

EMI -- TEST REPORT

Test Report No. : T31400-01-00HU 26. February 2007

Date of issue

Type / Model Name : R-IN1300MC

Product Description : Long Range Industrial RFID High Frequency Reader

Applicant: DATAMARS S.A.

Address : Via ai Prati

CH-6930 Bedano-Lugano

Manufacturer : DATAMARS S.A.

Address : Via ai Prati

CH-6930 Bedano-Lugano

Licence holder : DATAMARS S.A.

Address : Via ai Prati

CH-6930 Bedano-Lugano

Test Result according to the standards listed in clause 1 test	POSITIVE
standards:	

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test results without the written permission of the test laboratory.

Contents

1	TEST STANDARDS	3
2	SUMMARY	4
3	EQUIPMENT UNDER TEST	<u>5</u>
3.1 3.2		5 22
3.3	SHORT DESCRIPTION OF THE EQUIPMENT UNDER TEST (EUT)	22
4	TEST ENVIRONMENT	23
4.1 4.2		23 23
4.3		23
4.4	MEASUREMENT PROTOCOL FOR FCC, VCCI AND AUSTEL	23
5	TEST CONDITIONS AND RESULTS	25
5.1	CONDUCTED EMISSIONS	25
5.2	2 FIELD STRENGTH OF THE FUNDAMENTAL WAVE	31
5.3	Spurious emissions (Magnectic field) 9 kHz – 30 MHz	33
5.4	RADIATED EMISSIONS (ELECTRIC FIELD) 30 MHz – 1 GHz	35
5.5	FREQUENCY TOLERANCE OF THE CARRIER	38
5.6	6 EMISSION BANDWIDTH	40
5.7		42
5.8	,	43
5.9	RECEIVER RADIATED EMISSIONS (ELECTRIC FIELD) 30 MHz – 1 GHz	45
6	USED TEST FOUIPMENT AND ACCESSORIES	47

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules and Regulations Part 15 Subpart C- Intentional Radiators (October 01, 2006)

Part 15, Subpart C, Section 15.225 Operation within the band 13.110-14.010 MHz

Part 15, Subpart C, Section 15.209(a) Radiated emissions, general requirements

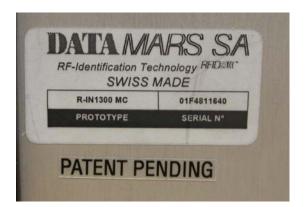
Part 15, Subpart C, Section 15.207(a) AC Line conducted emissions

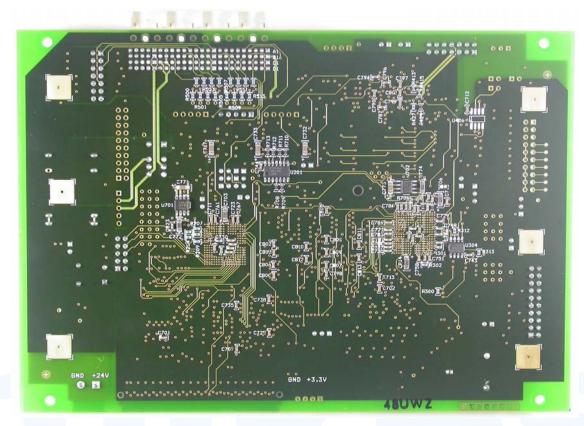
2 SUMMARY

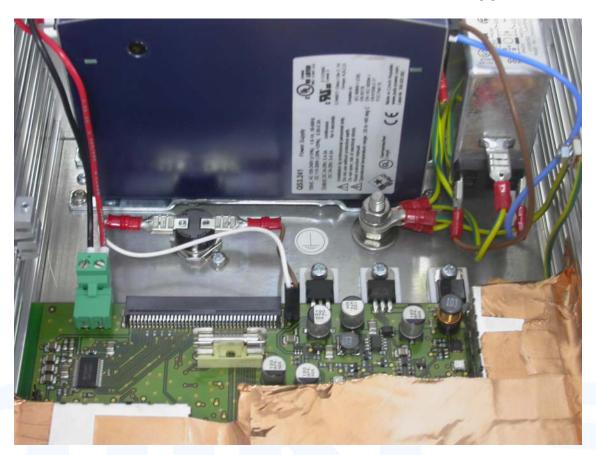
GENERAL REMARKS:	
The EuT is working at frequency of 13.56 MHz.	
FINAL ASSESSMENT:	
The equipment under test fulfills the EMI requirements cited in claus	se 1 test standards.
Date of receipt of test sample : <u>acc. to storage records</u>	
Testing commenced on : 18. December 2006	
Testing concluded on : 15. February 2007	
Checked by:	Tested by:
Thomas Weise	Markus Huber
DiplIng.(FH) Laboratory Manager	IVIAI NUO I IUDEI
Laburatury ivianayer	

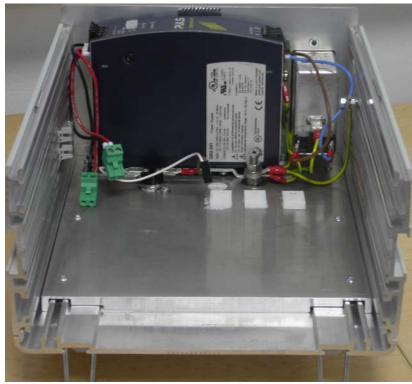
3 EQUIPMENT UNDER TEST

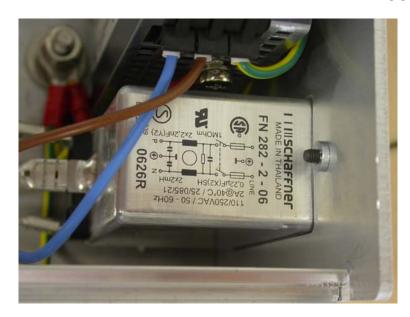
3.1 Photo documentation of the EuT

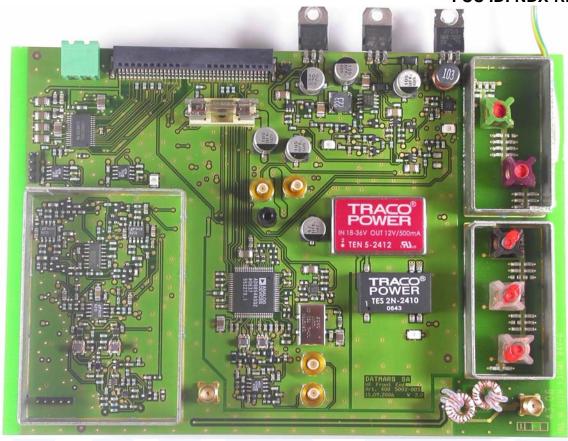


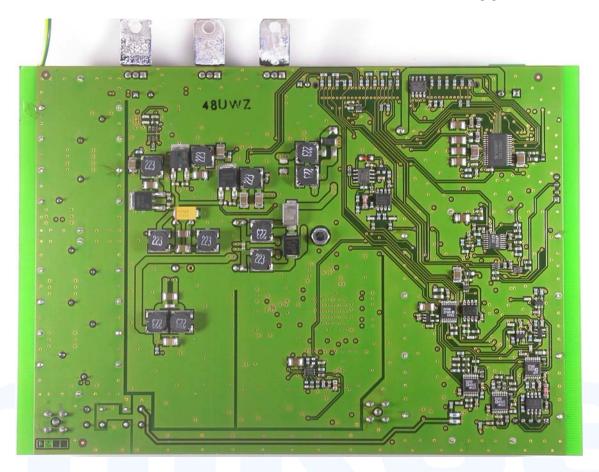


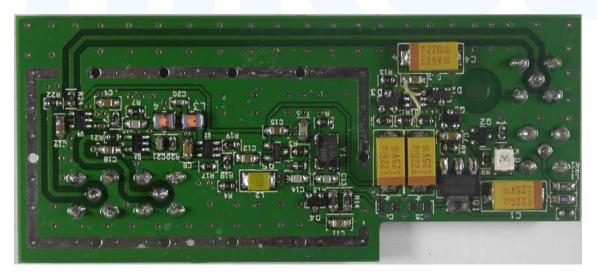


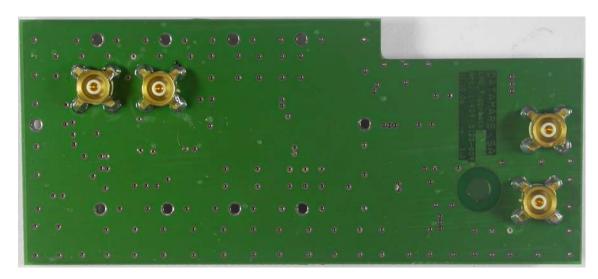


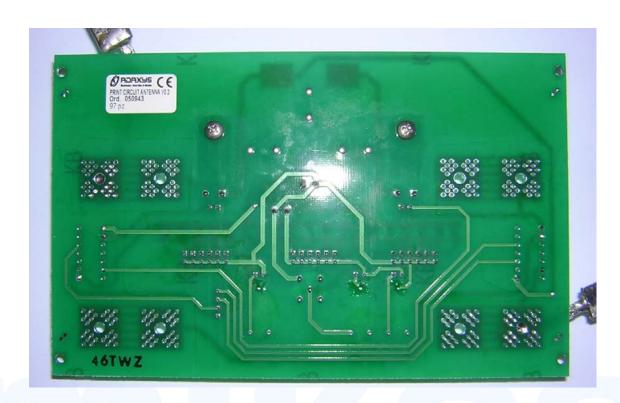


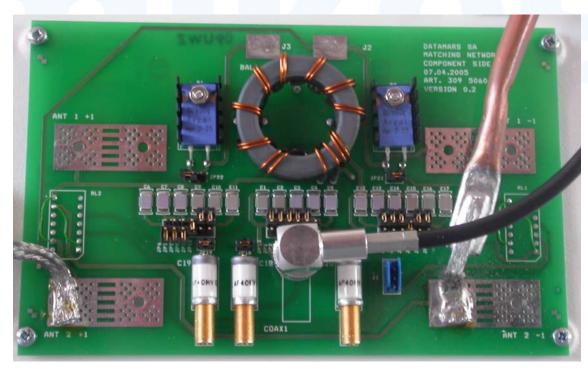


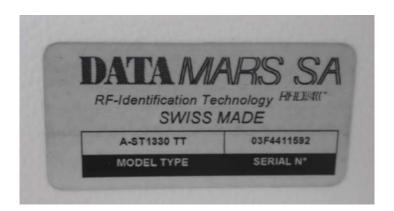












3.2 Power supply system utilised

Power supply voltage : $115 \text{ V} / 60 \text{ Hz} / 1\phi$

3.3 Short description of the Equipment under Test (EuT)

The EuT R-IN1300MC is a long range RFID high frequency reader for industrial use.

Number of tested samples: 1

Serial number: see Photo documentation of the EuT under Point 3 / Equipment Under Test

EuT operation mode:

The equipment under test was operated during the measurement under the following conditions:

- Tx mode at 13.56 MHz / pw: 4000 mW

- Rx mode at 13.56 MHz

EuT configuration:

(The CDF filled by the applicant can be viewed at the test laboratory.)

The following peripheral devices and interface cables were connected during the measurements:

- Coax cable	Model : shielded, 3.5 m
- Coax cable	Model : shielded, 3.1 m
- RS 232	Model : shielded, 1.5 m
- AC power line, shielded and filtered	Model : Eupen IMU 03
	Model :
- Laptop Mikes Intern	Model : 02-01/01-05-012

- customer specific cables

4 TEST ENVIRONMENT

4.1 Address of the test laboratory

mikes-testingpartners gmbh Ohmstrasse 2-4 94342 Strasskirchen Germany

4.2 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature: 15-35 ° C

Humidity: 30-60 %

Atmospheric pressure: 86-106 kPa

4.3 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16-4-2 /11.2003 "Uncertainties, statistics and limit modelling – Uncertainty in EMC measurements" and is documented in the quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

4.4 Measurement Protocol for FCC, VCCI and AUSTEL

4.4.1 GENERAL INFORMATION

4.4.1.1 Test Methodology

Conducted and radiated disturbance testing is performed according to the procedures in International Special Committee on Radio Interference (CISPR) Publication 22, European Standard EN 55022 as shown under section 1 of this report.

In compliance with 47 CFR Part 15 Subpart A Section 15.38 testing for FCC compliance may be done following the ANSI C63.4-2003 procedures and using the CISPR 22 Limits.

File No. **T31400-01-00HU**, page **23** of **47**

mikes-testingpartners gmbh
Ohmstrasse 2-4 · 94342 Strasskirchen
Tel.:+49(0)9424-94810 · Fax:+49(0)9424-9481240

4.4.1.2 Justification

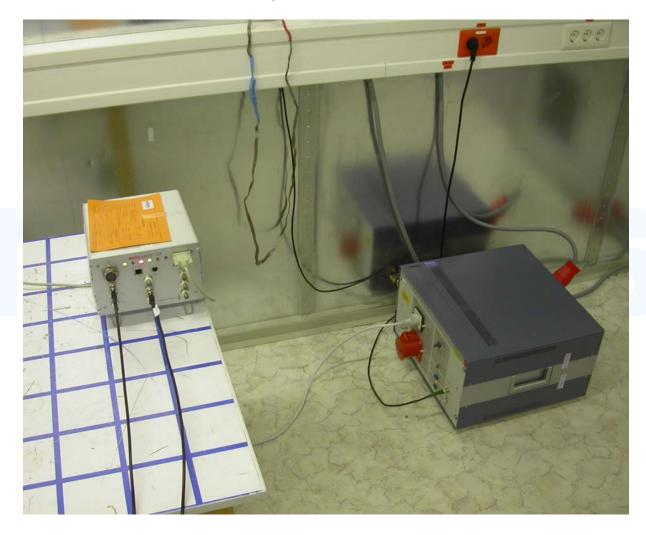
The Equipment Under Test (EUT) is configured in a typical user arrangement in accordance with the manufacturer's instructions. A cable is connected to each available port and either terminated with a peripheral using the appropriate impedance characteristic or left unterminated. Where appropriate, cables are manually manipulated with respect to each other thus obtaining maximum disturbances from the unit.

4.4.2 DETAILS OF TEST PROCEDURES

General Standard Information

The test methods used comply with CISPR Publication 22, EN 55022 - "Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement" and with ANSI C63.4-2003 - "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz."

5 TEST CONDITIONS AND RESULTS


5.1 Conducted emissions

For test instruments and accessories used see section 6 Part A 4.

5.1.1 Description of the test location

Test location: Shielded Room S2

5.1.2 Photo documentation of the test set-up

File No. **T31400-01-00HU**, page **25** of **47**

5.1.3 Description of Measurement

The final level, expressed in $dB\mu V$, is arrived at by taking the reading directly from the EMI receiver. This level is compared directly to the FCC Limit or to the CISPR limit.

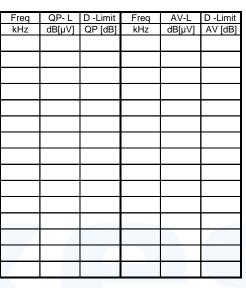
To convert between dB μ V and μ V, the following conversions apply: dB μ V = 20(log μ V) μ V = Inverse log(dB μ V/20)

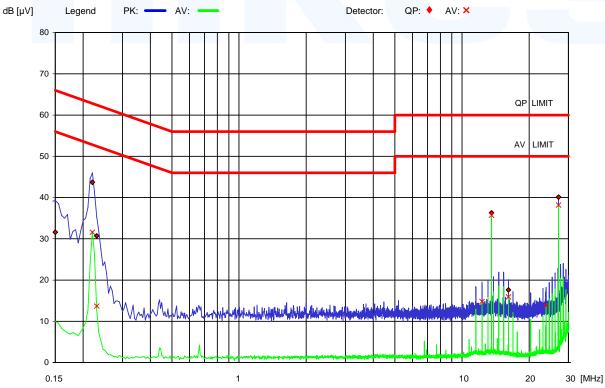
Conducted emissions on the 50 Hz and/or 60 Hz power interface of the EuT are measured in the frequency range of 150 kHz to 30 MHz. The measurements are performed using a receiver, which has CISPR characteristic bandwidth and quasi-peak detection and a Line Impedance Stabilization Network (LISN) with $50\Omega/50~\mu H$ (CISPR 16) characteristics. Table top equipment is placed on a non-conducting table 80 centimeters above the floor and is positioned 40 centimeters from the vertical ground plane (wall) of the screen room. If the minimum limit margin appears to be less than 20 dB with a peak mode measurement, the emissions are remeasured using a tuned receiver with quasi-peak and average detection and recorded on the data sheets.

5.1.4 Test result	
Frequency range:	0.15 MHz - 30 MHz
Min. limit margin	2.9 dB at 13.56 MHz
The requirements are FULFILLED .	
Remarks:	

5.1.5 Test protocol

Test point L1 Result: passed


Operation mode: Tx mode at 13.56 MHz / pw: 4000 mW


Remarks: With shielded and filtered AC mains cable

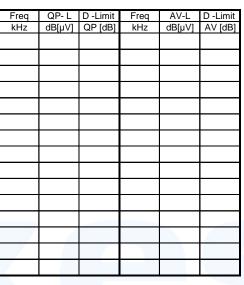
and modification

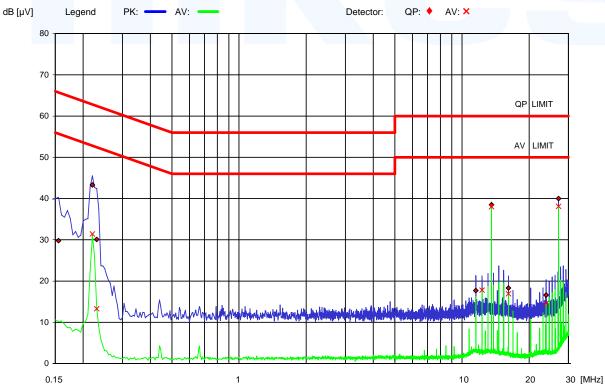
Date: 08.02.07 Operator: Markus Huber

Freq	QP- L	D -Limit	Freq	AV-L	D -Limit
kHz			kHz		
KIIZ	dB[μV]	QP [dB]	KHZ	dB[μV]	AV [dB]
150	31,6	34,4	220	31,6	21,2
220	43,7	19,1	230	13,7	38,7
230	30,7	31,7	12305	14,8	35,2
13560	36,3	23,7	13560	35,7	14,3
16155	17,6	42,4	16155	15,9	34,1
27120	40,1	19,9	23845	13,8	36,2
			27120	38,2	11,8
1/2					
9					

Test point: Result: passed

Operation mode: Tx mode


With shielded and filtered AC mains cable Remarks:

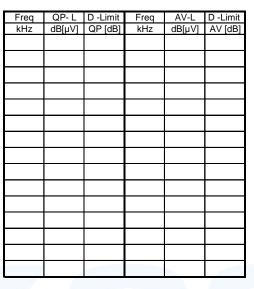

and modification

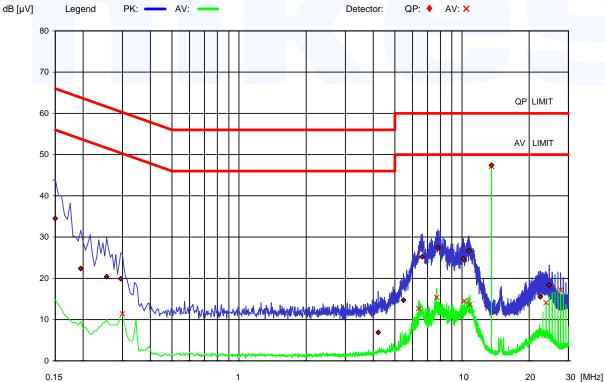
08.02.07 Date: Tested by: **Huber Markus**

mikes-testingpartners gmbh Ohmstrasse 2-4 · 94342 Strasskirchen Tel.:+49(0)9424-94810 · Fax:+49(0)9424-9481240

QP- L	D -Limit	Freq	AV-L	D -Limit
dΒ[μV]	QP [dB]	kHz	dΒ[μV]	AV [dB]
29,8	35,9	220	31,4	21,4
43,3	19,5	230	13,3	39,1
30,1	32,3	12305	17,8	32,2
17,7	42,3	13560	38	12,0
38,5	21,5	16155	16,9	33,1
18,3	41,7	23845	14,6	35,4
16,6	43,4	27120	38,1	11,9
40	20,0			
	29,8 43,3 30,1 17,7 38,5 18,3 16,6	dB[µV] QP [dB] 29,8 35,9 43,3 19,5 30,1 32,3 17,7 42,3 38,5 21,5 18,3 41,7 16,6 43,4	dB[μV] QP [dB] kHz 29,8 35,9 220 43,3 19,5 230 30,1 32,3 12305 17,7 42,3 13560 38,5 21,5 16155 18,3 41,7 23845 16,6 43,4 27120	dB[μV] QP [dB] kHz dB[μV] 29,8 35,9 220 31,4 43,3 19,5 230 13,3 30,1 32,3 12305 17,8 17,7 42,3 13560 38 38,5 21,5 16155 16,9 18,3 41,7 23845 14,6 16,6 43,4 27120 38,1

Test point: L1 Result: passed


Operation mode: Rx mode at 13.56 MHz

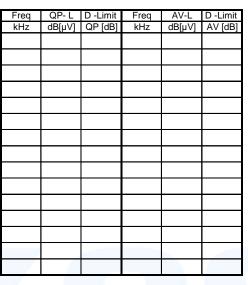

Remarks: With shielded and filtered AC mains cable

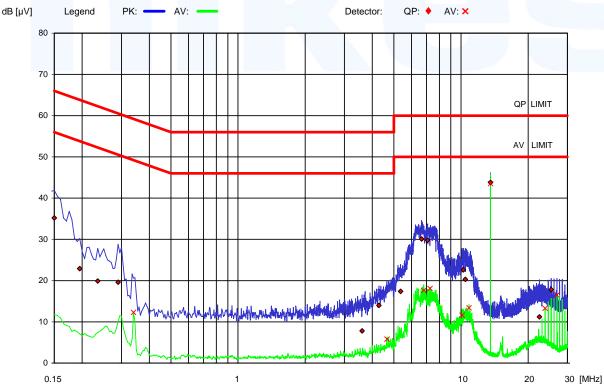
and modification

Date: 08.02.07 Operator: Markus Huber

Freq	QP- L	D -Limit	Freq	AV-L	D -Limit
kHz	dΒ[μV]	QP [dB]	kHz	dΒ[μV]	AV [dB]
150	34,5	31,5	300	11,4	38,8
195	22,4	41,4	6400	12,7	37,3
255	20,4	41,2	7700	15,4	34,6
295	19,9	40,5	10250	14,5	35,5
4210	6,9	49,1	10860	13,7	36,3
5465	14,7	45,3	13560	47,1	2,9
6625	25,2	34,8	23845	14,1	35,9
7805	27,4	32,6	27690	17,2	32,8
10135	24,8	35,2			
10750	26,7	33,3			
13560	47,4	12,6			
22455	15,5	44,5			
24615	18,4	41,6			
				•	

Test point: N Result: passed


Operation mode: Rx mode at 13.56 MHz

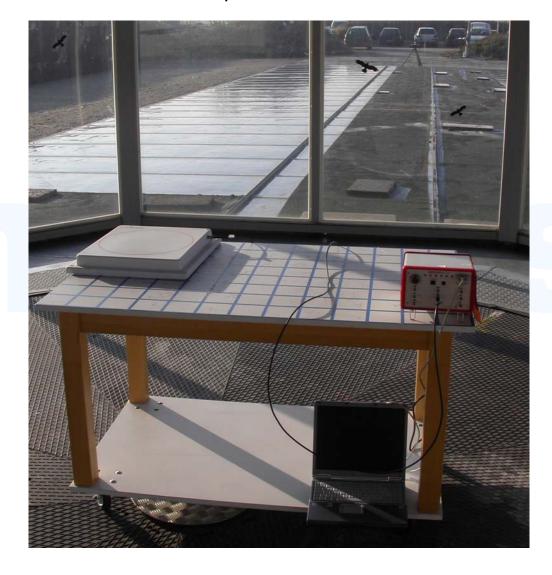

Remarks: With shielded and filtered AC mains cable

and modification

Date: 08.02.07 Operator: Markus Huber

Freq	QP- L	D -Limit	Freq	AV-L	D -Limit
kHz	dΒ[μV]	QP [dB]	kHz	dΒ[μV]	AV [dB]
150	35,2	30,8	340	12,3	36,9
195	22,9	40,9	4660	5,8	40,2
235	19,9	42,4	6800	17,6	32,4
290	19,6	40,9	7265	18,1	31,9
3600	7,8	48,2	10120	11,6	38,4
4285	14	42,0	10860	13,4	36,6
5360	17,4	42,6	13560	43,5	6,5
6665	30,1	29,9	23845	13,3	36,7
7080	29,8	30,2	26920	16,5	33,5
10250	22,6	37,4			
10455	20,3	39,7			
13560	43,8	16,2			
22465	11,2	48,8			
25385	17,8	42,2			

5.2 Field strength of the fundamental wave


For test instruments and accessories used see section 6 Part CPR 1.

5.2.1 Description of the test location

Test location: OATS1

Test distance: 30 metres

5.2.2 Photo documentation of the test set-up

5.2.3 Description of Measurement

The magnetic field strength from the EuT will be measured on an open area test site in the frequency range of 9 kHz to 30 MHz using a tuned receiver and a shielded loop antenna. The set up of the Equipment under test will be in accordance to ANSI C63.4-2003. The antenna was positioned 3, 10 or 30 meters horizontally from the EuT. Measurements have been made in all three orthogonal axes and the shielded loop antenna was rotated to locate the maximum of the emissions. In the case where larger measuring distances are required the results will extrapolated based on the values measured on the closer distances according to Section 15.31 (f) (2) [2]. The final measurement will be performed with an EMI Receiver set to Quasi Peak detector except for the frequency bands 9 kHz to 90 kHz and 110 to 490 kHz where an average detector will be used according to Section 15.209 (d) [2].

The final level, expressed in $dB_{\mu}V/m$, is arrived at by taking the reading from the EMI receiver (Level $dB_{\mu}V$) and adding the antenna correction factor and cable loss factor (Factor dB) to it. This result then has to be compared with the relevant FCC limit.

The resolution bandwidth during the measurement is as follows:

9 kHz – 150 kHz: ResBW: 200 Hz 150 kHz – 30 MHz: ResBW: 9 kHz

Example:

Frequency	Level	+	Factor	= Level	Limit	=	Delta
(MHz)	(dBµV)		(dB)	(dBµV/m)	(dBµV/m)		(dB)
1.705	5	+	20	= 25	30	=	5

5.2.4 Test result

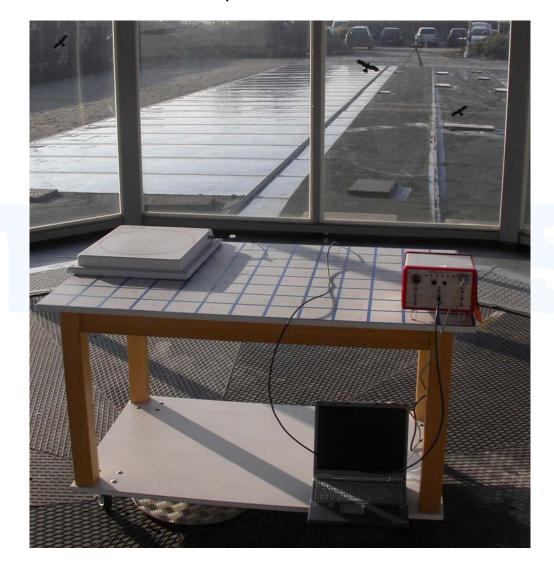
Ī	Frequency	L: PK	L: AV	L: QP	Correct.	L: PK	L: AV	L: QP	Limit	Delta
	[MHz]	[dBµV]	[dBµV]	[dBµV]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]
ſ	13.56	44.7	43.9	44.7	20.0	64.7	63.9	64.7	84.0	-10.1

Limit according to FCC Part 15 Subpart 15.225(a)

Frequency (MHz)	Field strength of for	undamental wave	Measurement distance (meters)
	(µV/m)	dB (μV/m)	
13.553-13.567	15848	84	30

The requiremen	ts are FULFILLED .		
Remarks:			

Spurious emissions (Magnectic field) 9 kHz - 30 MHz 5.3


For test instruments and accessories used see section 6 Part SER 1.

Description of the test location 5.3.1

Test location: OATS1

Test distance: 30 metres

5.3.2 Photo documentation of the test set-up

5.3.3 Description of Measurement

The spurious emissions from the EuT will be measured on an open area test site in the frequency range of 9 kHz to 30 MHz using a tuned receiver and a shielded loop antenna. The antenna was positioned 3, 10 or 30 meters horizontally from the EuT. Measurements have been made in all three orthogonal axes and the shielded loop antenna was rotated to locate the maximum of the emissions. In the case where larger measuring distances are required the results will extrapolated based on the values measured on the closer distances according to Section 15.31 (f) (2) [2]. The final measurement will be performed with an EMI Receiver set to Quasi Peak detector except for the frequency bands 9 kHz to 90 kHz and 110 to 490 kHz where an average detector will be used according to Section 15.209 (d) [2].

The final level, expressed in $dB_{\mu}V/m$, is arrived at by taking the reading from the EMI receiver (Level $dB_{\mu}V$) and adding the antenna correction factor and cable loss factor (Factor dB) to it. This result then has to be compared with the relevant FCC limit.

The resolution bandwidth during the measurement is as follows:

9 kHz - 150 kHz: ResBW: 200 Hz 150 kHz - 30 MHz: ResBW: 9 kHz

Example:

Frequency	Level	+	Factor	= Level	Limit	=	Delta
(MHz)	(dBµV)		(dB)	(dBµV/m)	(dBµV/m)		(dB)
1.705	5	+	20	= 25	30	=	5

5.3.4 Test result

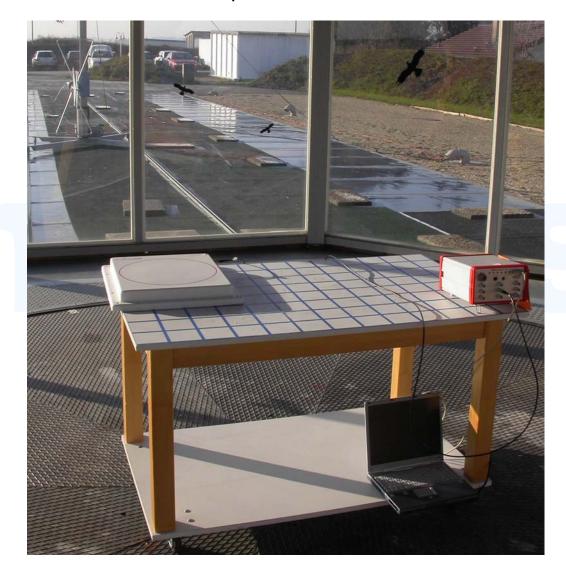
Frequency [MHz]	L: PK [dBµV]	L: AV [dBµV]	L: QP [dBµV]	Correct. [dB]	L: PK [dBµV/m]	L: AV [dBµV/m]	L: QP [dBµV/m]	Limit [dBµV/m]	Delta [dB]
27.12	2.9	1.9	2.0	20.0	22.9	21.9	22.0	29.5	-7.6

Limit according to FCC Part 15 Subpart 15.209(a)

Frequency (MHz)	Field strength of spurious emissions		Measurement distance (meters)
	(μV/m)	dB (μV/m)	
0.009-0.490	2400/F(kHz)		300
0.490-1.705	24000/F (kHz)		30
1.705-30.0	30	29.5	30

The requirement	ents are FULFILLED .			
Remarks:				
		_		

Radiated emissions (electric field) 30 MHz - 1 GHz 5.4


For test instruments and accessories used see section 6 Part SER 2.

Description of the test location 5.4.1

Test location: OATS1

Test distance: 3 metres

5.4.2 Photo documentation of the test set-up

5.4.3 Description of Measurement

Spurious emissions from the EuT are measured in the frequency range of 30 MHz to 1000 MHz using a tuned receiver and appropriate broadband linearly polarized antennas. Measurements between 30 MHz and 1000 MHz are made with 120 kHz/6 dB bandwidth and quasi-peak detection. Table top equipment is placed on a 1.0 X 1.5 meter non-conducting table 80 centimetres above the ground plane. Floor standing equipment is placed directly on the turntable/ground plane. The set up of the Equipment under test will be in accordance to ANSI C63.4-2003. The Interface cables that are closer than 40 centimetres to the ground plane are bundled in the center in a serpentine fashion so they are at least 40 centimetres from the ground plane. Cables to simulators/testers (if used in this test) are routed through the center of the table and to a screen room located outside the test area. The antenna was positioned 3, 10 or 30 meters horizontally from the EuT. To locate maximum emissions from the test sample the antenna is varied in height from 1 to 4 meters, measurement scans are made with both horizontal and vertical antenna polarization`s and the EuT are rotated 360 degrees.

The final level, expressed in $dB\mu V/m$, is arrived by taking the reading from the EMI receiver (Level $dB\mu V$) and adding the correction factors and cable loss factor (Factor dB) to it. This is done automatically in the EMI receiver, where the correction factors are stored. This result then has the FCC or CISPR limit subtracted from it to provide the Delta which gives the tabular data as shown in the data sheets at page.

The resolution bandwidth during the measurement is as follows:

30 MHz – 1000 MHz: ResBW: 120 kHz

_		
Exam	nl	ο.
∟∧aııı	vi	┖.

Frequency	Level	+	Factor	_	Level	Limit	=	Delta
(MHz)	(dBµV)		(dB)		(dBµV/m)	(dBµV/m)		(dB)
719	75	+	32.6	=	107.6	110	=	-2.4

5.4.4 Test result

Frequency [MHz]	L: QP [dBµV]	Correct. [dB]	L: QP [dBµV/m]	Limit [dBµV/m]	Delta [dB]
40.68	23.7	15.0	38.7	40.0	-1.3
54.24	12.3	14.4	26.7	40.0	-13.3
67.80	11.7	12.6	24.3	40.0	-15.7
81.36	27.6	10.8	38.4	40.0	-1.6
108.48	27.1	12.7	39.8	43.5	-3.7
135.60	26.4	15.1	41.5	43.5	-2.0
149.16	23.7	15.8	39.5	43.5	-4.0
162.72	24.6	15.9	40.5	43.5	-3.0
176.69	20.4	14.3	34.7	43.5	-8.8
189.28	22.1	13.1	35.2	43.5	-8.3
203.44	27.5	12.4	39.9	43.5	-3.6
216.89	26.7	12.9	39.6	46.0	-6.4
229.67	28.2	13.5	41.7	46.0	-4.3
243.76	26.4	14.1	40.5	46.0	-5.5
284.93	27.3	15.4	42.7	46.0	-3.3

Limit according to FCC Part 15 Subpart 15.209(a)

Frequency (MHz)	Field strength of spurious emissions		Measurement distance (meters)
	(μV/m)	dB (μV/m)	
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

The requiremen	nts are FULFILLED.			
Remarks:				

5.5 Frequency tolerance of the carrier

For test instruments and accessories used see section 6 Part FE.

5.5.1 Description of the test location

Test location: AREA4

5.5.2 Photo documentation of the test set-up

5.5.3 Test result

Test conditions		Test result			
Test co	HUILIONS	Frequency (MHz)			
T _{min} (-20)°C	V _{nom} (115)V	13.5598118			
T (-10)°C	V _{nom} (115)V	13.5597234			
T (0)°C	V _{nom} (115)V	13.5596882			
T (10)°C	V _{nom} (115)V	13.5596776			
	V _{min} (98)V	13.5596382			
T _{nom} (20)°C	V _{nom} (115)V	13.5596382			
	V _{max} (132)V	13.5596362			
T (30)°C	V _{nom} (115)V	13.5596356			
T (40)°C	V _{nom} (115)V	13.5596296			
T _{max} (50)°C	V _{nom} (115)V	13.5596228			
Maximum tolerance of carrier frequency (kHz)		-0.015 / +0.174			
Measuremer	nt uncertainty		± 10 Hz		

mikes-testingpartners gmbh Ohmstrasse 2-4 · 94342 Strasskirchen Tel.:+49(0)9424-94810 · Fax:+49(0)9424-9481240

Rev. No. 1.1

FCC ID: NDX-RIN13002
to FCC Part 15 Subpart 15.225 (e): \pm 0.01 % of carrier frequency at 13.560 MHz = \pm 1.356 kHz
nts are FULFILLED .

5.6 Emission Bandwidth

For test instruments and accessories used see section 6 Part MB.

5.6.1 Description of the test location

Test location: Shielded Room S4

5.6.2 Photo documentation of the test set-up

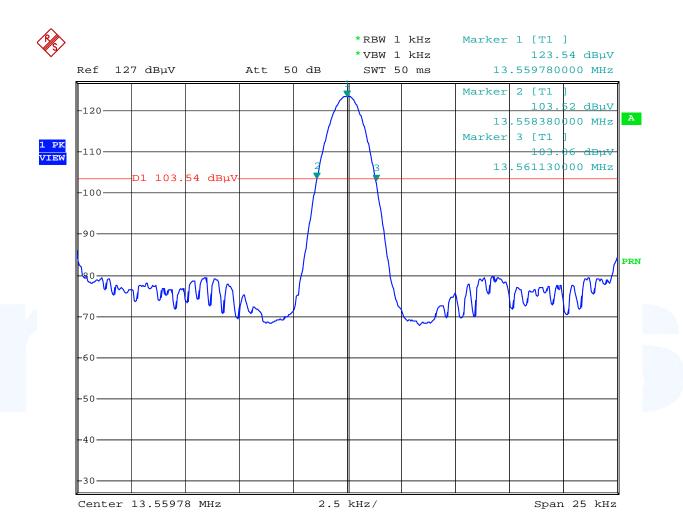
5.6.3 Description of Measurement

The bandwidth is measured at an amplitude level reduced from the reference level by a specified ratio of -20 dB. The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or the first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The resolution bandwidth of measuring instrument was set to a value as shown in the folloing table below according to ANSI C63.4-2003.

Fundamental frequency	Minimum resolution bandwidth
9 kHz to 30 MHz	1kHz
30 to 1000 MHz	10 kHz
1000 MHz to 40 GHz	100 kHz

5.6.4 Test result


Channel Frequency [MHz]	20 dB Bandwidth [kHz]
13.56	2.75

Remarks: For detailed test result please refer to following test protocol.

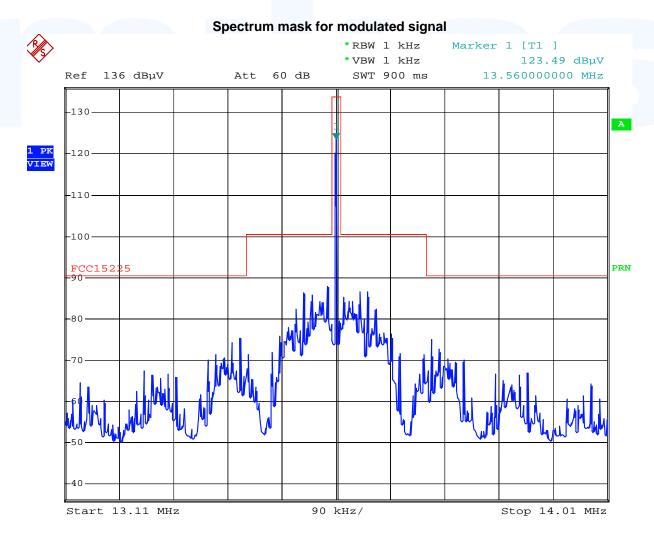
mikes-testingpartners gmbh Ohmstrasse 2-4 · 94342 Strasskirchen Tel.:+49(0)9424-94810 · Fax:+49(0)9424-9481240

5.6.5 Test protocol

5.7 Transmitter spectrum mask

For test instruments and accessories used see section 6 Part MB.

5.7.1 Description of the test location


5.7.2 Test result

The absolute levels of RF power at any frequency shall not exceed the limits defined in FCC Part §15.225 a-d

The requirements are **FULFILLED.**

Remarks:			

5.7.3 Test protocol

mikes-testingpartners gmbh Ohmstrasse 2-4 · 94342 Strasskirchen Tel.:+49(0)9424-94810 · Fax:+49(0)9424-9481240 File No. T31400-01-00HU, page 42 of 47

Rev. No. 1.1

5.8 Receiver radiated emissions (Magnectic field) 9 kHz - 30 MHz

For test instruments and accessories used see section 6 Part SER 1.

5.8.1 Description of the test location

Test location: OATS1

Test distance: 30 metres

5.8.2 Photo documentation of the test set-up

5.8.3 Description of Measurement

Spurious emissions from the EuT are measured in the frequency range of 9 kHz to 30 MHz using a tuned receiver and a shielded loop antenna. The antenna was positioned 3, 10 or 30 meters horizontally from the EuT. Measurements have been made in all three orthogonal axes and the shielded loop antenna was rotated to locate the maximum of the emissions.

The final level, expressed in $dB_{\mu}V/m$, is arrived at by taking the reading from the EMI receiver (Level $dB_{\mu}V$) and adding the antenna correction factor and cable loss factor (Factor dB) to it. This result then has to be compared with the relevant FCC limit.

File No. **T31400-01-00HU**, page **43** of **47**

mikes-testingpartners gmbh Ohmstrasse 2-4 · 94342 Strasskirchen Tel.:+49(0)9424-94810 · Fax:+49(0)9424-9481240

The resolution bandwidth during the measurement was as follows:

9 kHz - 150 kHz: ResBW: 200 Hz 150 kHz - 30 MHz: ResBW: 9 kHz

Example:

Frequency	Level	+	Factor	= Level	Limit	=	Delta
(MHz)	(dBµV)		(dB)	(dBµV/m)	(dBµV/m)		(dB)
1.705	5	+	20	= 25	30	=	5

5.8.4 Test result

Frequency [MHz]	L: PK [dBµV]	L: AV [dBµV]	L: QP [dBµV]	Correct. [dB]	L: PK [dBµV/m]	L: AV [dBµV/m]	L: QP [dBµV/m]	Limit [dBµV/m]	Delta [dB]
0.009 - 30		< 0		20		< 20			

Limit according to FCC Part 15 Subpart 15.209(a)

Frequency	Field strength	of spurious	Measurement distance
(MHz)	emiss	ions	(meters)
	(µV/m)	dB (μV/m)	
0.009-0.490	2400/F(kHz)		300
0.490-1.705	24000/F (kHz)	/	30
1.705-30.0	30	29.5	30

The requirement	nts are FULFILLED .		
Remarks:			

5.9 Receiver radiated emissions (electric field) 30 MHz - 1 GHz

For test instruments and accessories used see section 6 Part SER 2.

5.9.1 Description of the test location

Test location: OATS1

Test distance: 3 metres

5.9.2 Photo documentation of the test set-up

5.9.3 Description of Measurement

Spurious emissions from the EuT are measured in the frequency range of 30 MHz to 10 times the highest used frequency using a tuned receiver and appropriate broadband linearly polarized antennas. Measurements between 30 MHz and 1000 MHz are made with 120 kHz/6 dB bandwidth and quasi-peak detection. Table top equipment is placed on a 1.0 X 1.5 meter non-conducting table 80 centimetres above the ground plane. Floor standing equipment is placed directly on the turntable/ground plane. Interface cables that are closer than 40 centimetres to the ground plane are bundled in the center in a serpentine fashion so they are at least 40 centimetres from the ground plane. Cables to simulators/testers (if used in this test) are routed through the center of the table and to a screen room located outside the test area. The antenna was positioned 3, 10 or 30 meters horizontally from the EuT. To locate maximum emissions from the test sample the antenna is varied in height from 1 to 4 meters, measurement scans are made with both horizontal and vertical antenna polarization`s and the EuT are rotated 360 degrees.

File No. **T31400-01-00HU**, page **45** of **47**

The final level, expressed in $dB\mu V/m$, is arrived by taking the reading from the EMI receiver (Level $dB\mu V$) and adding the correction factors and cable loss factor (Factor dB) to it. This is done automatically in the EMI receiver, where the correction factors are stored. This result then has the FCC or CISPR limit subtracted from it to provide the Delta which gives the tabular data as shown in the data sheets at page.

Frequency	Level	+	Factor	=	Level	Limit	=	Delta
(MHz)	(dBµV)		(dB)		(dBµV/m)	(dBµV/m)		(dB)
719	75	+	32.6	=	107.6	110	=	-2.4

5.9.4 Test result

Frequency [MHz]	L: PK [dBµV]	L: AV [dBµV]	L: QP [dBµV]	Correct. [dB]	L: PK [dBµV/m]	L: AV [dBµV/m]	L: QP [dBµV/m]	Limit [dBµV/m]	Delta [dB]
30 - 1000			< 10	20		-	< 30		

Limit according to FCC Part 15 Subpart 15.209(a)

Frequency (MHz)	Field strength emiss	-	Measurement distance (meters)
	(μV/m)	dB (μV/m)	
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
960-1000	500	54	3

The requirements are FULFILLED .							
Remarks:							

6 USED TEST EQUIPMENT AND ACCESSORIES

All test instruments used, in addition to the test accessories, are calibrated and verified regularly.

The calibration intervals and the calibration history will be given out on request.

Test Report No: T31400-01-00HU
Beginning of Testing: 18 December 2007
End of Testing: 15 February 2007

Test ID	Model Type	Kind of Equipment	Manufacturer	Equipment No.
A 4	ESHS 30 NNLK 8129 ESH 2 - Z 5 ESH 3 - Z 2 N-4000-BNC N-1500-N SP 103 /3.5-60	EMI Test Receiver LISN LISN Pulse Limiter RF Cable RF Cable Convertor 220V / 110V	Rohde & Schwarz München Schwarzbeck Mess-Elektronik Rohde & Schwarz München Rohde & Schwarz München mikes-testingpartners gmbh mikes-testingpartners gmbh mikes-testingpartners gmbh	02-02/03-05-002 02-02/20-05-001 02-02/20-05-004 02-02/50-05-001 02-02/50-05-138 02-02/50-05-140 02-02/50-05-182
CPR 1	FMZB 1516	Magnetic Field Antenna	Schwarzbeck Mess-Elektronik	01-02/24-01-018
	ESCS 30	EMI Test Receiver	Rohde & Schwarz München	02-02/03-05-001
FE	FSP 30	Spectrum Analyzer	Rohde & Schwarz München	02-02/11-05-001
	THS730A	Handheld Scope	Tektronix GmbH	02-02/13-05-001
	Type 5315.5	Transformer	STATRON Gerätetechnik	02-02/50-05-197
	WK-340/40	Climatic Chamber	Weiss Umwelttechnik GmbH	02-02/45-05-001
МВ	FSP 30	Spectrum Analyzer	Rohde & Schwarz München	02-02/11-05-001
	THS730A	Handheld Scope	Tektronix GmbH	02-02/13-05-001
	Type 5315.5	Transformer	STATRON Gerätetechnik	02-02/50-05-197
SER 1	FMZB 1516	Magnetic Field Antenna	Schwarzbeck Mess-Elektronik	01-02/24-01-018
	ESCS 30	EMI Test Receiver	Rohde & Schwarz München	02-02/03-05-001
SER 2	ESVS 30	EMI Test Receiver	Rohde & Schwarz München	02-02/03-05-006
	VULB 9168	Trilog-Broadband Antenna	Schwarzbeck Mess-Elektronik	02-02/24-05-005
	S10162-B/+11N-50-10-5	RF Cable 33m	Huber + Suhner	02-02/50-05-031
	KK-EF393-21N-16	RF Cable 20m	Huber + Suhner	02-02/50-05-033
	NW-2000-NB	RF Cable	Huber + Suhner	02-02/50-05-113