ELECTROMAGNETIC EMISSIONS COMPLIANCE REPORT INTENTIONAL RADIATOR CLASS II PERMISSIVE CHANGE TO FCC PART 15 SUBPART C REQUIREMENT

OF

FCC ID: NEN-IW9000

DATE OF GRANT: 07/03/97

DIRECT SEQUENCE SPREAD SPECTRUM DATA TRANSCEIVER

MODEL NO: IW9000

BRAND NAME: INFOWAVE

S/N: 80700023

REPORT NO: 98E7565

JULY 28, 1998

Prepared for INNOMEDIA, INC. 4800 GREAT AMERICA PARKWAY, SUITE 400 SANTA CLARA CA 95054

Prepared by

COMPLIANCE ENGINEERING SERVICES, INC. 1366 BORDEAUX DRIVE SUNNYVALE, CA 94089, U.S.A. TEL: (408) 752-8166 FAX: (408) 752-8168

LAB CODE:200065-0

TABLE OF CONTENTS

PAGE
 1

1.	VERIFICATION OF COMPLIANCE1
2.	DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)
3.	TEST FACILITY
4.	ACCREDITATION AND LISTING
5.	MEASUREMENT INSTRUMENTATION
6.	MEASURING INSTRUMENT CALIBRATION
7.	UNITS OF MEASUREMENT
8.	ANTENNAS
9.	CLASSIFICATION OF DIGITAL DEVICE
10.	RADIATED EMISSION LIMITS
11.	CONDUCTED EMISSION LIMITS
12.	CONDUCTED EMISSION TEST PROCEDURE
13.	RADIATED EMISSION TEST PROCEDURE
14.	AMBIENT CONDITIONS
15.	SYSTEM TEST CONFIGURATION7
16.	SUPPORT EQUIPMENT LIST
17.	FCC CLASS II PERMISSIVE CHANGES
18.	EUT SETUP PHOTOS9
19.	TEST RESULT SUMMARY 10
20.	EXTERNAL I/O CABLE CONSTRUCTION DESCRIPTION
21.	CONFIGURATION BLOCK DIAGRAM
22.	TEST PROCEDURES AND TEST RESULTS14
23.	TEST SETUP PHOTO
Attao Attao	chment #1EUT Photographschment #2FCC Class II permissive Change Letterchment #3Block Diagramchment #4Schematia Diagram

- Attachment #4 Schematic Diagram
- Attachment #5 User Manual
- Attachment #6 Channel usage
- Processing Gain Measurement Attachment #7

1. VERIFICATION OF COMPLIANCE

COMPANY NAME :	INNOMEDIA, INC. 4800 GREAT AMERICA PARKWAY, SUITE 400 SANTA CLARA, CA 95054
CONTACT PERSON:	MR. RICHARD ZAI
TELPHONE NO :	(408) 566-0147
EUT DESCRIPTION :	DIRECT SEQUENCE SPREAD SPECTRUM DATA TRANSCEIVER

MODEM NAME : IW9000

DATE TESTED : JULY 28,1998

LIMIT APPLY TO: FCC PART 15 SECTION 15.247			
TEST RESULT			
Passed			
LIMIT APPLY TO: FCC PART 15 SECTION 15.205/SECTION 15.209			
Passed			
LIMIT APPLY TO: FCC PART 15 SECTION 15.109			
Passed			
LIMIT APPLY TO: FCC PART 15 SECTION 15.207			
Passed			

The above equipment was tested by Compliance Engineering Services Inc. for compliance with the requirements set forth in CFR 47 PART 15 SUBPART C. This said equipment in the configuration described in this report show that maximum emission levels emanating from equipment are within the compliance requirements.

Dn-1. (2/1,-

MIKE C.I. KOU / VICE-PRESIDENT COMPLIANCE ENGINEERING SERVICES, INC.

CHASSIS TYPE	PLASTIC
Frequency Range	905 - 924 MHz
Local Osc./Location	16.3840MHz/X2, 18.432MHz/X1
Channel Spacing	2 MHz
Transmit Power	20+/-2 dBm
Modulation Technique	GMSK
Radio Technique	Direct Sequence Spread Spectrum
Duplex Mode	TDD (for Full-Duplex)
Number of Channels	10
Operating Mode	Point-to-Point
Antenna	Permanently Attached (50 ohms / Dipole (2-3dBi))
DC voltage	5V +/-10%
Chipset Brand and part No.	ALFA, INC. ; AIC9001
Power supply/Name/Model No	DVE; DV-S30R
Number of PCB Layers	4
Board Revision No.	A2
External Interface	RS232-C(D-sub 9)

2. DESCRIPTION OF EQUIPMENT UNDER TEST (EUT)

3. TEST FACILITY

The open area test sites and conducted measurement facilities used to collect the radiated data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

4. ACCREDITATION AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code:200065-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government. In addition, the test facilities are listed with Federal Communications Commission (reference no: 31040/SIT (1300B3) and 31040/SIT(1300F2))

5. MEASUREMENT INSTRUMENTATION

Radiated emissions were measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, BI-log, ridged waveguide, liner horn. EMI receivers were used for line conducted readings, spectrum analyzers with pre-selectors and quasi-peak detectors were used to perform radiated measurements. Receiving equipment (i.e., receiver, analyzer, quasi-peak adapter, pre-selector) and LISNs conform to CISPR specification for "Radio Interference Measuring Apparatus and Measurement Methods," Publication 16.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

6. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

7. UNITS OF MEASUREMENT

Measurements of radiated interference are reported in terms of dB(uV/m) at a specified distance. The indicated readings on the spectrum analyzer were converted to dB(uV/m) by use of appropriate conversion factors. Measurements of conducted interference are reported in terms of dB(uV).

The field strength is calculated by adding the Antenna Factor and Cable Factors, then by subtracting the Amplifier Gain from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CF - AG

Where FS = Field Strength RA = Receiver Amplitude AF = Antenna Factor CF = Cable Attenuation Factor AG = Amplifier Gain

Assume a receiver reading of 52.5 dBuV is obtained. The Antenna Factor of 7.4dB/m and a Cable Factor of 1.1dB is added. The Amplifier Gain of 29 dB is subtracted, giving a field strength of 32 dBuV/m. The 32 dBuV/m value was mathematically converted to its corresponding level in uV/m.

FS = 52.5 + 7.4 + 1.1 - 29 = 32 dBuV/mLevel in uV/m = Common Antilogarithm [(32 dBuV/m)/20] = 39.8 uV/m

Page 3 of 45

8. ANTENNAS

The calibrated antennas used to sample the radiated field strength are mounted on a nonconductive, motorized antenna mast 3 meters from the leading edge of the turn table.

9. CLASSIFICATION OF DIGITAL DEVICE

Class A includes digital devices that are marketed for use in commercial, industrial or business environments, excluding devices which are marketed for use by the general public or are intended to be used in the home.

Class B includes digital devices that are marketed for use in residential environments, notwithstanding use in commercial, business and industrial environments.

Note: The responsible party may also qualify a device intended to be marketed in a commercial, business or industrial environment as Class B device, and in fact is encouraged to do so provided the device complies with the technical specifications for a Class B digital device. In the event that a particular type of device has been found to repeatedly cause harmful interference to radio communications, the Commission may classify such a digital device as a Class B digital device, regardless of its intended use.

10. RADIATED EMISSION LIMITS

FCC PART 15 CLASS A		
MEASURING DISTANCE OF 10 METER		
FREQUENCY RANGE	FIELD STRENGTH	FIELD STRENGTH
(MHz)	(Microvolts/m)	(dBuV/m)
30-88	90	39.1
88-216	150	43.5
216-960	210	46.4
Above 960	300	49.5

FCC PART 15 CLASS B

MEASURING DISTANCE OF 3 METER		
FREQUENCY RANGE	FIELD STRENGTH	FIELD STRENGTH
(MHz)	(Microvolts/m)	(dBuV/m)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54

FCC RADIATED EMISSION ALTERNATIVE METHOD (CISPR 22/EN55022)

Limits for radiated disturbance of Class A ITE at measuring distance of 10 m

Frequency range	Quasi-peak limits	
MHz	dB(uV/m)	
30 to 230	40	
230 to 1000	47	
NOTES		

1. The lower limit shall apply at the transition frequency.

2. Additional provisions may be required for cases where interference occurs.

Limits for radiated disturbance of Class B ITE at

Measuring distance of 10 m	
Frequency range	Quasi-peak limits
MHz	dB(uV/m)
30 to 230	30
230 to 1000	37
NOTES	

1. The lower limit shall apply at the transition frequency.

2. Additional provisions may be required for cases where interference occurs.

11. CONDUCTED EMISSION LIMITS

FCC CLASS A

FREQUENCY RANGE	FIELD STRENGTH	FIELD STRENGTH
	(Microvolts)	(dBuV)/QP
450kHz-1.705MHz	1000	60
1.705MHz - 30MHz	3000	69.54

FCC CLASS B		
FREQUENCY RANGE	FIELD STRENGTH	FIELD STRENGTH
	(Microvolts)	(dBuV)/QP
450kHz-30MHz	250	48

FCC CONDUCTED EMISSION ALTERNATIVE METHOD (CISPR 22/EN55022)

Limits for conducted disturbance at the mains ports of

Class A ITE

	Limits	
Frequency range	dB(uV)	
MHz	Quasi-peak	Average
0.15 to 0.50	79	66
0.5 to 30	73	60
Note- The lower limit shall apply at the transition frequency.		

Limits of Conducted disturbance at the mains ports of Class B ITE

Fraguanay ranga	Limits dB(uV)						
Frequency range							
MHz	Quasi-peak	Average					
0.15 to 0.50	66 to 56	56 to 46					
0.50 to 5	56	46					
5 to 30	60	50					
Note							
1. The lower limit shall apply at the t	ransition frequencies						
2. The limit decreases linearly with the	ne logarithm of the frequency in the	range 0.15 MHz to 0.50 MHz.					

12. CONDUCTED EMISSION TEST PROCEDURE

The EUT is located so that the distance between the boundary of the EUT and the closest surface to the LISN is 0.8m.

EUT test configuration is according to Section 7 of ANSI C63.4/1992.

Conducted disturbance shall be measured between the phase lead and the ground, and between the neutral lead and the ground. The frequency 0.450 - 30 MHz (or 0.150 - 30 MHz in case of CISPR 22/EN55022 method) shall be investigated.

Set the EMI receiver to PEAK detector setting and sweep continuously over the frequency range to be investigated. Set resolution bandwidth to 9kHz minimum. Connect EMI receiver input cable to LINE 1 RF measurement connection on the LISN. Connect a 500hm terminator to the unused RF connection on the LISN. For each mode of EUT operation, maximize emissions readings by manipulating cable and wire positions. Record the configuration for each EUT power cord, which produces emissions closest to the limit. Repeat the same procedure for LINE 2 of each EUT power cord.

13. RADIATED EMISSION TEST PROCEDURE

The EUT and all other support equipment are placed on a wooden table 80-cm above the ground screen. Antenna to EUT distance is either 3 meters or 10 meters (Class B or Class A). During the test, the table is rotated 360 degrees to maximize emissions and the antenna is positioned from 1 to 4 meters above the ground screen to further maximize emissions. The antenna is polarized in both vertical and horizontal positions.

EUT test configuration is according to Section 8 of ANSI C63.4/1992.

Monitor the frequency range of interest at a fixed antenna height and EUT azimuth. Frequency span should be small enough to easily differentiate between broadcast stations and intermittent ambients. Rotate EUT 360 degrees to maximize emissions received from EUT. If emission increases by more than 1 dB, or if another emission appears that is greater by 1 dB, return to azimuth where maximum occurred and perform additional cable manipulation to further maximize received emission.

Move antenna up and down to further maximize suspected highest amplitude signal. If emission increased by 1 dB or more, or if another emission appears that is greater by 1dB or more, return to antenna height where maximum signal was observed and manipulate cables to produce highest emissions, noting frequency and amplitude.

14. AMBIENT CONDITIONS

The ambient conditions at the time of final tests were as follows:

	Radiated Emission	Conducted Emission
Temperature	13 °C	17 ° C
Humidity	90%	72%

15. SYSTEM TEST CONFIGURATION

The equipment under test was configured and operated in a manner, which tended to maximize its emission characteristics in a typical application. Power and signal distribution, ground, interconnecting cabling and physical placement of equipment simulated the typical application and usage insofar as practicable.

	SOFTWARE USED DURING THE TESTS					
Operating System WIN95						
File Name	IWFCCTST.EXE					
Program Sequence	Continuously transmitted and received data.					

16. SUPPORT EQUIPMENT LIST

NOTEBOOK PC	TOSHIBA	SETTLITE PRO	08536475-3	CJ6UK323

Page 7 of 45

17. FCC CLASS II PERMISSIVE CHANGES.

For FCC class II permissive change, the following changes were made to unit.

- 1. Radio module and antenna : (Circuit board remains the same with some component changes)
- A. Antenna was shortened from $\frac{1}{2}$ wavelength (6.5") to $\frac{1}{4}$ wavelength (3.5")
- B. Antenna matching circuit was changed to match the 3.5" antenna
- C. 6dB bandwidth was increased from 1MHz to 1.9 MHz
- 2. Baseband circuit board
- A. EPROM was replaced by Flash Memory
- B. Two chips for data terminal equipment (DTE) interface were removed.
- C. One parallel port connector was removed.
- 3. Firmware
- A. Minor changes in interface to application-level software. No change affects the radio transmission characteristics.
- 4. Application software residing in a personal computer
- A. Windows 95 Network Driver was written to change the applications from cordless printer and modems sharing to cordless data network.

18.EUT SETUP PHOTOS

Emission Setup Photos (Worst Emission Position)

Conducted Emission Setup Photos (Worst Emission Position) Radiated

Page 9 of 45

COMPLIANCE CONSULTING SERVICESDOCUMENT NO:CCSUP4002D1366 BORDEAUX DRIVE SUNNYVALE, CA 94089 USATEL:(408) 752-8166 FAX:(408) 752-8168This report shall not be reproduced except in full, without the written approval of CCS

19. TEST RESULT SUMMARY

Preliminary Radiated Emission Tests were performed at the 10-meter open area test site. CCS test procedure no:CCSUE2001B and the procedure listed in ANSI C63.4 /1992 section 8.3.1.1. were used. The following preliminary tests were conducted to determine the worst mode of operation and configuration.

Prel	Preliminary Radiated Emission Test									
Frequency Range Investigated	Frequency Range Investigated 30 MHz TO 1000 MHz									
Mode of operation	Date	Data Report No.	Worst Mode							
Continuously transmitted and received data.	07/28/98	980728C1	\square							

Final Radiated Emission Test was conducted by operating the worst mode as indicated above.

OATS	S No:	Data R	eport No.	Date	;	Tested By:		
C/3 M	ETER	980	728C1	7-28-9	8	Juan Mar	tinez	
		Six Hi	ghest Radiated	Emission Rea	ndings			
Frequency	Range Inv	estigated			80 MHz TC	1000 MHz		
	Meter		Corrected			Reading		
Freq.	Reading	C.F.	Reading	Limits	Margin	Туре	Polar	
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(P/Q/A)	(H/V)	
36.86	45.9	-15.84	30.06	40.0	-9.94	Р	V	
184.32	47.6	-10.15	37.45	43.5	-6.05	Р	V	
73.72	51.7	-20.83	30.87	40.0	-9.13	Р	V	
60.16	53.4	-20.48	32.92	40.0	-7.08	Р	V	
50.88	51.7	-17.63	-17.63 34.07 40.0 -5.93 P					
134.34	46.4	-12.13	34.27	43.5	-9.23	Р	V	

C.F.(Correction Factor)=Antenna Factor + Cable Loss-Amplifier Gain

Corrected Reading = Metering Reading + C.F.

Margin= Corrected Reading - Limits

P= Peak ReadingH=Horizontal PeQ= Quasi-peakV=Vertical Polar

A= Average Reading

H=Horizontal Polarization/Antenna V=Vertical Polarization/Antenna

Comments: N/A

Page 10 of 45

Preliminary Conducted Emission Tests were performed according to CCS test procedure no:CCSUE2002B and ANSI C63.4/1992 section 7.2.3. The following preliminary tests were conducted to determine the worst mode of operation.

Preliminary Conducted Emission Test									
Frequency Range Investigated 450 kHz TO 30 MHz									
Mode of operation	Date	Data Report/Plot No.	Worst Mode						
Continuously transmitted and	07/17/98	N/A	\square						
received data.									

Final Conducted Emission Test was conducted by operating the worst mode as indicated above.

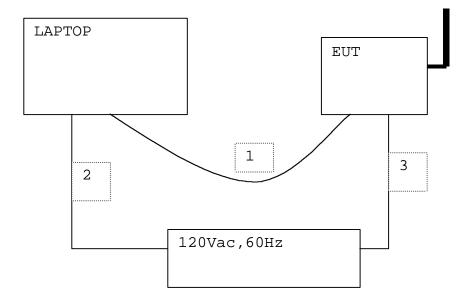
Conduc			Plot		Date	•	Tested By:		
Room	1		N/A 7/17/98 Juan Martinez						
			Six l	Highest Conduc	cted Emission	Readings			
Frequency	y Rang	ge Inves	stigated			450 kHz T	O 30 MHz		
	M	Meter Corrected					Reading		
Freq.	Rea	ading	C.F.	Reading	Limits	Margin	Туре	Line	
(MHz)	(dE	BuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(P/Q/A)	(L1/L2)	
.475	3	9.2	0	39.2	48	-8.8	Р	L2	
.500	3	7.5	0	37.5	48	-10.5	Р	L2	
.549	3	5.0	0	35.0	48	-13.0	Р	L2	
.575	3	4.9	0	34.9	48	-13.1	Р	L2	
27.5	3	7.8	0	37.8	48	-10.2	Р	L1	
27.5	3	6.9	0	36.9	48	-11.1	Р	L2	

C.F.(Correction Factor)=Insertion Loss + Cable LossCorrected Reading = Metering Reading + C.F. Margin= Corrected Reading - Limits P= Peak Reading L1=Hot Q= Quasi-peak L2=Neutral A= Average Reading

Comments: N/A

Page 11 of 45

20. EXTERNAL I/O CABLE CONSTRUCTION DESCRIPTION

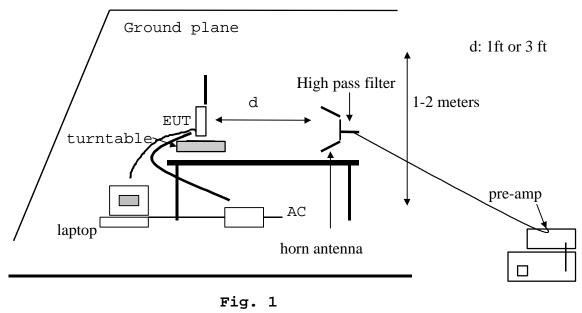

	CABLE NO:1
I/O Port: RS-232	Number of I/O ports of this type: 1
Number of Conductors: 9	Connector Type: DB9
Capture Type: SCREW-IN	Type of Cable used: SHIELDED
Cable Connector Type: MOLDED	Cable Length: 2.0M
Bundled During Tests: NO	Data Traffic Generated: YES
Remark: N/A	

CABLE NO:2					
I/O Port: LAPTOP AC-INPUT	Number of I/O ports of this type:1				
Number of Conductors: 2	Connector Type: USA POWER PLUG				
Capture Type: PUSH-IN	Type of Cable used: UNSHIELDED				
Cable Connector Type: MOLDED	Cable Length:1.8 M				
Bundled During Tests: NO	Data Traffic Generated: NO				
Remark: N/A					

CABLE NO:3						
I/O Port: EUT AC-INPUT	Number of I/O ports of this type: 1					
Number of Conductors:2	Connector Type: USA ADAPTOR PLUG					
Capture Type: PUSH-IN	Type of Cable used: UNSHIELDED					
Cable Connector Type: MOLDED	Cable Length: 2.2M					
Bundled During Tests: YES-LINE CONDUCATION	Data Traffic Generated: NO					
NO-RADIATION						
Remark: N/A						

Page 12 of 45

21. CONFIGURATION BLOCK DIAGRAM


Page 13 of 45

22. TEST PROCEDURES AND TEST RESULTS

Radiated Emissions (General Requirements) Test Requirement: 15.205

Measurement Equipment Used:

Emco Horn Antenna/3146 HP Pre-Amp (1 – 26.5 GHz)/8449B HP Spectrum Analyzer/8593EM FSY High Pass Filter(1.802GHz)/001 FLEXCO cable/20761; 19ft. coaxial cable (loss: .9dB/ft @ 26GHz)

Test Set-Up

spectrum analyzer

Test Procedures

1. The EUT was placed on a wooden table on the outdoor ground plane. The search antenna was placed 3 ft from the EUT. The EUT antenna was mounted vertically as per normal installation.

2. The turntable was slowly rotated to locate the direction of maximum emission at each emission falling in the restricted bands of 15.205.

3. Once maximum direction was determined, the search antenna was raised and lowered in both vertical and horizontal polarizations. The maximum readings so obtained are recorded in the data attached.

Test Results: Refer to attached spreadsheet data. (3 pages)

Page 14 of 45

Sheet1

Radiated E	Emissio	าร									7/29/9	98		
15.205											Juan N	<i>lartinez</i>	2	
											C site(1 Meter	r)	
INNOMED	IA, INC													
905 - 924	ИHz DS	SS TR/	ANSC	EIVER (IW	9000)									
f o= 905 M	IHz (LO	W)												
F(MHz)	READ	NG	AF	CL	AMP	DIST	HPF	ΤΟΤΑ	L	LIMIT		MARG	IN	
、	(dBuV)		(dB)	(dB)	(dB)	(dB)		(dBuV		(dBuV		(dB)		
	Pk	Avg	. ,	. ,		. ,	. ,	Pk	Ávg	Pk	Ávg	Pk	Avg	
1811*	55.27		27	2.1	-35	-9.5	1	40.87	28.18	74	54	-33.1	-25.8	
2716*	76.71	59.81	30	3.96	-35	-9.5	1	67.17	50.27	74	54	-6.83	-3.73	
3622	53.5	33.88	32	4.5	-35	-9.5	1	46.5	26.88	74	54	-27.5	-27.1	
4528	54.16	36.12	32.4	5.04	-35	-9.5	1	48.1	30.06	74	54	-25.9	-23.9	
5433	53.44	34.73	34.8	5.4	-35	-9.5	1	50.14	31.43	74	54	-23.9	-22.6	
6339	49.79	38.68	35.3	5.94	-35	-9.5	1	47.53	36.42	74	54	-26.5	-17.6	
7224	46.86	32.95	36.4	6.3	-35	-9.5	1	46.06	32.15	74	54	-27.9	-21.9	
8150	47.79		37.2	7.2	-35	-9.5	1	48.69		74	54	-25.3		
9050	46.92	33.65	38.2	7.56	-35	-9.5	1	49.18	35.91	74	54	-24.8	-18.1	
*: Noticeat	ole spike	es on h	armon	ic frequenc	;y									
NOTE: AL	L REAL	DINGS	ARE	VERTICAL						ANAL	YZER S	SETTIN	GS	
DIST: Cor	rection t	to extra	polate	reading to	3m specifi	cation	dista	nce			Res by	N	Avg. by	N
	1M me	asuren	nent di	stance: -9.	5dB				PEAK	(Pk):	1MHz		1MHz	
AF: Anten									AVER	A(Avg.	1MHz		10Hz	
AMP: Pre-		in												
CL: Cable														
HPF: High	pass fil	ter inse	ertion I	oss (1.802N	MHz)	FSY	(s/n: (001)						

Sheet1

Radiated E	Emissior	าร									7/29/9	8		
15.205											Juan N	<i>lartinez</i>	<u> </u>	
											C site(1 Meter	r)	
INNOMED	IA, INC													
			ANSC	EIVER (IWS	9000)									
f o= 916 M	Hz (MI	DDLE)												
F(MHz)	READ		AF	CL	AMP			ΤΟΤΑ		LIMIT		MARG	IN	
	(dBuV)		(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV	· ·	(dBuV	/m)	(dB)		
	<u>Pk</u>	<u>Avg</u>						<u>Pk</u>	<u>Avg</u>	<u>Pk</u>	<u>Avg</u>	<u>Pk</u>	<u>Avg</u>	
1831*			27	2.1	-35	-9.5	1	52.13		74	54	-21.9		
2748*	64.91	32.9	30.7	3	0	-25	0	73.31	41.3	74	54	-0.69	-12.7	
3664	63.28			4.5	-35	-9.5	1	56.38		74	54	-17.6		
4580				5.04	-35	-9.5	1	48.38		74	54	-25.6	-22	
5496	58.38		35	5.4	-35	-9.5	1	55.28		74	54	-18.7	-8.12	
6412		38.68		5.94	-35	-9.5	1	53.93		74	54	-20.1	-17.6	
7330	45.68	32.95		6.3	-35	-9.5	1	44.88		74	54	-29.1	-21.9	
8244	46.4	34.17	37.2	7.2	-35	-9.5	1	47.3	35.07	74	54	-26.7		
9160	46.39	33.65	38.2	7.56	-35	-9.5	1	48.65	35.91	74	54	-25.4	-18.1	
*· Noticoat	lo snike	as on h	armor	nic frequenc										
					y					ANAL	YZER S	SETTIN	GS	
DIST: Cor	rection t	to extra	polate	e reading to	3m specifi	cation	dista	nce			Res by		Avg. by	N
1M measurement distance: -9.5dB								PEAK	(Pk):	1MHz		1MHz		
			nent d	istance: -25	.3dB				AVER	A(Avg.	1MHz		10Hz	
AF: Anten	na Facto	or												
AMP: Pre-	amp ga	in												
CL: Cable	loss													
HPF: High	pass fil	ter inse	ertion I	oss (1.802N	/Hz)	FSY	(s/n: (001)						


Sheet1

Radiated E	missio	าร									7/29/9	98		
15.205												/lartinez		
											C site	(1 Mete	er)	
INNOMED														
905 - 924N	/Hz DS	SS TR	ANSC	EIVER (IW	9000)									
f o= 924.5		IICH)												
10- 324.5	1011 12 (1													
F(MHz)	READ	NG	AF	CL	AMP	DIST	HPF	ΤΟΤΑ	L	LIMIT		MARG	IN	
	(dBuV)		(dB)	(dB)	(dB)	(dB)	(dB)	(dBuV	/m)	(dBuV	/m)	(dB)		
	<u>Pk</u>	Avg						<u>Pk</u>	Avg	Pk	Avg	Pk	Avg	
1848*	64.63	43.85	27	2.4	-35	-9.5	1	50.53	29.75	74	54	-23.5	-24.3	
2773*	79.19	55.17	30.7	3.5	-35	-9.5	1	69.89	45.87	74	54	-4.11	-8.13	
2697	59.24	35.75	32.1	4.5	-35	-9.5	1	52.34	28.85	74	54	-21.7	-25.2	
4621	52.88	39.8	32.4	5.04	-35	-9.5	1	46.82	33.74	74	54	-27.2	-20.3	
5544	58.01	44	35	5.4	-35	-9.5	1	54.91	40.9	74	54	-19.1	-13.1	
6469	55.97	40.29	35.3	5.94	-35	-9.5	1	53.71	38.03	74	54	-20.3	-16	
7399	46.3	33.89	36.4	6.3	-35	-9.5	1	45.5	33.09	74	54	-28.5	-20.9	
8318	48.3	34.5	37.2	7.2	-35	-9.5	1	49.2	35.4	74	54	-24.8	-18.6	
9242	46.24	33.73	38.2	7.56	-35	-9.5	1	48.5	35.99	74	54	-25.5	-18	
*: Noticeat	ole spike	es on h	armor	ic frequenc	V									
				VERTICAL						ANAL	YZER S	SETTIN	GS	
DIST: Cori	rection t	to extra	polate	reading to	3m specifi	ication	dista	nce			Res by		Avg. by	N
	1M me	asuren	nent d	istance: -9.	5dB				PEAK	(Pk):	1MHz		1MHz	
AF: Anteni		-							AVER	A(Avg.	1MHz		10Hz	
AMP: Pre-	amp ga	in												
CL: Cable	loss													
HPF: High	pass fil	ter inse	ertion I	oss (1.802l	MHz)	FSY	(s/n: ()01)						

Radiated Emissions Test Requirement: 15.109

Measurement Equipment Used:

HP Spectrum Analyzer/8566B (Cal Due: 09/99) HP Spectrum Display/85662A (Cal Due: 09/99) HP Quasi-Peak Detector/85650A (Cal Due: 09/99) HP Pre-Amp(P5)/8447D (Cal Due: 09/99) Eaton Biconical Antenna/94455-1 (Cal Due: 09/99) Emco Log-Periodic Antenna/3146 (Cal Due: 09/99)

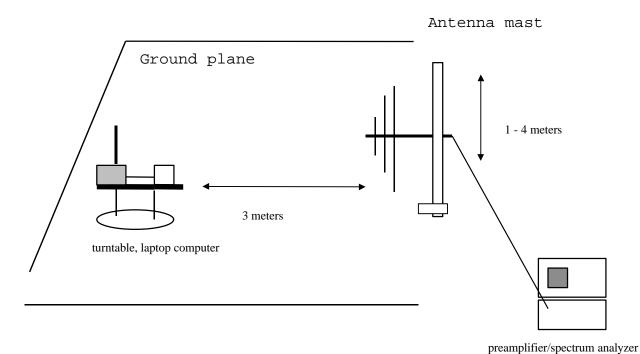


Fig.3

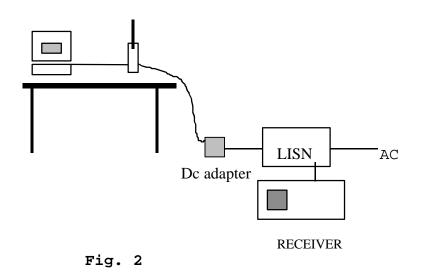
The EUT was placed on a turntable at a distance of 3 meters from a biconical or log periodic search antenna. The antenna was raised and lowered, the EUT rotated on the turntable, until the EUT azimuth, antenna elevation, and antenna polarity were found which yielded maximum received emission levels on the spectrum analyzer.

Test Result: Refer to attached tabular data sheets. (Data report no: 980728C1, one page)

Page 18 of 45

1	Complianc	e Engine M RADIA		ervices SSION D		Rep	ect No. ort No. Date Time st Engr	: 980 : 07/ : 10:	728C1 28/1998	
	Test C		tion : Test :	EUT/LAP FCC CLA	DSSS TR TOP SS B	ANSCEIV	ER			
Freq.		PreAmp	Ant	Cable	dBuV/m	Limit	Margin	Pol	Hgt(m)	Az
36.86	45.90	-27.93	11.31	0.79	30.06	40.00	-9.94	V	1.0	210
184.32	47.60	-27.40	15.46	1.79	37.45	43.50	-6.05	V	1.0	180
73.72	51.70	-27.86	5.92	1.12	30.87	40.00	-9.13	V	1.0	270
60.16	53.40	-27.94	6.44	1.02	32.92	40.00	-7.08		1.0	85
	51.70	-27.91	9.36	0.92	34.07	40.00	-5.93		1.0	45
50.88										

Total # of data 6


Page 19 of 45

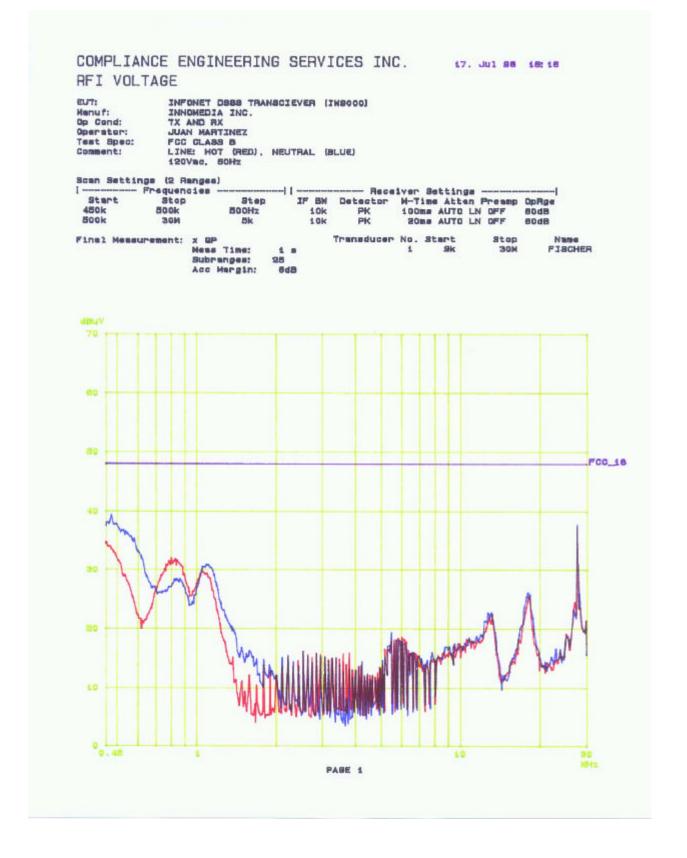
AC Line Conducted Emissions Test Requirement: 15.207

Measurement Equipment Used:

Rhode & Schwarz EMI Receiver ESHS-20 Fischer Custom Communication LISN, FCC-LISN-50/250-25-2

Test Set-up

Test Procedure


1. The EUT was placed on a wooden table 40-cm from a vertical ground plane and approximately 80-cm above the horizontal ground plane on the floor. The EUT was set to transmit in a normal mode.

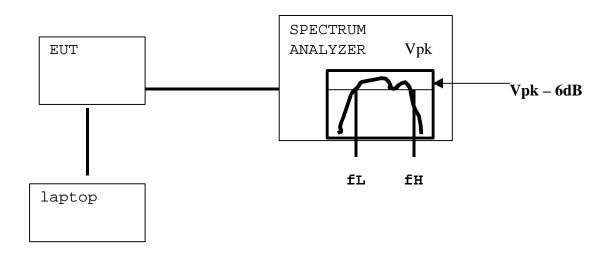
2. Line conducted data was recorded for both NEUTRAL and HOT lines.

Test Results

Refer to attached graph. (One page)

Page 20 of 45

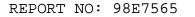



Page 21 of 45

Minimum 6 dB Bandwidth for DSSS Test Requirement: 15.247(a)(2)

Measurement Equipment Used:

HP Spectrum Analyzer/8566B (Cal Due: 09/99) HP Spectrum Display/85662A (Cal Due: 09/99) HP Quasi-Peak Detector/85650A (Cal Due: 09/99) Low loss cable, .5ft(loss: 0.85dB/ft @ 26GHZ)

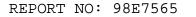

Test Procedure:

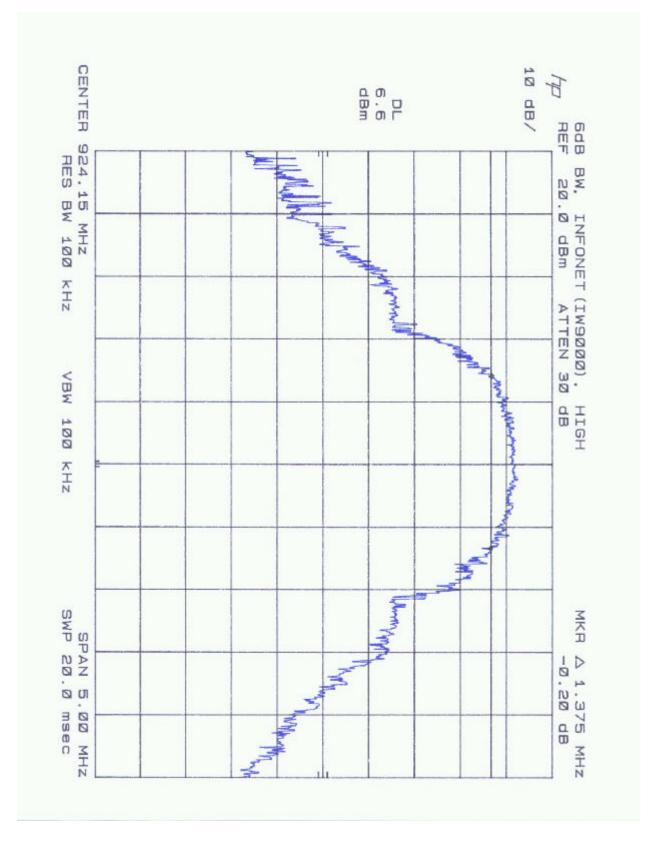
For the 6dB Bandwidth, EUTs permanently attached antenna was removed and replaced with a properly terminated 50-ohm cable and directly connected to Spectrum Analyzer. Fundamental frequency was set at middle of screen and RES BW was set to 100kHz. While the EUT transmitted a steady stream of digital data, the analyzer MAX HOLD function is used to capture the envelope of the transmission occupied bandwidth. The DISPLAY LINE was place 6dB below the maximum peak of the fundamental frequency and the Bandwidth measured with MARKER DELTA. This procedure was done for low, middle, and high channels.

Test Results:

Refer to attached spectrum analyzer data charts. (Three plots)

· · · · · · · · · · · · · · · ·		
Frequency	6dB bandwidth	Limit
905.65MHz	1.925MHz	>500kHz
916.13MHz	1.715MHz	>500kHz
924.15MHz	1.375MHz	>500kHz





Page 23 of 45

Page 24 of 45

Page 25 of 45

```
RF Power Output
Test Requirement: 15.247(b)
```

Measurement Equipment Used:

HP Spectrum Analyzer/8566B (Cal Due: 09/99) HP Spectrum Display/85662A (Cal Due: 09/99) HP Quasi-Peak Detector/85650A (Cal Due: 09/99) HP Pre-Amp(P5)/8447D (Cal Due: 09/99) Emco Log-Periodic Antenna/3146 (Cal Due: 09/99)

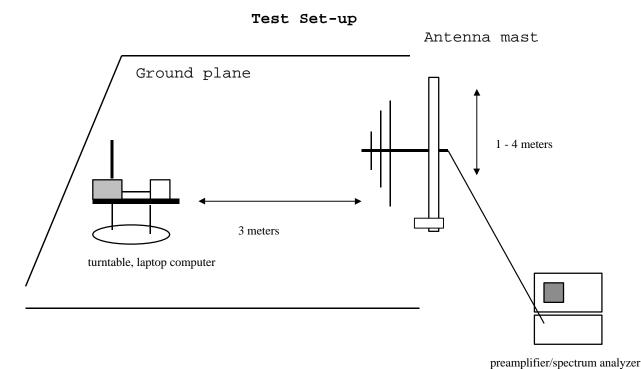


Fig. 3

Test Procedure

For RF Power output the EUT was tested with antenna attached, so output power levels were calculated from radiated emission levels.

Power At 905.5 MHz (LOW Channel)

Field strength at 3 m with antenna factor (22.95dB) and cable loss (3.95dB) 87.30 + 22.95 + 3.95 = 114.2 dBuV/m = .513V/m

Using the relationship between field strength and RF power into an isotropic transmit antenna:

 $E = (30.x P(Watts))^{.5}$

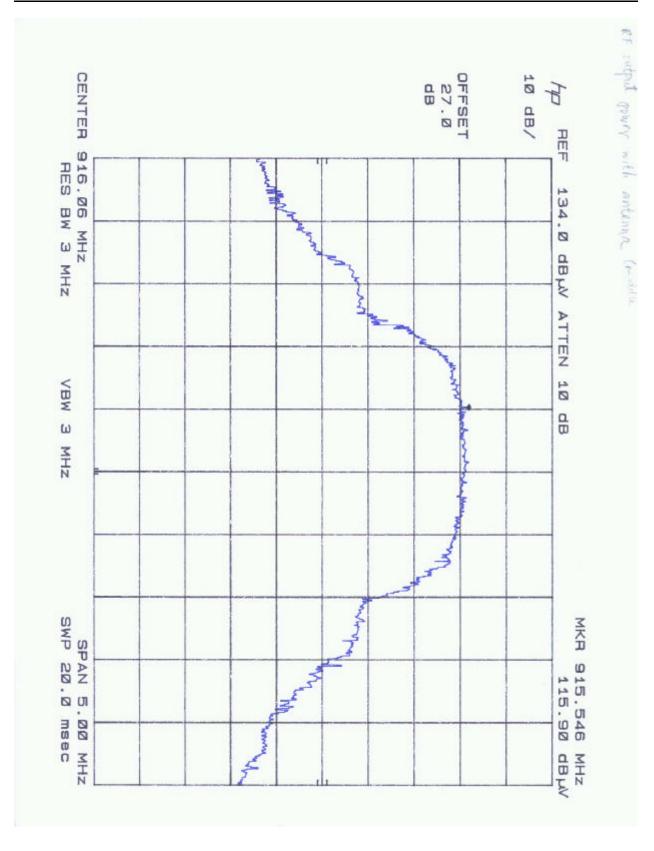
Page 26 of 45

d meters

 $P = (.513x3)^2 / 30 = 78.9mW$ 78.9mW = 18.97dBm

Test Results

<u>TX F, MHz</u>	E, dBuV/m@3m	<u>RF Power output, (dBm)</u>	<u>Limit, (dBm)</u>
· · · ·	114.2(87.30+22.95+3.95)		30.0
916.06(MID) 924.4(HIGH)	115.9 114.0	20.67 18.77	30.0 30.0


Design goal for transmitter output power: 20-dBm output.

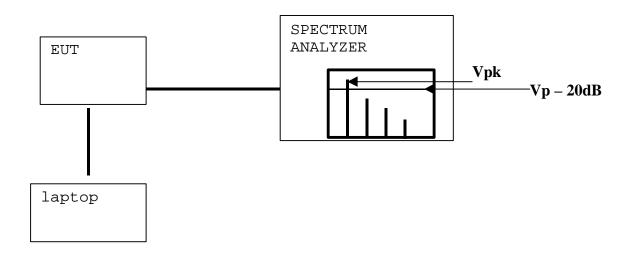
Calculated power is within +0.77/-1.23 dB of design goal.

Also, refer to attached spectrum analyzer data charts. REF LVL OFFSET was set for correction of antenna factor and cable loss (three plots)

Page 27 of 45

Page 29 of 45

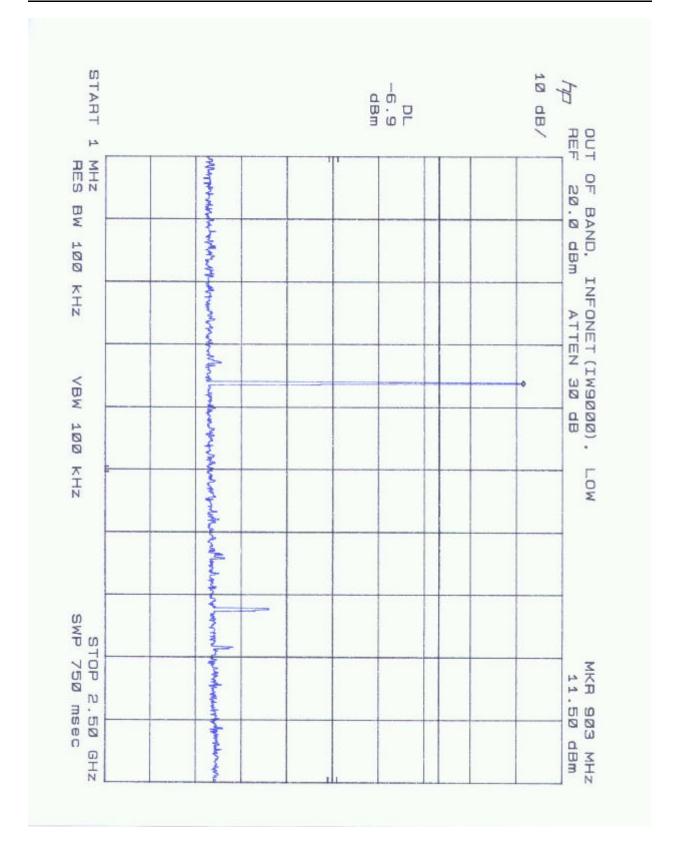


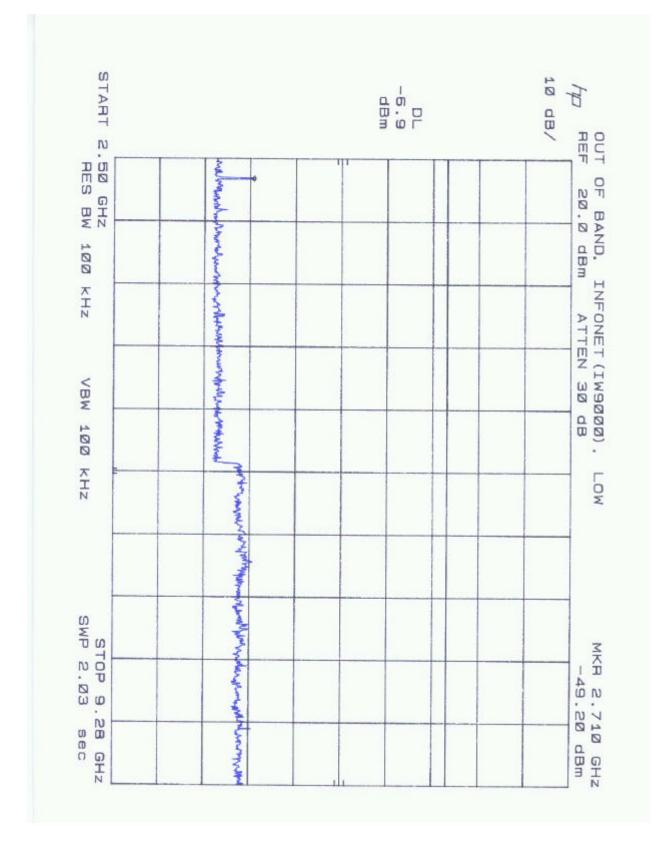

Page 30 of 45

Out of Band Measurements Test Requirement: 15.247(c)

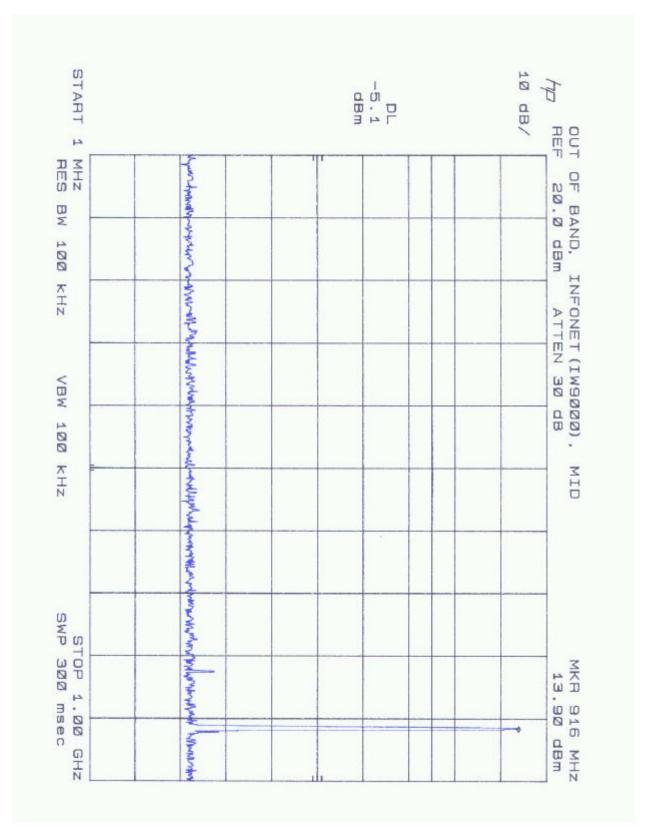
Measurement Equipment Used:

HP Spectrum Analyzer/8566B (Cal Due: 09/99) HP Spectrum Display/85662A (Cal Due: 09/99) HP Quasi-Peak Detector/85650A (Cal Due: 09/99) Low loss cable, .5ft(loss: 0.85dB/ft @ 26GHZ)

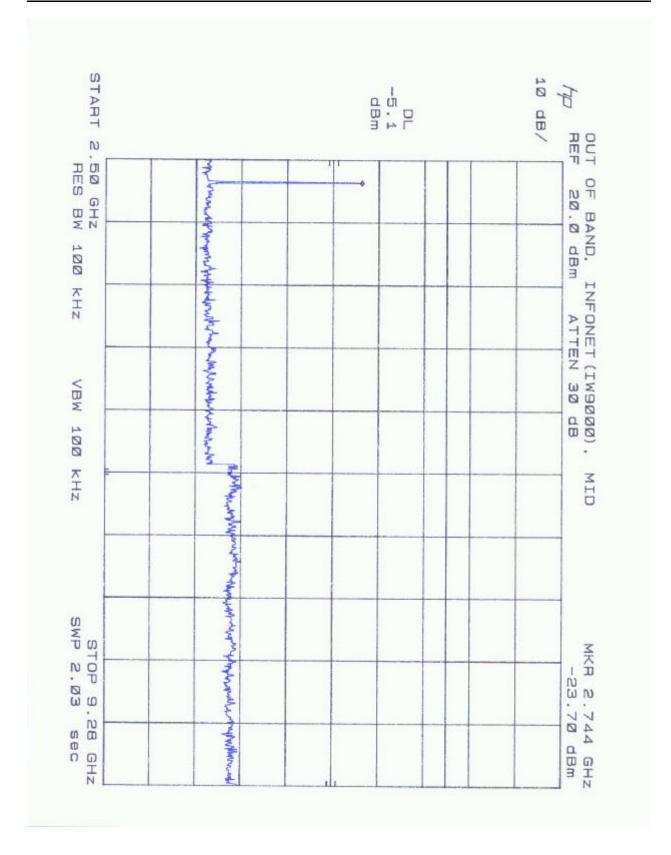

Test Procedure:

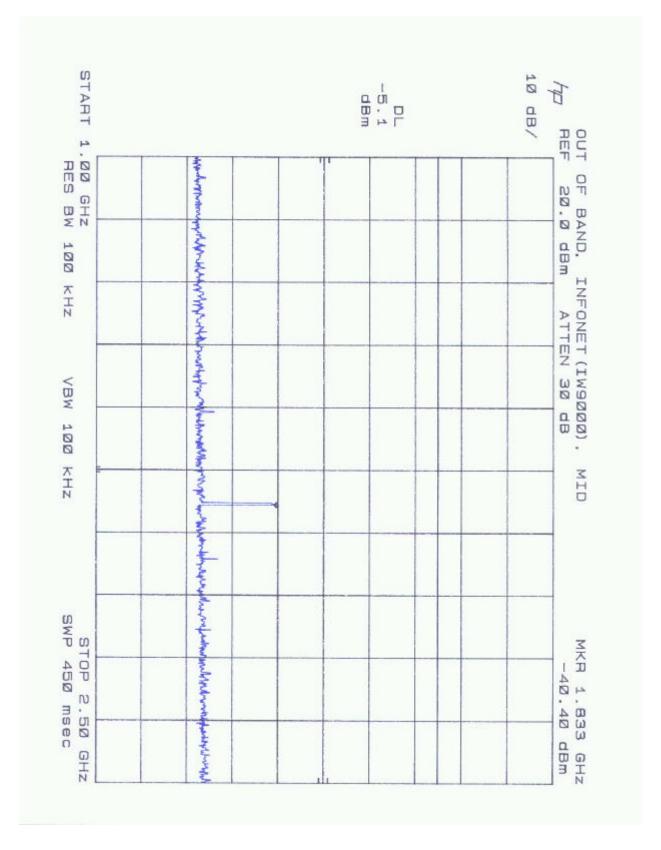

For out-of-band emissions, EUTs permanently attached antenna was removed and replaced with a properly terminated 50-ohm cable and directly connected to Spectrum Analyzer. Spectrum analyzer RES BW was set to 100kHz, the MAX HOLD function was engaged. While the EUT transmits, the range from 1MHz to 10fo was scanned continuously to capture all out-of-band transmitter emissions and compared their levels in relation to a display line placed 20dB below the maximum amplitude of the transmitter. This procedure was done for low, middle, and high channels.

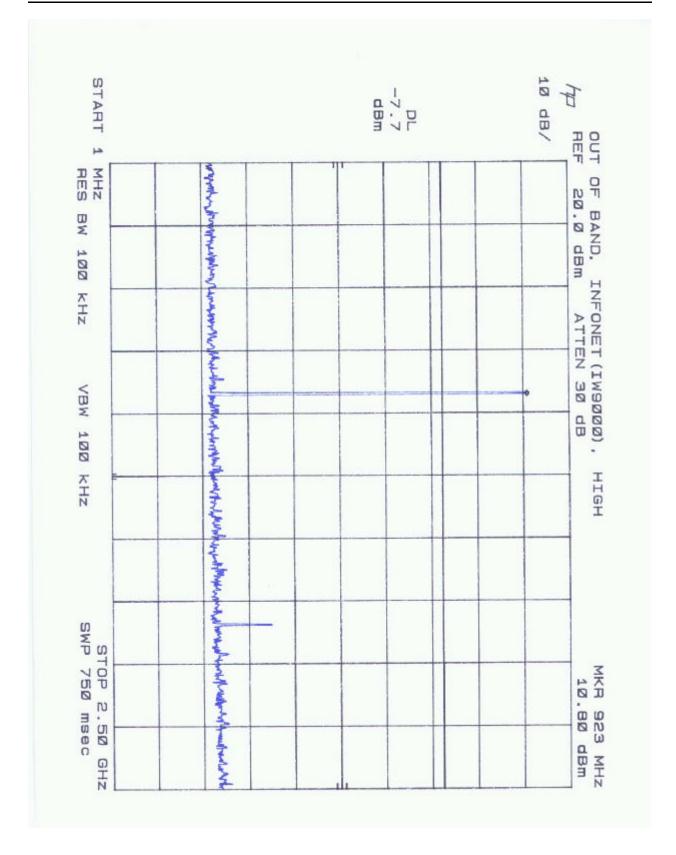
Test Results:

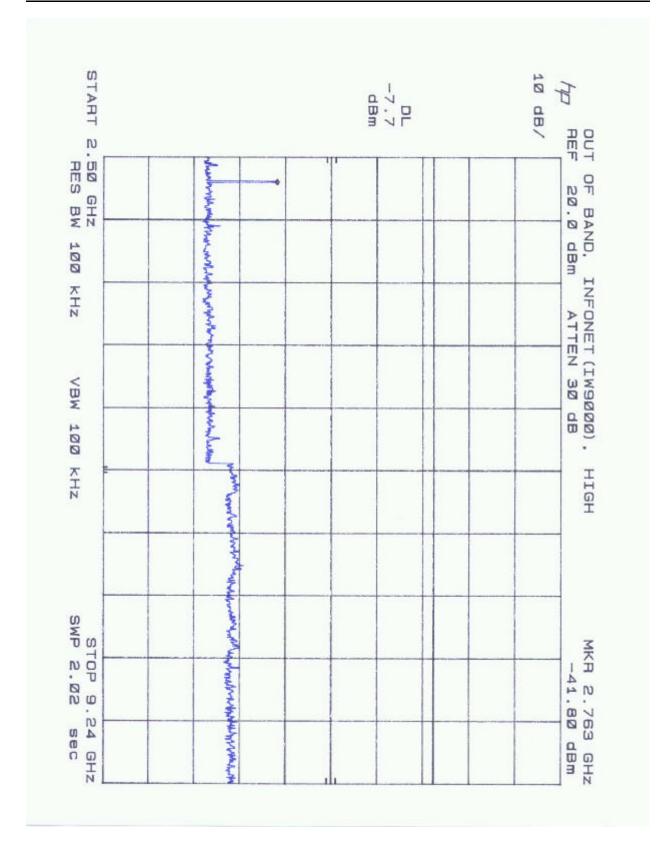

Refer to attached spectrum analyzer data charts. (Seven plots)

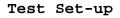
Page 31 of 45

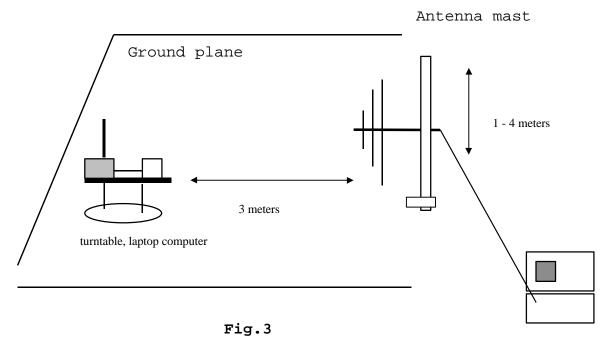



Page 33 of 45


Page 34 of 45


Page 35 of 45


Page 37 of 45



DSSS Power Density Test Requirement: 15.247(d)

Measurement Equipment Used:

HP Spectrum Analyzer/8566B (Cal Due: 09/99) HP Spectrum Display/85662A (Cal Due: 09/99) HP Quasi-Peak Detector/85650A (Cal Due: 09/99) Emco Log-Periodic Antenna/3146 (Cal Due: 09/99)

preamplifier/spectrum analyzer

Test Procedure

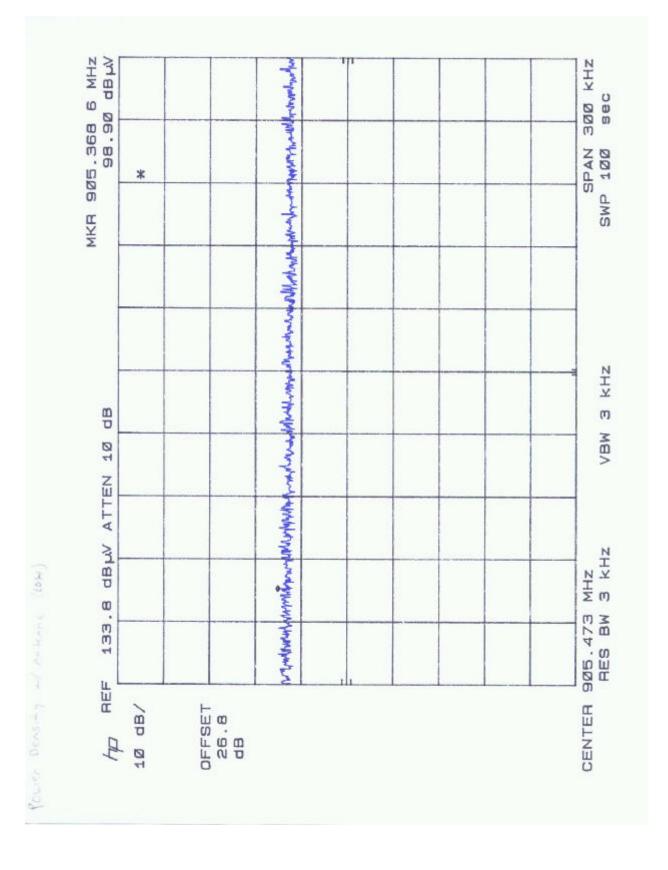
For power density the EUT was tested with antenna attached, so output power levels were calculated from radiated emission levels.

- A) For low and middle channel the analyzer center frequency was set to the EUT carrier frequency. REF LVL OFFSET was set for correction of antenna factor and cable loss. Slowly decreased the SPAN of the analyzer to 300kHz, while making sure that the maximum level of the RF output power envelope remained at the center of the screen. With SPAN at 300kHz, RES BW was set to 3kHz and the SWEEP to 100 seconds. Set the TRACE to MAX HOLD and using the PEAK SEARCH function, found the maximum level of the power density.
- B) For the High channel same procedure as above, but the START and STOP frequencies of the analyzer sweep was set to this frequency.

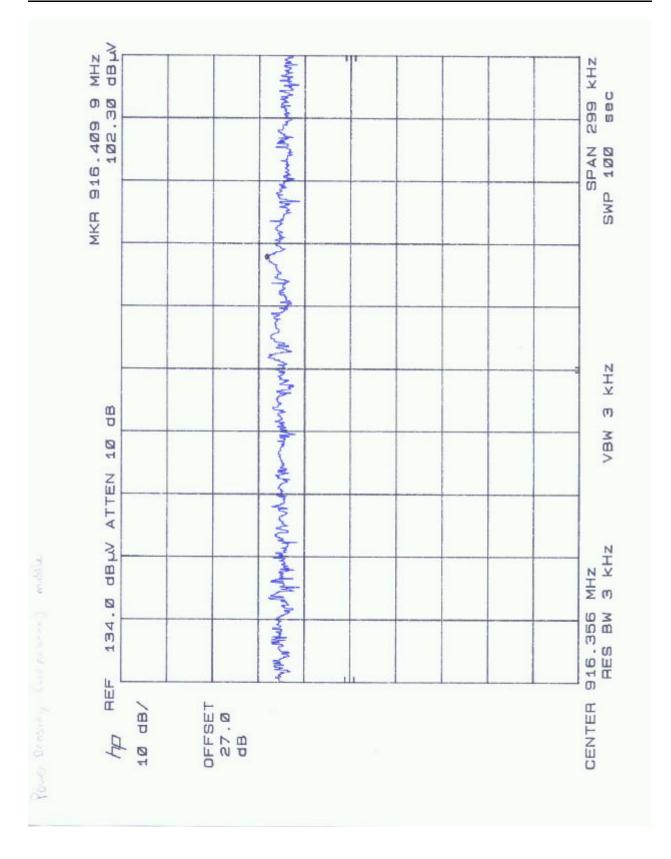
Page 39 of 45

Analyzer BW was set to 3 kHz. Analyzer SWEEP TIME was set according to the following formula: SWEEP TIME = (FSTOP,kHz - FSTART,kHz)/3 kHz.

The transmitter emissions so measured were compared to the 8-dBm limit in the Rules.

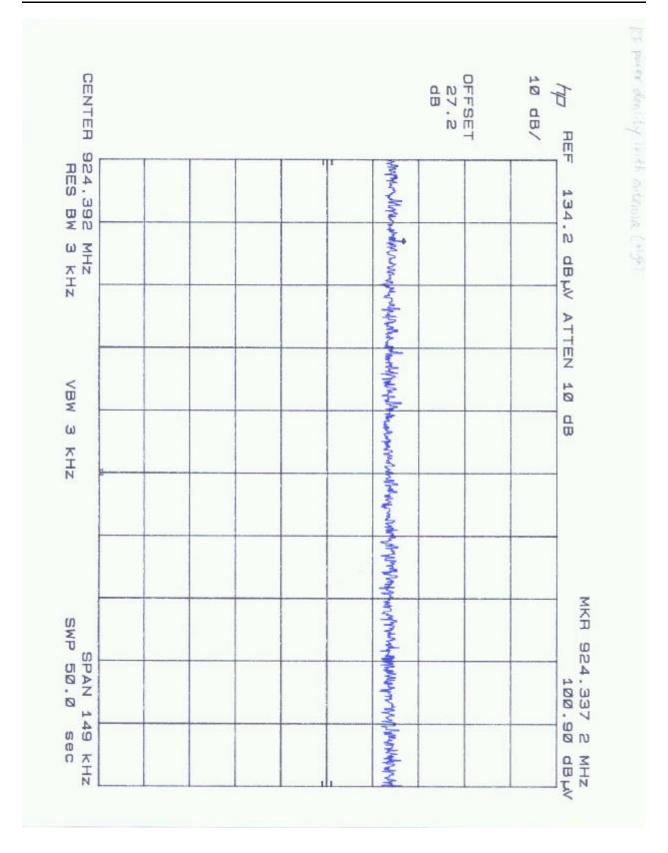

Test Results

Tabulated data follows:


TX F, MHz	E, dBuV/m@3m	Power Density, dBm	Limit, dBm
905.5(LOW)	98.9	3.7	8.0
916.4(MID)	102.3	7.1	8.0
924.4(HIGH)	100.9	5.7	8.0

Also, refer to attached spectrum analyzer data charts. (Three Plots)

Page 40 of 45



Page 41 of 45

Page 42 of 45

COMPLIANCE CONSULTING SERVICESDOCUMENT NO:CCSUP4002D1366 BORDEAUX DRIVE SUNNYVALE, CA 94089 USATEL:(408) 752-8166 FAX:(408) 752-8168This report shall not be reproduced except in full, without the written approval of CCS .

Page 43 of 45

Processing Gain of a DSSS Test Requirement: 15.247(e)

The manufacturer performed the processing gain.

At each point, the generator's output power is adjusted to cause the Bit Error Rate (BER) to be 10-4 or 10-5.

Test Result:

For the BER = 1.0*10-4:

Minimum Processing gain:11.98dBMinimum Required:10.0dB

For the BER = 1.0*10-5:

Minimum Processing gain:	12.08dB
Minimum Required:	10.0dB

Refer to the attached processing gain information provided by the manufacturer.

Page 44 of 45

23. TEST SETUP PHOTO

(DIRECT CONNECTION)

(One meter setup)

Page 45 of 45

COMPLIANCE CONSULTING SERVICESDOCUMENT NO:CCSUP4002D1366 BORDEAUX DRIVE SUNNYVALE, CA 94089 USATEL:(408) 752-8166 FAX:(408) 752-8168This report shall not be reproduced except in full, without the written approval of CCS .