ANNEX C: DIPOLE CERTIFICATE **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C Accreditation No.: SCS 108 Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Page No. : 43 of 60 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client ETC (Auden) Certificate No: D2450V2-764_Sep08 | Object | D2450V2 - SN: 7 | 64 | | |--|--|---|--| | Calibration procedure(s) | QA CAL-05.v7
Calibration proce | dure for dipole validation kits | | | Calibration date: | September 24, 2 | 008 | | | Condition of the calibrated item | In Tolerance | | | | The medical control and the three | | obability are given on the following pages an | | | | | y facility: environment temperature (22 ± 3)°0 | C and humidity < 70%. | | Calibration Equipment used (M& | | y facility: environment temperature (22 ± 3)°0 Cal Date (Certificate No.) | C and humidity < 70%. Scheduled Calibration | | Calibration Equipment used (M& | TE critical for calibration) | | | | Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A | TE critical for calibration) | Cal Date (Certificate No.) | Scheduled Calibration | | Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A
Power sensor HP 8481A | TE critical for calibration) ID # GB37480704 | Cal Date (Certificate No.) 04-Oct-07 (No. 217-00736) | Scheduled Calibration Oct-08 | | Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A
Power sensor HP 8481A
Reference 20 dB Attenuator | TE critical for calibration) ID # GB37480704 US37292783 | Cal Date (Certificate No.) 04-Oct-07 (No. 217-00736) 04-Oct-07 (No. 217-00736) | Scheduled Calibration Oct-08 Oct-08 | | Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A
Power sensor HP 8481A
Reference 20 dB Attenuator
Type-N mismatch combination | TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20g) | Cal Date (Certificate No.) 04-Oct-07 (No. 217-00736) 04-Oct-07 (No. 217-00736) 01-Jul-08 (No. 217-00864) | Scheduled Calibration Oct-08 Oct-08 Jul-09 | | Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A
Power sensor HP 8481A
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe ES3DV2 | TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20g) SN: 5047.2 / 06327 | Cal Date (Certificate No.) 04-Oct-07 (No. 217-00736) 04-Oct-07 (No. 217-00736) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) | Scheduled Calibration Oct-08 Oct-08 Jul-09 Jul-09 | | Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A
Power sensor HP 8481A
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe ES3DV2
DAE4 | TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20g) SN: 5047.2 / 06327 SN: 3025 | Cal Date (Certificate No.) 04-Oct-07 (No. 217-00736) 04-Oct-07 (No. 217-00736) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08) | Scheduled Calibration Oct-08 Oct-08 Jul-09 Jul-09 Apr-09 | | Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A
Power sensor HP 8481A
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe ES3DV2
DAE4 | TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601 | Cal Date (Certificate No.) 04-Oct-07 (No. 217-00736) 04-Oct-07 (No. 217-00736) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08) 14-Mar-08 (No. DAE4-601_Mar08) | Scheduled Calibration Oct-08 Oct-08 Jul-09 Jul-09 Apr-09 Mar-09 | | Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A
Power sensor HP 8481A
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe ES3DV2
DAE4
Secondary Standards
Power sensor HP 8481A | TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601 ID # | Cal Date (Certificate No.) 04-Oct-07 (No. 217-00736) 04-Oct-07 (No. 217-00736) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08) 14-Mar-08 (No. DAE4-601_Mar08) Check Date (in house) | Scheduled Calibration Oct-08 Oct-08 Jul-09 Jul-09 Apr-09 Mar-09 Scheduled Check | | Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A
Power sensor HP 8481A
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe ES3DV2
DAE4
Secondary Standards
Power sensor HP 8481A
RF generator R&S SMT-06 | TE critical for calibration) ID # GB37480704 US37292783 SN: S5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601 ID # MY41092317 | Cal Date (Certificate No.) 04-Oct-07 (No. 217-00736) 04-Oct-07 (No. 217-00736) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08) 14-Mar-08 (No. DAE4-601_Mar08) Check Date (in house) 18-Oct-02 (in house check Oct-07) | Scheduled Calibration Oct-08 Oct-08 Jul-09 Jul-09 Apr-09 Mar-09 Scheduled Check In house check: Oct-09 | | All calibrations have been conductive Calibration Equipment used (M& Primary Standards Power meter EPM-442A Power sensor HP 8481A Reference 20 dB Attenuator Type-N mismatch combination Reference Probe ES3DV2 DAE4 Secondary Standards Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E | ID # GB37480704 US37292783 SN: S5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601 ID # MY41092317 100005 | Cal Date (Certificate No.) 04-Oct-07 (No. 217-00736) 04-Oct-07 (No. 217-00736) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08) 14-Mar-08 (No. DAE4-601_Mar08) Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-07) | Scheduled Calibration Oct-08 Oct-08 Jul-09 Jul-09 Apr-09 Mar-09 Scheduled Check In house check: Oct-09 In house check: Oct-09 | | Calibration Equipment used (M&
Primary Standards
Power meter EPM-442A
Power sensor HP 8481A
Reference 20 dB Attenuator
Type-N mismatch combination
Reference Probe ES3DV2
DAE4
Secondary Standards
Power sensor HP 8481A
RF generator R&S SMT-06 | ID # GB37480704 US37292783 SN: S5086 (20g) SN: 5047.2 / 06327 SN: 3025 SN: 601 ID # MY41092317 100005 US37390585 S4206 | Cal Date (Certificate No.) 04-Oct-07 (No. 217-00736) 04-Oct-07 (No. 217-00736) 01-Jul-08 (No. 217-00864) 01-Jul-08 (No. 217-00867) 28-Apr-08 (No. ES3-3025_Apr08) 14-Mar-08 (No. DAE4-601_Mar08) Check Date (in house) 18-Oct-02 (in house check Oct-07) 4-Aug-99 (in house check Oct-07) 18-Oct-01 (in house check Oct-07) | Scheduled Calibration Oct-08 Oct-08 Jul-09 Jul-09 Apr-09 Mar-09 Scheduled Check In house check: Oct-09 In house check: Oct-09 In house check: Oct-08 | Certificate No: D2450V2-764_Sep08 Page 1 of 9 Cerpass Technology Corp. Issued Date : Jul. 10, 2009 #### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65 #### Additional Documentation: d) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. Certificate No: D2450V2-764_Sep08 Page 2 of 9 Cerpass Technology Corp. Issued Date : Jul. 10, 2009 Tel:886-2-2792-3366 Fax:886-2-2792-1100 Page No. : 44 of 60 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V5.0 | |------------------------------|---------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 2450 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 39.8 ± 6 % | 1.80 mho/m ± 6 % | | Head TSL temperature during test | (22.0 ± 0.2) °C | | 1 | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 13.3 mW / g | | SAR normalized | normalized to 1W | 53.2 mW / g | | SAR for nominal Head TSL parameters 1 | normalized to 1W | 53.6 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 6.19 mW / g | | SAR normalized | normalized to 1W | 24.8 mW / g | | SAR for nominal Head TSL parameters ¹ | normalized to 1W | 24.9 mW /g ± 16.5 % (k=2) | Certificate No: D2450V2-764_Sep08 Page 3 of 9 Cerpass Technology Corp. Issued Date : Jul. 10, 2009 Tel:886-2-2792-3366 Fax:886-2-2792-1100 Page No. : 45 of 60 ¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities" Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |----------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 50.7 ± 6 % | 1.97 mho/m ± 6 % | | Body TSL temperature during test | (22.0 ± 0.2) °C | | - | #### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 12.7 mW/g | | SAR normalized | normalized to 1W | 50.8 mW / g | | SAR for nominal Body TSL parameters ² | normalized to 1W | 49.5 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|---------------------------| | SAR measured | 250 mW input power | 5.83 mW / g | | SAR normalized | normalized to 1W | 23.3 mW/g | | SAR for nominal Body TSL parameters ² | normalized to 1W | 22.9 mW /g ± 16.5 % (k=2) | Certificate No: D2450V2-764_Sep08 Page 4 of 9 Cerpass Technology Corp. Issued Date : Jul. 10, 2009 Tel:886-2-2792-3366 Fax:886-2-2792-1100 : 46 of 60 Page No. ² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities" #### **Appendix** #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | $52.3 \Omega + 0.5 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 32.7 dB | | #### Antenna Parameters with Body TSL | Impedance, transformed to feed point | ance, transformed to feed point $47.8 \Omega + 3.5 j\Omega$ | | |--------------------------------------|-------------------------------------------------------------|--| | Return Loss | - 27.5 dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.151 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|----------------|--| | Manufactured on | April 10, 2004 | | Certificate No: D2450V2-764_Sep08 Page 5 of 9 Cerpass Technology Corp. Tel:886-2-2792-3366 Fax:886-2-2792-1100 Issued Date : Jul. 10, 2009 Page No. : 47 of 60 #### **DASY5 Validation Report for Head TSL** Date/Time: 24.09.2008 12:28:28 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN764 Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: HSL U10 BB Medium parameters used: f = 2450 MHz; $\sigma = 1.8$ mho/m; $\epsilon_r = 39.8$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC) #### DASY5 Configuration: Probe: ES3DV2 - SN3025; ConvF(4.4, 4.4, 4.4); Calibrated: 28.04.2008 Sensor-Surface: 3.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 14.03.2008 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 Measurement SW: DASY5, V5.0 Build 119; SEMCAD X Version 13.2 Build 87 Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 96.2 V/m; Power Drift = 0.014 dB Pola GAD (control of the district distr Peak SAR (extrapolated) = 27.6 W/kg SAR(1 g) = 13.3 mW/g; SAR(10 g) = 6.19 mW/g Maximum value of SAR (measured) = 15.8 mW/g 0 dB = 15.8 mW/g Certificate No: D2450V2-764_Sep08 Page 6 of 9 Cerpass Technology Corp. Issued Date : Jul. 10, 2009 Tel:886-2-2792-3366 Fax:886-2-2792-1100 Page No. : 48 of 60 ### Impedance Measurement Plot for Head TSL Certificate No: D2450V2-764_Sep08 Page 7 of 9 Cerpass Technology Corp. Tel:886-2-2792-3366 Fax:886-2-2792-1100 Issued Date : Jul. 10, 2009 Page No. : 49 of 60 #### **DASY5 Validation Report for Body TSL** Date/Time: 18.09.2008 13:33:00 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:764 Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: MSL U10 BB Medium parameters used: f = 2450 MHz; $\sigma = 1.97 \text{ mho/m}$; $\varepsilon_r = 50.7$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC) #### DASY5 Configuration: Probe: ES3DV2 - SN3025; ConvF(4.07, 4.07, 4.07); Calibrated: 28.04.2008 • Sensor-Surface: 3.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 14.03.2008 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 Measurement SW: DASY5, V5.0 Build 119; SEMCAD X Version 13.2 Build 87 Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 91.8 V/m; Power Drift = 0.029 dB Peak SAR (extrapolated) = 26.4 W/kg SAR(1 g) = 12.7 mW/g; SAR(10 g) = 5.83 mW/g Maximum value of SAR (measured) = 15.7 mW/g 0 dB = 15.7 mW/g Certificate No: D2450V2-764_Sep08 Page 8 of 9 Cerpass Technology Corp. Tel:886-2-2792-3366 Fax:886-2-2792-1100 Issued Date : Jul. 10, 2009 Page No. : 50 of 60 #### Impedance Measurement Plot for Body TSL Certificate No: D2450V2-764_Sep08 Page 9 of 9 Cerpass Technology Corp. Issued Date : Jul. 10, 2009 : 51 of 60 Page No. #### ANNEX D: PROBE CERTIFICATE Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland - Schweizerischer Kalibrierdienst Service suisse d'étalonnage - C Service suisse d etaionnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client ETC (Auden) Certificate No: EX3-3555_Sep08 Accreditation No.: SCS 108 CALIBRATION CERTIFICATE EX3DV4 - SN:3555 Object QA CAL-01.v6, QA CAL-14.v3 and QA CAL-23.v3 Calibration procedure(s) Calibration procedure for dosimetric E-field probes September 19, 2008 Calibration date: Condition of the calibrated item In Tolerance This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Cal Date (Certificate No.) Primary Standards Apr-09 GB41293874 1-Apr-08 (No. 217-00788) Power meter E4419B Apr-09 MY41495277 1-Apr-08 (No. 217-00788) Power sensor E4412A 1-Apr-08 (No. 217-00788) Apr-09 MY41498087 Power sensor E4412A Jul-09 1-Jul-08 (No. 217-00865) Reference 3 dB Attenuator SN: S5054 (3c) Apr-09 31-Mar-08 (No. 217-00787) Reference 20 dB Attenuator SN: S5086 (20b) Jul-09 SN: S5129 (30b) 1-Jul-08 (No. 217-00866) Reference 30 dB Attenuator 2-Jan-08 (No. ES3-3013_Jan08) Jan-09 Reference Probe ES3DV2 SN: 3013 9-Sep-08 (No. DAE4-660_Sep08) Sep-09 SN: 660 DAF4 Scheduled Check Check Date (in house) Secondary Standards ID# In house check: Oct-09 4-Aug-99 (in house check Oct-07) US3642U01700 RF generator HP 8648C In house check: Oct-08 18-Oct-01 (in house check Oct-07) US37390585 Network Analyzer HP 8753E Name Calibrated by: Approved by: Issued: September 20, 2008 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-3555_Sep08 Page 1 of 9 Cerpass Technology Corp. Issued Date : Jul. 10, 2009 Tel:886-2-2792-3366 Fax:886-2-2792-1100 Page No. : 52 of 60 Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL NORMx,y,z ConvF tissue simulating liquid sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point DCP Polarization φ Polarization 9 φ rotation around probe axis 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization θ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. Certificate No: EX3-3555_Sep08 Page 2 of 9 Cerpass Technology Corp. Issued Date : Jul. 10, 2009 Tel:886-2-2792-3366 Fax:886-2-2792-1100 Page No. : 53 of 60 September 19, 2008 # Probe EX3DV4 SN:3555 Manufactured: July 13, 2004 Last calibrated: Recalibrated: September 27, 2007 September 19, 2008 Calibrated for DASY Systems (Note: non-compatible with DASY2 system!) Certificate No: EX3-3555_Sep08 Page 3 of 9 Cerpass Technology Corp. Tel:886-2-2792-3366 Fax:886-2-2792-1100 Issued Date : Jul. 10, 2009 Page No. : 54 of 60 September 19, 2008 ### DASY - Parameters of Probe: EX3DV4 SN:3555 | Sensitivity in Free Space ^A | Diode Compression ^B | |----------------------------------------|--------------------------------| | Serisitivity in Free Space | Blode Compression | NormX 0.40 \pm 10.1% μ V/(V/m)² DCP X 95 mV NormY 0.41 \pm 10.1% μ V/(V/m)² DCP Y 103 mV NormZ 0.40 \pm 10.1% μ V/(V/m)² DCP Z 93 mV Sensitivity in Tissue Simulating Liquid (Conversion Factors) Please see Page 8. #### **Boundary Effect** TSL 900 MHz Typical SAR gradient: 5 % per mm | Sensor Cente | er to Phantom Surface Distance | 2.0 mm | 3.0 mm | | |-----------------------|--------------------------------|--------|--------|--| | SAR _{be} [%] | Without Correction Algorithm | 10.4 | 6.0 | | | SAR _{be} [%] | With Correction Algorithm | 8.0 | 0.5 | | TSL 1750 MHz Typical SAR gradient: 10 % per mm | Sensor Cente | er to Phantom Surface Distance | 2.0 mm | 3.0 mm | | |-----------------------|--------------------------------|--------|--------|--| | SAR _{be} [%] | Without Correction Algorithm | 8.6 | 4.6 | | | SAR _{be} [%] | With Correction Algorithm | 0.6 | 0.1 | | #### Sensor Offset Probe Tip to Sensor Center 1.0 mm The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: EX3-3555_Sep08 Page 4 of 9 Cerpass Technology Corp. Issued Date : Jul. 10, 2009 Tel:886-2-2792-3366 Fax:886-2-2792-1100 Page No. . 341. 10, 2007 : 55 of 60 ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 8). ^B Numerical linearization parameter: uncertainty not required. September 19, 2008 ### Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) Certificate No: EX3-3555_Sep08 Page 5 of 9 Cerpass Technology Corp. Issued Date : Jul. 10, 2009 Tel:886-2-2792-3366 Fax:886-2-2792-1100 : 56 of 60 Page No. #### September 19, 2008 : 57 of 60 Page No. ## Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) Certificate No: EX3-3555_Sep08 Page 6 of 9 Cerpass Technology Corp. Issued Date : Jul. 10, 2009 Tel:886-2-2792-3366 Fax:886-2-2792-1100 September 19, 2008 ### Dynamic Range f(SAR_{head}) (Waveguide R22, f = 1800 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) Certificate No: EX3-3555_Sep08 Page 7 of 9 Cerpass Technology Corp. Tel:886-2-2792-3366 Fax:886-2-2792-1100 Issued Date : Jul. 10, 2009 Page No. : 58 of 60 #### September 19, 2008 ### **Conversion Factor Assessment** | f [MHz] | Validity [MHz] ^c | TSL | Permittivity | Conductivity | Alpha | Depth | ConvF Uncertainty | |---------|-----------------------------|------|--------------|--------------|-------|-------|--------------------| | 900 | ± 50 / ± 100 | Head | 41.5 ± 5% | 0.97 ± 5% | 0.29 | 1.13 | 8.03 ± 11.0% (k=2) | | 1750 | ± 50 / ± 100 | Head | 40.1 ± 5% | 1.37 ± 5% | 0.39 | 0.79 | 7.03 ± 11.0% (k=2) | | 1950 | ± 50 / ± 100 | Head | 40.0 ± 5% | 1.40 ± 5% | 0.66 | 0.62 | 6.68 ± 11.0% (k=2) | | 2450 | ± 50 / ± 100 | Head | 39.2 ± 5% | 1.80 ± 5% | 0.47 | 0.72 | 6.40 ± 11.0% (k=2) | | 900 | ± 50 / ± 100 | Body | 55.0 ± 5% | 1.05 ± 5% | 0.30 | 1.17 | 8.01 ± 11.0% (k=2) | | 1750 | ± 50 / ± 100 | Body | 53.4 ± 5% | 1.49 ± 5% | 0.38 | 0.85 | 6.87 ± 11.0% (k=2) | | 1950 | ± 50 / ± 100 | Body | 53.3 ± 5% | 1.52 ± 5% | 0.32 | 0.92 | 6.70 ± 11.0% (k=2) | | 2450 | ± 50 / ± 100 | Body | 52.7 ± 5% | 1.95 ± 5% | 0.34 | 1.00 | 6.17 ± 11.0% (k=2) | | 5200 | ± 50 / ± 100 | Body | 49.0 ± 5% | 5.30 ± 5% | 0.48 | 1.70 | 4.08 ± 13.1% (k=2) | | 5500 | ± 50 / ± 100 | Body | 48.6 ± 5% | 5.65 ± 5% | 0.48 | 1.70 | 3.86 ± 13.1% (k=2) | | 5800 | ± 50 / ± 100 | Body | 48.2 ± 5% | 6.00 ± 5% | 0.48 | 1.70 | 3.82 ± 13.1% (k=2) | $^{^{\}rm c}$ The validity of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Certificate No: EX3-3555_Sep08 Page 8 of 9 Cerpass Technology Corp. Tel:886-2-2792-3366 Fax:886-2-2792-1100 Issued Date : Jul. 10, 2009 Page No. : 59 of 60 September 19, 2008 : 60 of 60 Page No. ### **Deviation from Isotropy in HSL** Error (φ, θ), f = 900 MHz Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2) Certificate No: EX3-3555_Sep08 Page 9 of 9 Cerpass Technology Corp. Issued Date : Jul. 10, 2009