)]	(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.185	0.21	45.69	-	45.90	-	64.25	54.25	-18.35	-
2	0.437	0.09	40.29	-	40.38	-	57.12	47.12	-16.74	-
3	1.909	0.10	41.06	-	41.16	-	56.00	46.00	-14.84	-
4	3.754	0.15	43.19	-	43.34	-	56.00	46.00	-12.66	-
5	4.602	0.17	39.85	-	40.02	-	56.00	46.00	-15.98	-
6	18.242	0.47	41.09	-	41.56	-	60.00	50.00	-18.44	-

REMARKS: 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Emission level Limit value
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 LIMITS OF RADIATED EMISSION MEASUREMENT

Emissions radiated outside of the specified bands, shall be according to the general radiated limits in 15.209 as following:

Frequencies (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

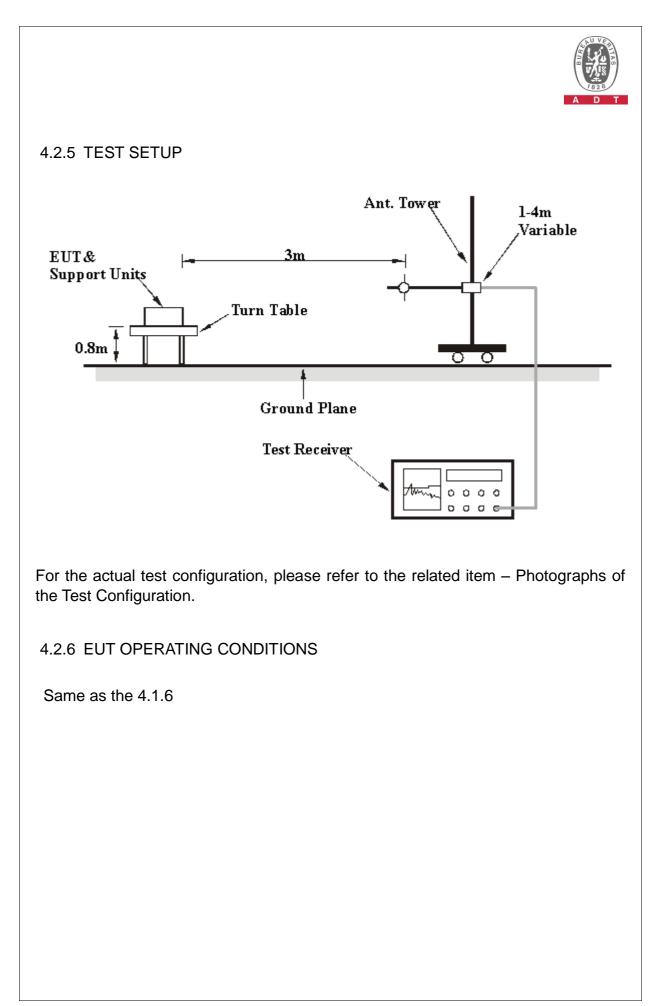
4.2.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED	CALIBRATED
ROHDE & SCHWARZ Spectrum Analyzer	FSP40	100036	DATE Dec. 9, 2008	Dec. 8, 2009
Agilent PSA Spectrum Analyzer	E4446A	MY46180622	Apr. 24 , 2009	Apr. 23 , 2010
HP Pre_Amplifier	8449B	3008A01923	Nov. 10, 2008	Nov. 9, 2009
ROHDE & SCHWARZ Test Receiver	ESCS30	847124/029	Aug. 28, 2009	Aug. 28, 2010
SCHWARZBECK TRILOG Broadband Antenna	VULB 9168	138	April 29, 2009	April 28, 2010
Schwarzbeck Horn_Antenna	BBHA9120	D124	Dec. 09, 2008	Dec. 08, 2009
Schwarzbeck Horn_Antenna	BBHA 9170	BBHA9170153	Jan. 22, 2009	Jan. 21, 2010
RF Switches	EMH-011	08009	Sep. 26, 2009	Sep. 25, 2010
RF CABLE (Chaintek)	Sucoflex 106	28077	Aug. 14, 2009	Aug. 13, 2010
RF Cable	8D	STCCAB-001	Sep. 26, 2009	Sep. 25, 2010
Software	ADT_Radiated_ V7.6.15.9.2	NA	NA	NA
CT Antenna Tower & Turn Table	NA	NA	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
2. The horn antenna, HP preamplifier (model: 8449B) and Spectrum Analyzer (model: FSP40) are used only for the measurement of emission frequency above 1GHz if tested.
3. The test was performed in Open Site No. C.
4. The FCC Site Registration No. is 656396.
5. The VCCI Site Registration No. is R-1626.
6. The CANADA Site Registration No. is R-1626.

6. The CANADA Site Registration No. is IC 7450G-3.

4.2.3 TEST PROCEDURES


- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 10 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz for Average detection (AV) at frequency above 1GHz.

4.2.4 DEVIATION FROM TEST STANDARD

No deviation

4.2.7 TEST RESULTS

BELOW 1GHz WORST-CASE DATA : 802.11g OFDM MODULATION

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL Channel 11		FREQUENCY RANGE	Below 1000MHz	
INPUT POWER	120Vac, 60 Hz	DETECTOR FUNCTION	Quasi-Peak	
ENVIRONMENTAL CONDITIONS	24deg. C, 67%RH 965 hPa	TESTED BY	Eric Lee	

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)
1	125.01	24.5 QP	43.50	-19.1	1.85 H	226	11.97	12.48
2	200.00	28.9 QP	43.50	-14.6	1.51 H	19	17.00	11.86
3	300.01	29.6 QP	46.00	-16.4	1.07 H	91	13.62	16.01
4	375.04	25.8 QP	46.00	-20.2	1.64 H	154	7.94	17.90
5	400.01	35.0 QP	46.00	-11.0	1.00 H	122	16.43	18.54
6	600.01	34.4 QP	46.00	-11.6	1.40 H	133	10.53	23.87
7	625.06	30.4 QP	46.00	-15.6	1.54 H	62	6.29	24.12
8	700.01	36.8 QP	46.00	-9.2	1.19 H	63	11.94	24.89
9	800.02	39.0 QP	46.00	-7.0	1.08 H	341	12.40	26.63
10	900.02	39.5 QP	46.00	-6.6	1.00 H	135	11.26	28.19
		ANTENNA		/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)
1	75.68	28.1 QP	40.00	-11.9	1.53 V	300	16.65	11.47
2	120.00	29.7 QP	43.50	-13.8	1.00 V	117	17.75	11.95
3	125.01	27.9 QP	43.50	-15.6	1.14 V	249	15.40	12.48
4	250.01	27.9 QP	46.00	-18.1	1.00 V	259	14.23	13.70
5	300.01	31.3 QP	46.00	-14.8	1.46 V	201	15.24	16.01
6	374.99	30.1 QP	46.00	-16.0	1.16 V	299	12.15	17.90
7	400.01	34.9 QP	46.00	-11.1	1.24 V	230	16.33	18.54
8	500.01	30.1 QP	46.00	-15.9	1.13 V	250	8.80	21.31
9	700.02	36.3 QP	46.00	-9.7	1.37 V	259	11.40	24.89
10	875.09	32.1 QP	46.00	-13.9	1.46 V	233	4.34	27.78

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission level Limit value.

ABOVE 1GHz WORST-CASE DATA

802.11b DSSS MODULATION

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL Channel 1		FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	27deg. C, 59%RH 965 hPa	TESTED BY	Frank Liu	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2385.60	54.6 PK	74.00	-19.4	1.00 H	331	24.30	30.27	
2	2385.60	43.6 AV	54.00	-10.4	1.00 H	331	13.29	30.27	
3	*2412.00	99.2 PK			1.00 H	352	68.87	30.36	
4	*2412.00	97.3 AV			1.00 H	352	66.94	30.36	
5	4824.00	44.5 PK	74.00	-29.5	1.00 H	296	7.71	36.79	
6	4824.00	33.8 AV	54.00	-20.2	1.00 H	296	-2.99	36.79	
		ANTENNA		Y & TEST DI	STANCE: V	ERTICAL A	Т 3 М		
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2386.27	58.2 PK	74.00	-15.8	1.35 V	229	27.97	30.27	
2	2386.27	49.9 AV	54.00	-4.1	1.35 V	229	19.60	30.27	
3	*2412.00	106.3 PK			1.33 V	127	75.94	30.36	
4	*2412.00	103.9 AV			1.33 V	127	73.54	30.36	
5	4824.00	45.1 PK	74.00	-28.9	1.00 V	181	8.31	36.79	
6	4824.00	36.2 AV	54.00	-17.8	1.00 V	181	-0.59	36.79	

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL	Channel 6		1 ~ 25GHz	
INPUT POWER	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	27deg. C, 59%RH 965 hPa	TESTED BY	Frank Liu	

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)
1	*2437.00	99.4 PK			1.00 H	342	68.97	30.46
2	*2437.00	97.6 AV			1.00 H	342	67.14	30.46
3	4874.00	44.9 PK	74.00	-29.1	1.00 H	313	7.98	36.92
4	4874.00	34.2 AV	54.00	-19.8	1.00 H	313	-2.72	36.92
5	7311.00	53.4 PK	74.00	-20.6	1.74 H	169	10.26	43.14
6	7311.00	46.9 AV	54.00	-7.1	1.74 H	169	3.76	43.14
		ANTENNA		/ & TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)
1	*2437.00	106.0 PK			1.32 V	126	75.54	30.46
2	*2437.00	103.2 AV			1.32 V	126	72.74	30.46
3	4874.00	45.8 PK	74.00	-28.2	1.04 V	157	8.88	36.92
4	4874.00	36.9 AV	54.00	-17.1	1.04 V	157	-0.02	36.92
5	7311.00	52.1 PK	74.00	-21.9	1.00 V	26	8.96	43.14
6	7311.00	41.4 AV	54.00	-12.6	1.00 V	26	-1.74	43.14

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.

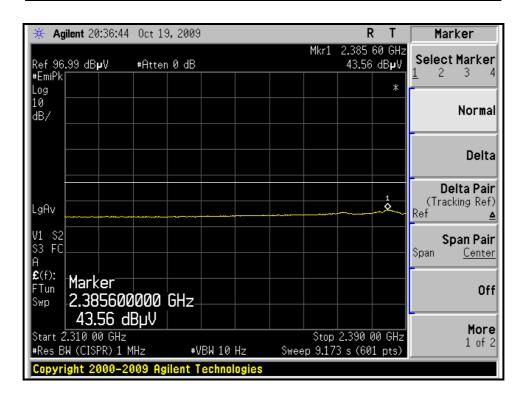
4. Margin value = Emission level – Limit value.

EUT TEST CONDITION		MEASUREMENT DETAIL			
CHANNEL Channel 11		FREQUENCY RANGE	1 ~ 25GHz		
INPUT POWER	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)		
ENVIRONMENTAL CONDITIONS	27deg. C, 59%RH 965 hPa	TESTED BY	Frank Liu		

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2462.00	99.6 PK			1.00 H	333	69.04	30.55
2	*2462.00	97.8 AV			1.00 H	333	67.25	30.55
3	2487.46	53.5 PK	74.00	-20.5	1.00 H	321	22.88	30.64
4	2487.46	42.9 AV	54.00	-11.1	1.00 H	321	12.24	30.64
5	4924.00	44.7 PK	74.00	-29.3	1.00 H	284	7.64	37.06
6	4924.00	34.1 AV	54.00	-19.9	1.00 H	284	-2.96	37.06
7	7386.00	52.8 PK	74.00	-21.2	1.76 H	173	9.67	43.13
8	7386.00	46.0 AV	54.00	-8.0	1.76 H	173	2.87	43.13
		ANTENNA	POLARITY	Y & TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2462.00	105.8 PK			1.20 V	113	75.25	30.55
2	*2462.00	103.2 AV			1.20 V	113	72.65	30.55
3	2487.68	57.4 PK	74.00	-16.6	1.33 V	287	26.78	30.64
4	2487.68	47.8 AV	54.00	-6.3	1.33 V	287	17.11	30.64
5	4924.00	45.9 PK	74.00	-28.1	1.04 V	163	8.84	37.06
6	4924.00	37.4 AV	54.00	-16.6	1.04 V	163	0.34	37.06
7	7386.00	52.3 PK	74.00	-21.7	1.00 V	23	9.17	43.13
8	7386.00	41.9 AV	54.00	-12.1	1.00 V	23	-1.23	43.13

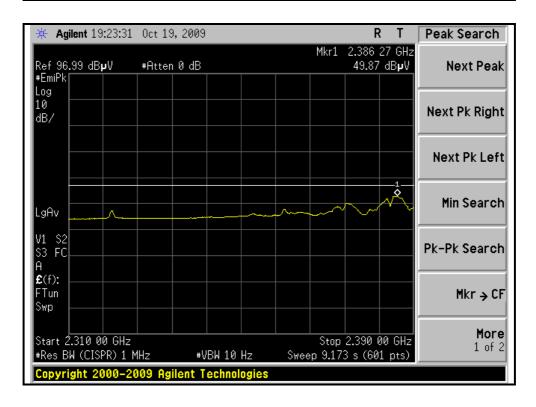
REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

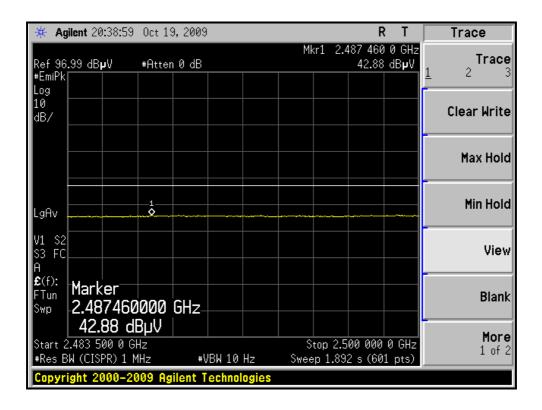

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

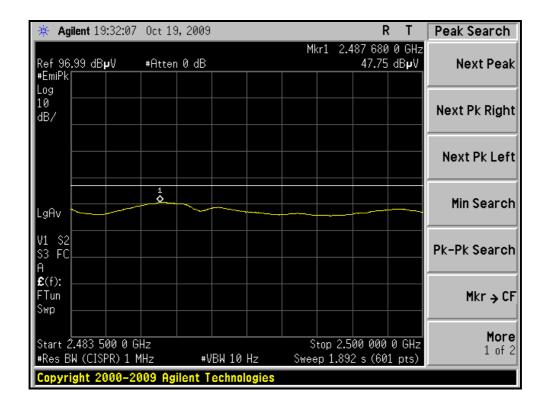
🔆 Agilent 20:37:10	Oct 19, 2009)		RT	Trace
Ref 96.99 dB µ V	#Atten 0 dB		Mkr1	2.385 73 GHz 54.57 dB µ V	Trace
#EmiPk Log					± · ·
10 dB/					Clear Write
				1	Max Hole
lgAv	walantika kana kana kana kana kana kana kana k	parta and para	uhan na haalaa ka k	un mader and the second	- Min Hole
V1 S2 S3 FC					Viev
Ê(f): FTun Swp					Blani
					More


RESTRICTED BANDEDGE (802.11b MODE,CH1, HORIZONTAL)

🔆 Agilent 19:24	4:22 Oct 19,	2009			R	Т	Peak Search
Ref 96.99 dB µ V	#Atten	0 dB		Mkr1	2.385 8 58.24	37 GHz dB µ V	Next Peak
#EmiPk Log							
10 dB/							Next Pk Right
							Next Pk Left
۳۹ <mark>٬۸۹٬۸۹۱</mark> LgAv	bounderwordserver	nununumutuu	pharge-part to and the	Nappend	nd introduced photo		Min Search
V1 S2 S3 FC A							Pk-Pk Search
	870000 G	iHz					Mkr → Cl
	<mark>1 dBµV ⊥</mark>			<u>Star</u>	2 200 0		More
Start 2.310 00 (#Res BW (CISPR)		#VBW 1 M⊦	lz Sw		2.390 0 ms (601		1 of 2
Copyright 2000	0-2009 Agil	ent Technolo	gies				


RESTRICTED BANDEDGE (802.11b MODE,CH1, VERTICAL)

Buv Next Peak	Mkr1 2.487 680 0 GHz 53.52 dBpV	3µV #Atten 0 dB
Next Pk Left		
100 -1 00		1
Min Search		
riii sea ci	unanangan kanga na pada kang kang manang kang kang kang kang kang kang kang	ndres der Bergene Schrigte der Alterne sonder der
Pk-Pk Search		
Mkr → CF		ker 37680000 GHz-
GHz 1 of 2	Stop 2.500 000 0 GHz 11 MHz Sweep 1 ms (601 pts)	500 0 GHz
680000 GHz	580000 GHz dBµV о GHz	876 .52


RESTRICTED BANDEDGE (802.11b MODE,CH11, HORIZONTAL)

-	ilent 19:31:25				,	,		Ŕ	Т	Trace
Ref 96 #EmiPk	.99 dBµV	#Atten	0 dB			Mk	r1 2.4	87 542 57.42	5 GHz dB µ V	Trace 1 2 3
Log 10										Clear Write
dB/										
										Max Hold
LgAv	mar for from the second		*************	nderskyndersk	urvlag-vikippin	waltrange	www.www.ayarw	ner the second	hurdhammene	Min Hold
V1 S2 S3 FC										View
A £ (f):	Marker									
FTun Swp	2.487542		GHz-							Blank
	57.42 dl	Hz						00 000		More 1 of 2
	W (CISPR) 1 M i <mark>ght 2000-20</mark>			3W 1 M echnol		Sh	eep 1	ms (60	l pts)	

RESTRICTED BANDEDGE (802.11b MODE, CH11, VERTICAL)

802.11g OFDM MODULATION

EUT TEST CONDITION		MEASUREMENT DETAIL			
CHANNEL Channel 1		FREQUENCY RANGE	1 ~ 25GHz		
INPUT POWER	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)		
ENVIRONMENTAL CONDITIONS	27deg. C, 59%RH 965 hPa	TESTED BY	Frank Liu		

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	57.6 PK	74.00	-16.4	1.00 H	332	27.29	30.28
2	2390.00	44.1 AV	54.00	-9.9	1.00 H	332	13.86	30.28
3	*2412.00	100.2 PK			1.00 H	351	69.84	30.36
4	*2412.00	87.6 AV			1.00 H	351	57.24	30.36
5	4824.00	43.7 PK	74.00	-30.3	1.03 H	234	6.91	36.79
6	4824.00	33.5 AV	54.00	-20.5	1.03 H	234	-3.29	36.79
		ANTENNA	POLARITY	A TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)
1	2390.00	70.3 PK	74.00	-3.7	1.32 V	185	40.02	30.28
2	2390.00	53.1 AV	54.00	-0.9	1.32 V	185	22.83	30.28
3	*2412.00	108.6 PK			1.34 V	187	78.24	30.36
4	*2412.00	98.9 AV			1.34 V	187	68.54	30.36
5	4824.00	42.8 PK	74.00	-31.2	1.00 V	29	6.01	36.79
6	4824.00	31.4 AV	54.00	-22.6	1.00 V	29	-5.39	36.79

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL Channel 6		FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS27deg. C, 59%RH 965 hPa		TESTED BY	Frank Liu	

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2437.00	102.3 PK			1.00 H	352	71.84	30.46
2	*2437.00	89.4 AV			1.00 H	352	58.94	30.46
3	4874.00	45.1 PK	74.00	-28.9	1.02 H	231	8.18	36.92
4	4874.00	34.9 AV	54.00	-19.1	1.02 H	231	-2.02	36.92
5	7311.00	50.8 PK	74.00	-23.2	1.00 H	224	7.66	43.14
6	7311.00	38.2 AV	54.00	-15.8	1.00 H	224	-4.94	43.14
		ANTENNA		(& TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2437.00	110.4 PK			1.35 V	166	79.94	30.46
2	*2437.00	100.1 AV			1.35 V	166	69.64	30.46
3	4874.00	42.4 PK	74.00	-31.6	1.06 V	154	5.48	36.92
4	4874.00	31.7 AV	54.00	-22.3	1.06 V	154	-5.22	36.92
5	7311.00	49.4 PK	74.00	-24.6	1.00 V	31	6.26	43.14
6	7311.00	36.9 AV	54.00	-17.1	1.00 V	31	-6.24	43.14

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission level – Limit value.

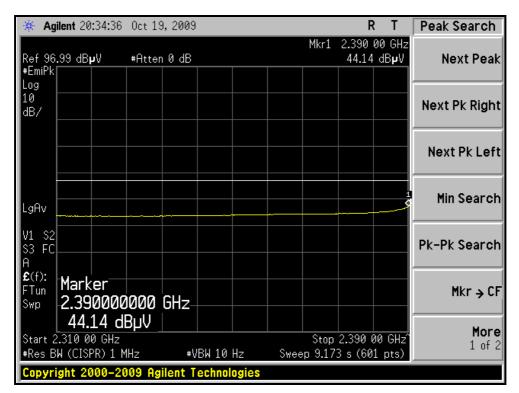
EUT TEST CONDITION		MEASUREMENT DETAIL		
CHANNEL	Channel 11	FREQUENCY RANGE	1 ~ 25GHz	
INPUT POWER	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)	
ENVIRONMENTAL CONDITIONS	27deg. C, 59%RH 965 hPa	TESTED BY	Frank Liu	

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	*2462.00	99.6 PK			1.00 H	343	69.05	30.55		
2	*2462.00	86.6 AV			1.00 H	343	56.05	30.55		
3	2483.50	59.6 PK	74.00	-14.4	1.00 H	352	28.95	30.63		
4	2483.50	45.4 AV	54.00	-8.6	1.00 H	352	14.78	30.63		
5	4924.00	45.2 PK	74.00	-28.8	1.02 H	251	8.14	37.06		
6	4924.00	34.8 AV	54.00	-19.2	1.02 H	251	-2.26	37.06		
7	7386.00	51.3 PK	74.00	-22.7	1.12 H	222	8.17	43.13		
8	7386.00	38.4 AV	54.00	-15.6	1.12 H	222	-4.73	43.13		
		ANTENNA	POLARITY	Y & TEST DI	STANCE: V	ERTICAL A	Т 3 М			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	Correction Factor (dB/m)		
1	*2462.00	108.9 PK			1.32 V	185	78.35	30.55		
2	*2462.00	99.4 AV			1.32 V	185	68.85	30.55		
3	2483.50	73.0 PK	74.00	-1.0	1.32 V	185	42.38	30.63		
4	2483.50	53.0 AV	54.00	-1.0	1.32 V	185	22.38	30.63		
5	4924.00	43.0 PK	74.00	-31.0	1.02 V	152	5.94	37.06		
6	4924.00	31.6 AV	54.00	-22.4	1.02 V	152	-5.46	37.06		
7	7386.00	49.7 PK	74.00	-24.3	1.00 V	29	6.57	43.13		
8	7386.00	37.8 AV	54.00	-16.2	1.00 V	29	-5.33	43.13		

REMARKS: 1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).

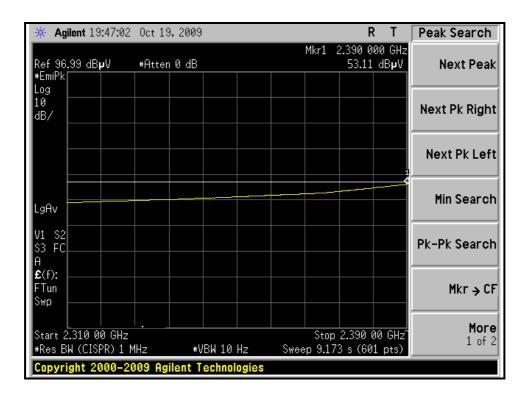
2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).

3. The other emission levels were very low against the limit.


4. Margin value = Emission level – Limit value.

5. " * ": Fundamental frequency.

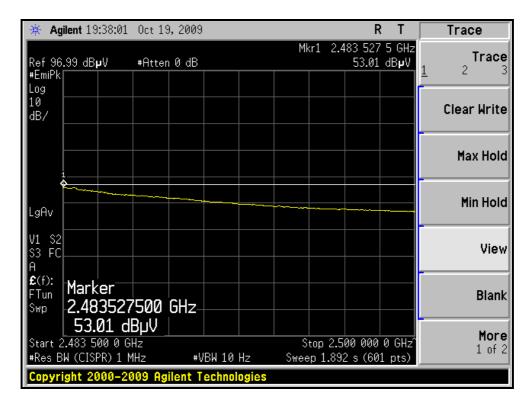
🔆 Agiler	nt 20:35:15	Oct 19	, 2009				F	₹ T	Trace
Ref 96.99	∣dB µ V	#Atten	0 dB			Mkr1		33 GHz 'dB µ V	Trace
#EmiPk									<u> </u>
Log 10 dB/									Clear Write
								1	Max Hol
<mark>ساہر</mark> LgAv	warder yn preferin	uhen network	tops, s, s	harmonia	www.wenthered	when	www.h	and why the	Min Hol
V1 S2 S3 FC									Viev
Swp 2	arker .389330		SHz_						Blan
	57.57 dl	RhA							More
	LO OO GHz (CISPR) 1 M	IHz	#V{	3W 1 MHz	Si		2.390 ms (60	00 GHz 1 pts)	1 of
	t 2000-20								


RESTRICTED BANDEDGE (802.11g MODE,CH1, HORIZONTAL)

🔆 Agilent 19:48:07	Oct 19, 2009			F	? T	Trace
Ref 96.99 dB µ V #EmiPk	#Atten 0 dB		Mkr1	2.389 9 70.30	17 GHz dB µ V	Trace <u>1</u> 2 3
Log 10 dB/					1	Clear Write
NAMMAN	hannannanaltha	wether the test of the test	yyantan	ant dama da an	water for	Max Hold
LgAv						Min Hold
V1 S2 S3 FC A						View
£(f): FTun Swp 2.38991 70.30 d	7000 GHz					Blani
Start 2.310 00 GHz #Res BW (CISPR) 1 M		W 1 MHz) 2.390 (. ms (60		More 1 of 2
Copyright 2000-2	009 Agilent Te	chnologies				

RESTRICTED BANDEDGE (802.11g MODE,CH1, VERTICAL)

🔆 Agilent 20:32:21	Oct 19, 2009		R	Т	Marker
Ref 96.99 dB µ V	#Atten 0 dB	Mkr1	2.483 637 59 58	5 GHz dB µ V	Select Marker
#EmiPk					<u>1</u> 2 3 4
Log					
10 dB/					Norma
					Delta
My Martin Martin Land	unan de la constante de la const	المسلمي وروي براي الاري الحمر الأكال	Advertighthere	land une	
		and the state of the factor of the state of	· · · · · · · · · · · · · · · · · · ·	(Contraction)	Delta Pai
LgAv					(Tracking Ref Ref
					-
V1 S2 S3 FC					Span Pair
A .					Span <u>Cente</u>
£(f): Mortcor					
					Of
Swp 2.483637					
59.58 d					More
Start 2.483 500 0 G			p 2.500 000		1 of 3
#Res BW (CISPR) 1 N	1Hz #VBW 1	MHZ Swe	ep 1 ms (601	. pts)	
Copyright 2000-20	009 Agilent Techr	ologies			
★ Agilent 20:31:42	Oct 19, 2009		R	Т	Marker


RESTRICTED BANDEDGE (802.11g MODE,CH11, HORIZONTAL)

🔆 Agil	lent 19:39:32	Oct 19, 2009		RT	Marker
Ref 96. #EmiPk∏	99 dBµV	#Atten 0 dB	Mkr1	2.483 637 5 GHz 73.01 dB µ V	Select Marker
Log 10					Manua
dB/					Norma -
	man man and a starting hours	withthour with which	M. M	Mr. Martinipation del ana ana andre	Delt
					Delta Pai (Tracking Ref
LgAv V1 S2					Ref
\$3 FC_ A					Span Pai Span <u>Cente</u>
£(f): FTun	Marker				Of
	73.01 d				More
	.483 500 0 G W (CISPR) 1 M			2.500 000 0 GHz p 1 ms (601 pts)	1 of
Copyrig	ght 2000-20	009 Agilent Tech	nologies		

RESTRICTED BANDEDGE (802.11g MODE, CH11, VERTICAL)

4.3 6dB BANDWIDTH MEASUREMENT

4.3.1 LIMITS OF 6dB BANDWIDTH MEASUREMENT

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.3.2 TEST INSTRUMENTS

DESCRIPTION &	MODEL NO.	SERIAL	CALIBRATED	CALIBRATED
MANUFACTURER		NO.	DATE	UNTIL
R&S SPECTRUM ANALYZER	FSP40	100037	Aug. 03, 2009	Aug. 02, 2010

NOTE:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.3.3 TEST PROCEDURE

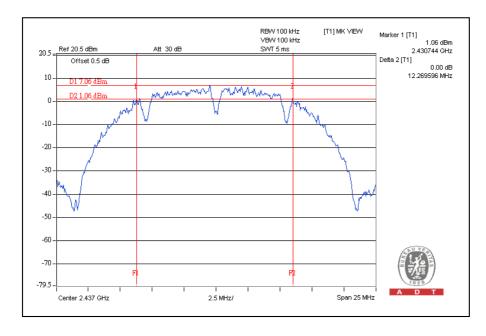
The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100kHz RBW and 100kHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

4.3.4 DEVIATION FROM TEST STANDARD

No deviation

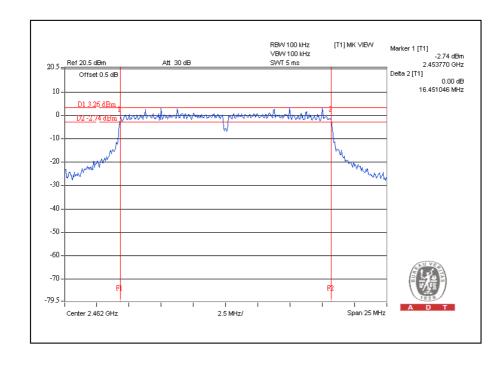
4.3.5 TEST SETUP

4.3.6 EUT OPERATING CONDITIONS


The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 TEST RESULTS

802.11b DSSS MODULATION:


CHANNEL	CHANNEL FREQUENCY (MHz)	6dB BANDWIDTH (MHz)	MINIMUM LIMIT (MHz)	PASS / FAIL
1	2412	12.11	0.5	PASS
6	2437	12.27	0.5	PASS
11	2462	11.14	0.5	PASS

802.11g OFDM MODULATION:

CHANNEL	CHANNEL FREQUENCY (MHz)	6dB BANDWIDTH (MHz)	MINIMUM LIMIT (MHz)	PASS / FAIL
1	2412	16.42	0.5	PASS
6	2437	16.40	0.5	PASS
11	2462	16.45	0.5	PASS

4.4 MAXIMUM PEAK OUTPUT POWER

4.4.1 LIMITS OF MAXIMUM PEAK OUTPUT POWER MEASUREMENT

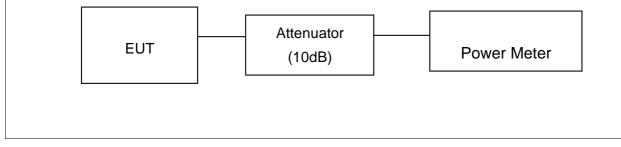
The Maximum Peak Output Power Measurement is 30dBm.

4.4.2 INSTRUMENTS

DESCRIPTION &	MODEL NO.	SERIAL NO.	CALIBRATED	CALIBRATED
MANUFACTURER			DATE	UNTIL
Anritsu Power Meter	ML2495A	0824006	April 25, 2009	April 24, 2010
Pulse Power Sensor	MA2411B	0738172	April 25, 2009	April 24, 2010

NOTE:

The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.


4.4.3 TEST PROCEDURES

- 1. The transmitter output was connected to the power meter through an attenuator; the bandwidth of the fundamental frequency was measured with the power meter.
- 2. Record the power level.

4.4.4 DEVIATION FROM TEST STANDARD

No deviation

4.4.5 TEST SETUP

4.4.6 EUT OPERATING CONDITIONS

Same as Item 4.3.6

4.4.7 TEST RESULTS

802.11b DSSS MODULATION:

CHANNEL	CHANNEL FREQUENCY (MHz)	PEAK POWER OUTPUT (dBm)	PEAK POWER OUTPUT (mW)		PASS / FAIL
1	2412	19.5	89.1	30	PASS
6	2437	19.2	83.2	30	PASS
11	2462	19.4	87.1	30	PASS

802.11g OFDM MODULATION:

CHANNEL	CHANNEL FREQUENCY (MHz)		PEAK POWER OUTPUT (mW)	PEAK POWER LIMIT (dBm)	PASS / FAIL
1	2412	23.6	229.1	30	PASS
6	2437	24.5	281.8	30	PASS
11	2462	25.1	323.6	30	PASS

4.5 POWER SPECTRAL DENSITY MEASUREMENT

4.5.1 LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT

The Maximum of Power Spectral Density Measurement is 8dBm.

4.5.2 TEST INSTRUMENTS

DESCRIPTION &	MODEL NO.	SERIAL	CALIBRATED	CALIBRATED
MANUFACTURER		NO.	DATE	UNTIL
R&S SPECTRUM ANALYZER	FSP40	100037	Aug. 03, 2009	Aug. 02, 2010

NOTE:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.5.3 TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator, the bandwidth of the fundamental frequency was measured with the spectrum analyzer using 3kHz RBW and 30kHz VBW, set sweep time = span/3kHz. The power spectral density was measured and recorded.

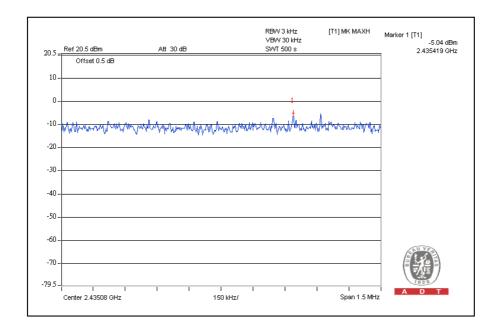
The sweep time is allowed to be longer than span/3kHz for a full response of the mixer in the spectrum analyzer.

4.5.4 DEVIATION FROM TEST STANDARD

No deviation

4.5.5 TEST SETUP

4.5.6 EUT OPERATING CONDITION


Same as Item 4.3.6

4.5.7 TEST RESULTS

802.11b DSSS MODULATION:


CHANNEL	CHANNEL FREQUENCY (MHz)	RF POWER LEVEL IN 3kHz BW (dBm)	MAXIMUM LIMIT (dBm)	PASS / FAIL
1	2412	-6.4	8	PASS
6	2437	-5.0	8	PASS
11	2462	-5.1	8	PASS

802.11g OFDM MODULATION:

CHANNEL	CHANNEL FREQUENCY (MHz)	RF POWER LEVEL IN 3kHz BW (dBm)	MAXIMUM LIMIT (dBm)	PASS / FAIL
1	2412	-10.5	8	PASS
6	2437	-9.2	8	PASS
11	2462	-10.0	8	PASS

4.6 CONDUCTED OUT-BAND EMISSION MEASUREMENT

4.6.1 LIMITS OF CONDUCTED OUT-BAND EMISSION MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100KHz Resolution Bandwidth).

4.6.2 TEST INSTRUMENTS

DESCRIPTION &	MODEL NO.	SERIAL	CALIBRATED	CALIBRATED
MANUFACTURER		NO.	DATE	UNTIL
R&S SPECTRUM ANALYZER	FSP40	100037	Aug. 03, 2009	Aug. 02, 2010

NOTE:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.6.3 TEST PROCEDURE

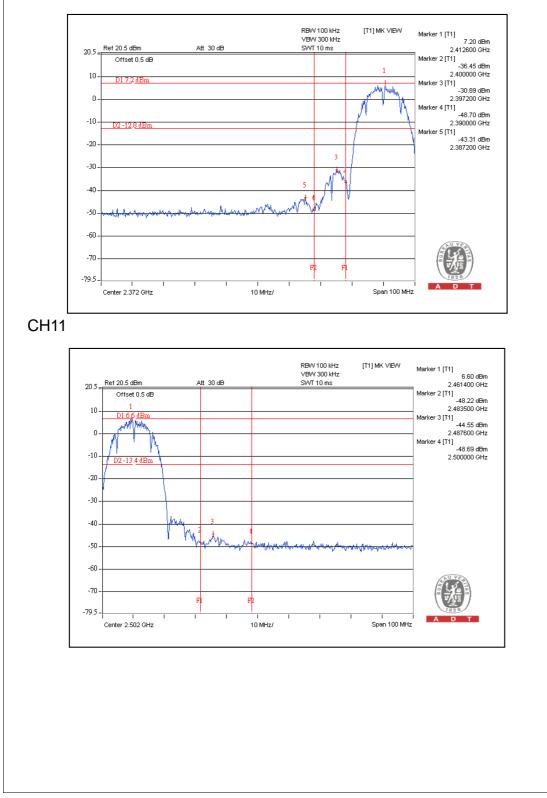
The transmitter output was connected to the spectrum analyzer via a low lose cable. Set RBW of spectrum analyzer to 100kHz and VBW of spectrum analyzer to 300kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

The spectrum plots (RBW = 100kHz, VBW = 300kHz) are attached on the following pages.

4.6.4 DEVIATION FROM TEST STANDARD

No deviation

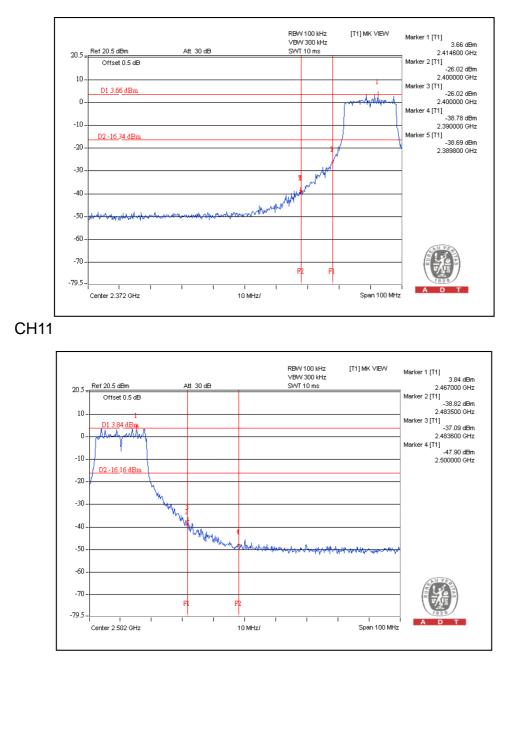
4.6.5 EUT OPERATING CONDITION


Same as Item 4.3.6

4.6.6 TEST RESULTS

The spectrum plots are attached on the following images. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement in part 15.247(d).

802.11b DSSS MODULATION:



CH1 RBW 100 kHz VBW 300 kHz SWT 2.5 s [T1] MK VIEW Marker 1 [T1] 3.83 dBm , 2.377180 GHz Ref 20.5 dBm Att 30 dB 20.5 2.377100 GHz Marker 2 [T1] -40.34 dBm 9.618480 GHz Offset 0.5 dB 10 Marker 3 [T1] -42.80 dBm 24.400720 GHz Marker 4 [T1] -44.01 dBm 24.600480 GHz 0 -10 -20 -30 2 -40 #⊷ Marto -50 -60 --70 -79.5 -Stop 25 GHz Start 30 MHz . 2.497 GHz/ CH11 RBW 100 kHz VBW 300 kHz SWT 2.5 s [T1] MK VIEW Marker 1 [T1] 3.62 dBm 2.427120 GHz Marker 2 [T1] -42.88 dBm 24.650420 GHz Ref 20.5 dBm Att 30 dB 20.5 Offset 0.5 dB 10 24.850420 GHz Marker 3 [T1] -43.43 dBm 21.504200 GHz Marker 4 [T1] -43.51 dBm 21.654020 GHz D1 6.6 dBm 0 -10 D2-134 dBn -20 -30 -40 multiple and another the same đ. -50 -60 -70 -79.5 Start 30 MHz 2.497 GHz/ Stop 25 GHz

802.11g OFDM MODULATION::

5.INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025:

USA	FCC, NVLAP
Germany	TUV Rheinland
Japan	VCCI
Norway	NEMKO
Canada	INDUSTRY CANADA, CSA
R.O.C.	TAF, BSMI, NCC
Netherlands	Telefication
Singapore	GOST-ASIA (MOU)
Russia	CERTIS (MOU)

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: <u>www.adt.com.tw/index.5/phtml</u>. If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Tel: 886-2-26052180 Fax: 886-2-26052943 Hsin Chu EMC/RF Lab: Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety Telecom Lab: Tel: 886-3-3183232 Fax: 886-3-3185050

Web Site: <u>www.adt.com.tw</u>

The address and road map of all our labs can be found in our web site also

6.APPENDIX-A- MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

---END----