

Equipment : 11ac Wireless Dual-Band USB Adapter

Brand Name : EDIMAX

Model No. : EW-7811USC

FCC ID : NDD9578111407

Standard : FCC 47 CFR Part 2 (2.1093)

ANSI/IEEE C95.1-1992

IEEE 1528-2003

Applicant : EDIMAX TECHNOLOGY CO., LTD.

Manufacturer No.3, Wu-Chuan 3rd Road, Wu-Ku Industrial Park,

New Taipei City, Taiwan

The product sample received on May 21, 2014 and completely tested on Jul. 24, 2014. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the procedures and shown the compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Wayne Hsu / Assistant Manager

Testing Laboratory 1190

Report No.: FA380666-06

SPORTON INTERNATIONAL INC.

TEL: 886-3-327-3456 FAX: 886-3-327-0973 Page No. : 1 of 27

Report Version : Rev. 01

Table of Contents

1	STATEMENT OF COMPLIANCE	5
1.1	Guidance Standard	
1.2	Testing Location Information	5
2	EQUIPMENT UNDER TEST (EUT)	6
2.1	General Information	ε
2.2	Maximum Tune-up Limit	6
3	RF EXPOSURE LIMITS	7
3.1	Uncontrolled Environment	7
3.2	Controlled Environment	
4	SPECIFIC ABSORPTION RATE (SAR)	8
4.1	Introduction	8
4.2	SAR Definition	8
5	SYSTEM DESCRIPTION AND SETUP	9
6	MEASUREMENT PROCEDURES	10
6.1	Spatial Peak SAR Evaluation	10
6.2	Power Reference Measurement	
6.3	Area Scan	
6.4 6.5	Zoom Scan	
6.6	Power Drift Monitoring	
7	TEST EQUIPMENT LIST	
8	SYSTEM VERIFICATION	
8.1	Tissue Verification	
8.2	System Performance Check Results	
9	RF EXPOSURE POSITIONS	16
9.1	SAR Testing for Tablet	16
10	CONDUCTED RF OUTPUT POWER (UNIT: DBM)	17
11	ANTENNA LOCATION	22
12	SAR TEST RESULTS	23
12.1	Body SAR	23
13	UNCERTAINTY ASSESSMENT	24
14	REFERENCES	27
	ILLI LILLITOLO	21

APPENDIX A. Plots of System Performance Check

Report No.: FA380666-06

APPENDIX B. Plots of SAR Measurement

Appendix C. DASY Calibration Certificate

Appendix D. Test setup Photos

SPORTON INTERNATIONAL INC. Page No. : 3 of 27
TEL: 886-3-327-3456 Report Version : Rev. 01

Revision History

Report No.: FA380666-06

Report No.	Version	Description	Issued Date
FA380666-06	Rev. 01	Initial issue of report	Sep. 9, 2014

SPORTON INTERNATIONAL INC. Page No. : 4 of 27
TEL: 886-3-327-3456 Report Version : Rev. 01

1 Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing as follows.

Exposure Position	Frequency Band	Reported 1g SAR (W/kg)			
	WLAN5.2GHz Band	0.01	NII	0.01	
Body	WLAN5.8GHz Band	0.03	DTC	0.65	
	WLAN2.4GHz Band	0.65	DTS	0.65	

Report No.: FA380666-06

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2003.

1.1 Guidance Standard

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2 (2.1093)
- ANSI/IEEE C95.1-1992
- IEEE 1528-2003
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r03
- FCC KDB 865664 D02 SAR Reporting v01r01
- FCC KDB 447498 D01 General RF Exposure Guidance v05r02
- FCC KDB 248227 D01 SAR meas for 802 11abg v01r02

1.2 Testing Location Information

	Testing Location					
HWA YA	ADD : No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.					
	TEL: 886-3-327-3456 FAX: 886-3-327-0973					

SPORTON INTERNATIONAL INC. : 5 of 27
TEL: 886-3-327-3456 Report Version : Rev. 01

2 Equipment Under Test (EUT)

2.1 General Information

	Product Feature & Specification				
Equipment Name	11ac Wireless Dual-Band USB Adapter				
Brand Name	EDIMAX				
Model Name	EW-7811USC				
FCC ID	NDD9578111407				
Frequency Range	WLAN 5.2GHz Band: 5150 MHz ~ 5250 MHz WLAN 5.8GHz Band: 5725 MHz ~ 5850 MHz WLAN 2.4GHz Band: 2400 MHz ~ 2483.5 MHz				
EUT Stage	Identical Prototype				

Report No.: FA380666-06

2.2 Maximum Tune-up Limit

Bond / Francisco (MILIT)	IEEE 802.11 Average Power (dBm)					
Band / Frequency (MHz)	а	HT20	HT40	VHT20	VHT40	VHT80
WLAN 5.2GHz Band	14.50	14.50	14.50	14.50	14.50	14.50
WLAN 5.8GHz Band	19.50	19.50	18.50	19.00	19.50	16.50

Band / Frequency (MHz)	IEEE 802.11 Average Power (dBm)			
	b	g	HT20	HT40
WLAN 2.4GHz Band	17.00	16.50	16.50	16.50

SPORTON INTERNATIONAL INC. Page No. : 6 of 27
TEL: 886-3-327-3456 Report Version : Rev. 01

3 RF Exposure Limits

3.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Report No.: FA380666-06

3.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
14.02	13.20	13.13

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

SPORTON INTERNATIONAL INC. Page No. : 7 of 27
TEL: 886-3-327-3456 Report Version : Rev. 01

4 Specific Absorption Rate (SAR)

4.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

Report No.: FA380666-06

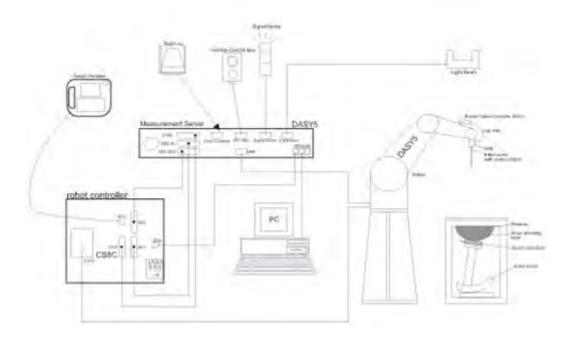
4.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ) . The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

$$SAR = \frac{\sigma |E|^2}{\rho}$$


Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

SPORTON INTERNATIONAL INC. Page No. : 8 of 27
TEL: 886-3-327-3456 Report Version : Rev. 01

5 System Description and Setup

The DASY system used for performing compliance tests consists of the following items:

Report No.: FA380666-06

- A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- An isotropic Field probe optimized and calibrated for the targeted measurement.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running WinXP or Win7 and the DASY5 software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

SPORTON INTERNATIONAL INC. : 9 of 27
TEL: 886-3-327-3456 : Report Version : Rev. 01

6 Measurement Procedures

The measurement procedures are as follows:

<Conducted power measurement>

(a) For WWAN power measurement, use base station simulator to configure EUT WWAN transmission in conducted connection with RF cable, at maximum power in each supported wireless interface and frequency band.

Report No.: FA380666-06

- (b) Read the WWAN RF power level from the base station simulator.
- (c) For WLAN/BT power measurement, use engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power in each supported wireless interface and frequency band
- (d) Connect EUT RF port through RF cable to the power meter, and measure WLAN/BT output power

<SAR measurement>

- (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel
- (b) Place the EUT in the positions as Appendix D demonstrates.
- (c) Set scan area, grid size and other setting on the DASY software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band
- (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Area scan
- (b) Power reference measurement
- (c) Zoom scan
- (d) Power drift measurement

6.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (g) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (b) Generation of a high-resolution mesh within the measured volume
- (c) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (d) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (e) Calculation of the averaged SAR within masses of 1g and 10g

SPORTON INTERNATIONAL INC. Page No. : 10 of 27
TEL: 886-3-327-3456 Report Version : Rev. 01

6.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

Report No.: FA380666-06

6.3 Area Scan

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01v01r03 SAR measurement 100 MHz to 6 GHz v01r01.

	≤ 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 ± 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°	
	\leq 2 GHz: \leq 15 mm 2 – 3 GHz: \leq 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

SPORTON INTERNATIONAL INC. Page No. : 11 of 27
TEL: 886-3-327-3456 Report Version : Rev. 01

6.4 Zoom Scan

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Report No.: FA380666-06

Zoom scan parameters extracted from FCC KDB 865664 D01v01r03 SAR measurement 100 MHz to 6 GHz v01r01.

			≤ 3 GHz	> 3 GHz
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}		num zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom} ≤ 2		$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$
	uniform grid: $\Delta z_{Zoom}(n)$		≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm
Maximum zoom scan spatial resolution, normal to phantom surface	$\begin{array}{c} \Delta z_{Zoom}(1)\text{: between} \\ 1^{st} \text{ two points closest} \\ \text{to phantom surface} \\ \\ \Delta z_{Zoom}(n>1)\text{:} \\ \text{between subsequent} \\ \text{points} \end{array}$	1st two points closest	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm
		≤ 1.5·∆z	Zoom(n-1)	
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

6.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

6.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

SPORTON INTERNATIONAL INC. Page No. : 12 of 27
TEL: 886-3-327-3456 Report Version : Rev. 01

^{*} When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

7 Test Equipment List

Manufacturan	Name of Equipment	True o /B/I o al o l	Carial Number	Calibration	
Manufacturer	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date
SPEAG	SPEAG 2450MHz System Validation Kit		929	2014/2/12	2015/2/11
SPEAG	5000MHz System Validation Kit	D5GHzV2	1167	2013/12/11	2014/12/10
SPEAG	5000MHz System Validation Kit	D5GHzV2	1167	2014/3/13	2015/3/12
SPEAG	Dosimetric E-Field Probe	EX3DV4	3820	2014/5/15	2015/5/14
SPEAG	Data Acquisition Electronics	DAE4	1424	2014/2/11	2015/2/10
SPEAG	Device Holder	N/A	N/A	NCR	NCR
Mini-Circuits	Power Amplifier	ZHL-42W+	15542	NCR	NCR
Mini-Circuits	Power Amplifier	ZVE-8G+	605601404	NCR	NCR
Agilent	ENA Series Network Analyzer	E5071C	MY46419201	2014/1/15	2015/1/14
R&S	Spectrum Analyzer	FSP40	100305	2013/10/3	2014/10/2
Agilent	MXG-B RF Vector Signal Generator	N5182B	MY53050081	2014/4/8	2015/4/7
SPEAG	Dielectric Probe Kit	SM DAK 040CA	1146	NCR	NCR
Anritsu	Power Meter	ML2495A	949003	2014/1/28	2015/1/27
Anritsu	Power sensor	MA2411B	917017	2014/1/28	2015/1/27
SPEAG	Flat Phantom ELI5.0	QD OVA 002 AA	1238	NCR	NCR
Wisewind	Themometer	HTC1	HTC1	2013/12/25	2014/12/24
Wisewind	Themometer	YF-160A	130504609	2013/12/25	2014/12/24

Report No.: FA380666-06

General Note:

- 1. The calibration certificate of DASY can be referred to appendix C of this report.
- 2. The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the network analyzer and compensated during system check.
- 3. In system check we need to monitor the level on the power meter, and adjust the power amplifier level to have precise power level to the dipole; the measured SAR will be normalized to 1W input power according to the ratio of 1W to the input power to the dipole. For system check, the calibration of the power amplifier is deemed not critically required for correct measurement; the power meter is critical and we do have calibration for it
- 4. Attenuator 1 insertion loss is calibrated by the network Analyzer, which the calibration is valid, before system check.
- 5. NCR: No calibration request.

SPORTON INTERNATIONAL INC. Page No. : 13 of 27 TEL: 886-3-327-3456 Report Version : Rev. 01

8 System Verification

8.1 Tissue Verification

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Report No.: FA380666-06

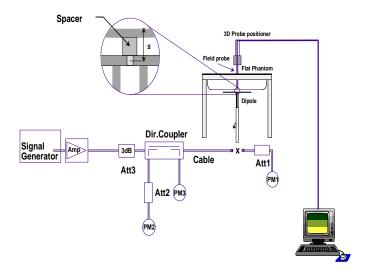
Frequency (MHz)	Water (%)	Sugar (%)	Cellulose (%)	Salt (%)	Preventol (%)	DGBE (%)	Conductivity (σ)	Permittivity (εr)
For Head								
2450	55.0	0	0	0	0	45.0	1.80	39.2

Simulating Liquid for 5GHz, Manufactured by SPEAG

Ingredients	(% by weight)
Water	64~78%
Mineral oil	11~18%
Emulsifiers	9~15%
Additives and Salt	2~3%

<Tissue Dielectric Parameter Check Results>

Frequency (MHz)	Liquid Temp. (℃)	Conductivity (σ)	Permittivity (εr)	Conductivity Target (σ)	Permittivity Target (εr)	Delta (σ) (%)	Delta (εr) (%)	Limit (%)	Date
2450	21.4	2.004	51.279	1.95	52.70	2.77	-2.70	±5	2014/7/21
5200	21.3	5.299	47.682	5.3	49	-0.02	-2.69	±5	2014/7/24
5800	21.3	6.101	46.68	6	48.2	1.68	-3.15	±5	2014/7/24


SPORTON INTERNATIONAL INC. Page No. : 14 of 27 TEL: 886-3-327-3456 Report Version : Rev. 01

8.2 System Performance Check Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Date	Frequency (MHz)	Tissue Type	Input Power (mW)	Dipole S/N	Probe S/N	DAE S/N	Measured SAR (W/kg)	Targeted SAR (W/kg)	Normalized SAR (W/kg)	Deviation (%)
2014/7/21	2450	Body	250	929	3820	1424	14	51.4	56.00	8.949
2014/7/24	5200	Body	100	1167	3820	1424	7.42	73.6	74.20	0.815
2014/7/24	5800	Body	100	1167	3820	1424	7.52	73.8	75.20	1.897

Report No.: FA380666-06

System Performance Check Setup

Setup Photo

SPORTON INTERNATIONAL INC. Page No. : 15 of 27
TEL: 886-3-327-3456 Report Version : Rev. 01

9 RF Exposure Positions

Report No.: FA380666-06

9.1 SAR Testing for Tablet

Please refer to Appendix A. for the test setup photos.

SPORTON INTERNATIONAL INC. Page No. : 16 of 27
TEL: 886-3-327-3456 Report Version : Rev. 01

10 Conducted RF Output Power (Unit: dBm)

<WLAN Conducted Power>

General Note:

 Per FCC KDB 248227 D01 v01r02, choose the highest output power channel to test SAR and determine further SAR exclusion.

Report No.: FA380666-06

- 2. For each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 1/4dB higher than those measured at the lowest data rate.
- 3. Per FCC KDB 248227 D01 v01r02, 11g, 11n-HT20 output power is less than 1/4dB higher than 11b mode, thus the SAR can be excluded.

<2.4GHz WLAN Antenna>

WLAN 2.	Tune up Limit		
Channel	Frequency (MHz)	Data Rate 1Mbps	(dBm)
CH 1	2412	15.42	
CH 6	2437	15.20	17.00
CH 11	2462	16.52	

WLAN 2.			
	Tune up Limit		
Channel	Frequency	Data Rate	(dBm)
Griannei	(MHz)	6Mbps	
CH 1	2412	15.19	
CH 6	2437	16.35	16.50
CH 11	2462	15.95	

WLAN 2.4	Tune up Limit		
Channel	Frequency (MHz)	(dBm)	
CH 1	2412	14.75	
CH 6	2437	16.34	16.50
CH 11	2462	15.37	

WLAN 2.4GI			
	Tune up Limit		
Channal	Frequency	MCS Index	(dBm)
Channel	(MHz)	MCS0	
CH 3	2422	14.57	
CH 6	2437	16.17	16.50
CH 9	2452	14.70	

SPORTON INTERNATIONAL INC. Page No. : 17 of 27 TEL: 886-3-327-3456 Report Version : Rev. 01

General Note:

1. Per FCC KDB 248227 D01 v01r02, choose the highest output power channel to test SAR and determine further SAR exclusion

Report No.: FA380666-06

- 2. For each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 1/4dB higher than those measured at the lowest data rate.
- 3. Per FCC KDB 248227 D01 v01r02, 11n/ac-HT20/HT40/VHT20/VHT40 output power is less than 1/4dB higher than 11a mode, thus the SAR can be excluded.
- 4. For 802.11ac SAR evaluation for each frequency band, 802.11ac VHT80 will verified at the worst case found in 802.11a SAR testing.

<5.2GHz WLAN Antenna>

WLAN 5	Tune up Limit			
Channal	Frequency	Data Rate	(dBm)	
Channel	(MHz)	6Mbps		
CH 36	5180	14.36		
CH 40	5200	14.37	1450	
CH 44	5220	14.18	14.50	
CH 48	5240	13.85		

WLAN 5.2GH	Tune up Limit			
Channal	Frequency	MCS Index	(dBm)	
Channel	(MHz)	MCS0		
CH 36	5180	14.18		
CH 40	5200	14.35	14.50	
CH 44	5220	14.27	14.50	
CH 48	5240	14.06		

WLAN 5.2GH				
	Tune up Limit			
Channel	Frequency	MCS Index	(dBm)	
	(MHz)	MCS0		
CH 38	5190	14.22	14.50	
CH 46	5230	14.12	14.50	

SPORTON INTERNATIONAL INC. Page No. : 18 of 27 TEL: 886-3-327-3456 Report Version : Rev. 01

WLAN 5.2G				
	Tune up Limit			
Channel	Frequency	MCS Index	(dBm)	
Channel	(MHz)	MCS0		
CH 36	5180	14.30		
CH 40	5200	14.01	14.50	
CH 44	5220	13.63	14.50	
CH 48	5240	13.52		

Report No.: FA380666-06

WLAN 5.2GH				
	Tune up Limit			
Channel	Frequency	MCS Index	(dBm)	
Charmer	(MHz)	MCS0		
CH 38	5190	14.26	14.50	
CH 46	5230	14.36	14.50	

WLAN 5.2GHz			
	Tune up Limit		
Channel	Frequency	MCS Index	(dBm)
	(MHz)	MCS0	
CH 42	5210	14.30	14.50

SPORTON INTERNATIONAL INC. Page No. : 19 of 27
TEL: 886-3-327-3456 Report Version : Rev. 01

<5.8GHz WLAN Antenna>

WLAN 5	Tune up Limit		
Channel	Frequency (MHz)	(dBm)	
CH 149	5745	6Mbps 19.35	
CH 153	5765	19.19	
CH 157	5785	18.94	19.50
CH 161	5805	18.38	
CH 165	5825	17.50	

Report No.: FA380666-06

WLAN 5.8GF	Tune up Limit			
Channel	Channel Frequency MCS Index MCS0			
CH 149	5745	19.12		
CH 153	5765	18.86		
CH 157	5785	17.88	19.50	
CH 161	5805	17.69		
CH 165	5825	17.24		

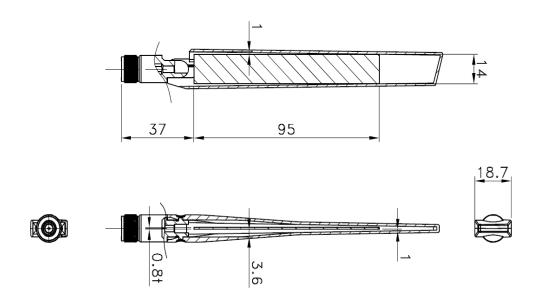
WLAN 5.8GH			
	Tune up Limit		
Channel	Channel Frequency		(dBm)
Channel	(MHz)	MCS0	
CH 151	5755	18.50	18.50
CH 159	5795	17.36	10.50

SPORTON INTERNATIONAL INC. Page No. : 20 of 27
TEL: 886-3-327-3456 Report Version : Rev. 01

WLAN 5.8GF	Tune up Limit				
Channel	Power vs. Channel Channel Frequency MCS Index				
Channel	(MHz)	MCS0			
CH 149	5745	18.94			
CH 153	5765	18.59			
CH 157	5785	17.56	19.00		
CH 161	5805	17.47			
CH 165	5825	17.10			

Report No.: FA380666-06

WLAN 5.8GH				
	Tune up Limit			
Channal	Frequency	MCS Index	(dBm)	
Channel	(MHz)	MCS0		
CH 151	5755	19.28	10.50	
CH 159	5795	18.05	19.50	


WLAN 5.8G			
	Tune up Limit		
Ch I	Frequency	MCS Index	(dBm)
Channel	(MHz)	MCS0	
155	5775	16.10	16.50

SPORTON INTERNATIONAL INC. Page No. : 21 of 27 TEL: 886-3-327-3456 Report Version : Rev. 01

Report No. : FA380666-06

11 Antenna Location

TEL: 886-3-327-3456 FAX: 886-3-327-0973 Page No. : 22 of 27 Report Version : Rev. 01

12 SAR Test Results

General Note:

- 1. Per KDB 447498 D01v05r02, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

Report No.: FA380666-06

- b. For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)"
- c. For WLAN: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor
- 2. Per KDB 447498 D01v05r02, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - · ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - · ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- 3. Per KDB 616217 D04v01r01, the additional separation introduced by the contour against a flat phantom is < 5 mm and reported SAR is < 1.2 W/kg, a curved or contoured back surface or edge SAR is not required, more detail information please refer to the setup photo.
- 4. When the WLAN transmission was verified using a spectrum analyzer.

12.1 Body SAR

<DTS WLAN SAR>

Plot No.	Band	Mode	Test Position	Gap (cm)	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
1	802.11b	ı	Horizontal Up	0.5	11	2462	16.52	17	1.12	0.07	0.584	0.65
2	802.11b	-	Horizontal Down	0.5	11	2462	16.52	17	1.12	-0.13	0.402	0.45
6	802.11b	ı	Vertical Front	0.5	11	2462	16.52	17	1.12	-0.17	0.439	0.49
7	802.11b	ı	Vertical Back	0.5	11	2462	16.52	17	1.12	-0.05	0.414	0.46
8	802.11b	-	Tip Mode	0.5	11	2462	16.52	17	1.12	-0.1	0.0025	0.00
3	802.11b	ı	Horizontal Up	0.5	11	2462	16.52	17	1.12	-0.14	0.568	0.63
9	802.11a	-	Horizontal Up	0.5	36	5180	14.36	14.5	1.03	-0.11	0.01	0.01
10	802.11a	•	Horizontal Down	0.5	36	5180	14.36	14.5	1.03	-0.15	0.014	0.01
11	802.11a	-	Vertical Front	0.5	36	5180	14.36	14.5	1.03	-0.11	0.00794	0.01
12	802.11a	ı	Vertical Back	0.5	36	5180	14.36	14.5	1.03	-0.04	0.00984	0.01
13	802.11a	ı	Tip Mode	0.5	36	5180	14.36	14.5	1.03	-0.16	0.00975	0.01
14	802.11ac	VHT80	Horizontal Down	0.5	42	5210	14.3	14.5	1.05	-0.13	0.00677	0.01
15	802.11a	ı	Horizontal Down	0.5	36	5180	14.36	14.5	1.03	0.17	0.011	0.01
16	802.11a	-	Horizontal Up	0.5	149	5745	19.35	19.5	1.04	-0.09	0.024	0.02
17	802.11a	-	Horizontal Down	0.5	149	5745	19.35	19.5	1.04	-0.13	0.033	0.03
18	802.11a	-	Vertical Front	0.5	149	5745	19.35	19.5	1.04	-0.09	0.013	0.01
19	802.11a	-	Vertical Back	0.5	149	5745	19.35	19.5	1.04	-0.12	0.026	0.03
20	802.11a	•	Tip Mode	0.5	149	5745	19.35	19.5	1.04	-0.02	0.011	0.01
21	802.11ac	VHT80	Horizontal Down	0.5	155	5775	16.1	16.5	1.10	-0.12	0.013	0.01
22	802.11a	-	Horizontal Down	0.5	149	5745	19.35	19.5	1.04	0.11	0.031	0.03

SPORTON INTERNATIONAL INC. Page No. : 23 of 27
TEL: 886-3-327-3456 Report Version : Rev. 01

13 Uncertainty Assessment

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type An evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

Report No.: FA380666-06

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience, and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table 14.1

Uncertainty Distributions	Normal	Rectangular	Triangular	U-Shape
Multi-plying Factor ^(a)	1/k ^(b)	1/√3	1/√6	1/√2

- (a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity
- (b) κ is the coverage factor

Standard Uncertainty for Assumed Distribution

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY uncertainty Budget is shown in the following tables.

SPORTON INTERNATIONAL INC. Page No. : 24 of 27
TEL: 886-3-327-3456 Report Version : Rev. 01

Error Description	Uncertainty Value (±%)	Probability Distribution	Divisor	Ci (1g)	Standard Uncertainty (±%) (1g)	
Measurement System						
Probe Calibration	6.0	Normal	1.0	1.0	6.0	
Axial Isotropy	4.7	Rectangular	√3	0.7	1.9	
Hemispherical Isotropy	9.6	Rectangular	√3	0.7	3.9	
Boundary effects	1.0	Rectangular	√3	1.0	0.6	
Linearity	4.7	Rectangular	√3	1.0	2.7	
System Detection Limits	1.0	Rectangular	√3	1.0	0.6	
Modulation Response	2.4	Rectangular	√3	1.0	1.4	
Readout Electronics	0.3	Normal	1.0	1.0	0.3	
Response Time	0.8	Rectangular	√3	1.0	0.5	
Integration Time	2.6	Rectangular	√3	1.0	1.5	
RF Ambient Noise	3.0	Rectangular	√3	1.0	1.7	
RF Ambient Reflections	3.0	Rectangular	√3	1.0	1.7	
Probe Positioner	0.4	Rectangular	√3	1.0	0.2	
Probe Positioning	2.9	Rectangular	√3	1.0	1.7	
Max. SAR Eval.	2.0	Rectangular	√3	1.0	1.2	
Dipole Related				_		
Device Positioning	2.9	Normal	1.0	1.0	2.9	
Device Holder	3.6	Normal	1.0	1.0	3.6	
Power Drift	5.0	Rectangular	√3	1.0	2.9	
Power Scaling	0.0	Rectangular	√3	1.0	0.0	
Phantom and Tissue parameters				_		
Phantom Uncertainty	6.1	Rectangular	√3	1.0	3.5	
SAR corrction	1.9	Normal	1.0	1.0	1.9	
Liquid Conductivity (measurement)	2.0	Normal	1.0	0.8	1.6	
Liquid Permittivity (measurement)	2.1	Normal	1.0	0.3	0.5	
Temp. unc Conduct	3.4	Rectangular	√3	0.8	1.5	
Temp. unc Permittivity 0.4 Rectangular $\sqrt{3}$ 0.2						
Combined Standard Uncertainty						
Coverage Factor for 95 %						
Expanded Uncertainty					22.4	

Report No.: FA380666-06

Uncertainty Budget for frequency range 30 MHz to 3 GHz

SPORTON INTERNATIONAL INC. Page No. : 25 of 27
TEL: 886-3-327-3456 Report Version : Rev. 01

Error Description	Uncertainty Value (±%)	Probability Distribution	Divisor	Ci (1g)	Standard Uncertainty (±%) (1g)
Measurement System					
Probe Calibration	6.6	Normal	1.0	1.0	6.6
Axial Isotropy	4.7	Rectangular	√3	0.7	1.9
Hemispherical Isotropy	9.6	Rectangular	√3	0.7	3.9
Boundary effects	2.0	Rectangular	√3	1.0	1.2
Linearity	4.7	Rectangular	√3	1.0	2.7
System Detection Limits	1.0	Rectangular	√3	1.0	0.6
Modulation Response	2.4	Rectangular	√3	1.0	1.4
Readout Electronics	0.3	Normal	1.0	1.0	0.3
Response Time	0.8	Rectangular	√3	1.0	0.5
Integration Time	2.6	Rectangular	√3	1.0	1.5
RF Ambient Noise	3.0	Rectangular	√3	1.0	1.7
RF Ambient Reflections	3.0	Rectangular	√3	1.0	1.7
Probe Positioner	0.8	Rectangular	√3	1.0	0.5
Probe Positioning	6.7	Rectangular	√3	1.0	3.9
Max. SAR Eval.	4.0	Rectangular	√3	1.0	2.3
Dipole Related					
Device Positioning	2.9	Normal	1.0	1.0	2.9
Device Holder	3.6	Normal	1.0	1.0	3.6
Power Drift	5.0	Rectangular	√3	1.0	2.9
Power Scaling	0.0	Rectangular	√3	1.0	0.0
Phantom and Tissue parameters					
Phantom Uncertainty	6.6	Rectangular	√3	1.0	3.8
SAR corrction	1.9	Normal	1.0	1.0	1.9
Liquid Conductivity (measurement)	2.0	Normal	1.0	0.8	1.6
Liquid Permittivity (measurement)	2.1	Normal	1.0	0.3	0.5
Temp. unc Conduct	3.4	Rectangular	√3 √3	0.8	1.5
Temp. unc Permittivity	0.1				
Combined Standard Uncertainty					
Coverage Factor for 95 %					
Expanded Uncertainty					24.7

Report No.: FA380666-06

Uncertainty Budget for frequency range 3 GHz to 6 GHz

SPORTON INTERNATIONAL INC. Page No. : 26 of 27 TEL: 886-3-327-3456 Report Version : Rev. 01

14 References

[1] Council Recommendation 1999/519/EC of July 1999 on the limitation of exposure of the general public to electromagnetic fields (0 Hz to 300 GHz)

Report No.: FA380666-06

- [2] EN 50566:2013, "Product standard to demonstrate compliance of radio frequency fields from handheld and body-mounted wireless communication devices used by the general public (30 MHz - 6 GHz)" March 2013.
- [3] EN 62311:2008, "Assessment of electronic and electrical equipment related to human exposure restrictions for electromagnetic fields (0 Hz 300 GHz)", January 2008
- [4] EN 62209-2:2010, "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices. Human models, instrumentation, and procedures. Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", August 2010
- [5] EN 62479:2010 "Assessment of the compliance of low power electronic and electrical equipment with the basic restrictions related to human exposure to electromagnetic fields (10 MHz to 300 GHz)", December 2010
- [6] SPEAG DASY System Handbook

SPORTON INTERNATIONAL INC. Page No. : 27 of 27
TEL: 886-3-327-3456 Report Version : Rev. 01

System Check_B2450_140721

DUT: Dipole 2450 MHz_SN: 929

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

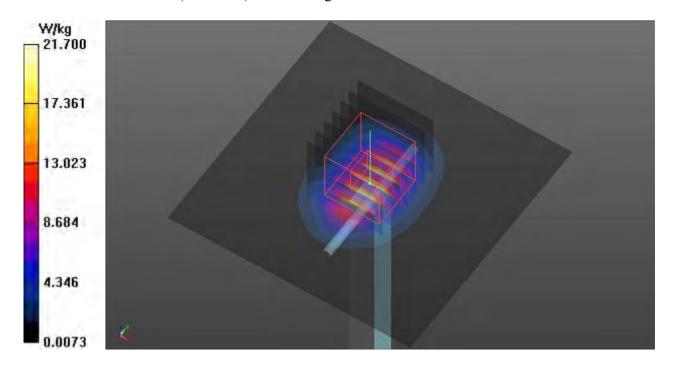
Medium: B2450_140721 Medium parameters used: f = 2450 MHz; σ = 2.004 S/m; ϵ_r = 51.279; ρ =

Date: 2014/7/21

 1000 kg/m^3

Ambient Temperature: 22.8 °C; **Liquid Temperature**: 21.4 °C

DASY5 Configuration:


- Probe: EX3DV4 SN3820; ConvF(6.87, 6.87, 6.87); Calibrated: 2014/5/15;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1424; Calibrated: 2014/2/11
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1238
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Pin=250mW/Area Scan (81x81x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 21.7 W/kg

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 106.7 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 29.6 W/kg

SAR(1 g) = 14 W/kg; SAR(10 g) = 6.45 W/kgMaximum value of SAR (measured) = 21.7 W/kg

System Check B5200 140724

DUT: Dipole 5 GHz_SN: 1167

Communication System: CW; Frequency: 5200 MHz; Duty Cycle: 1:1

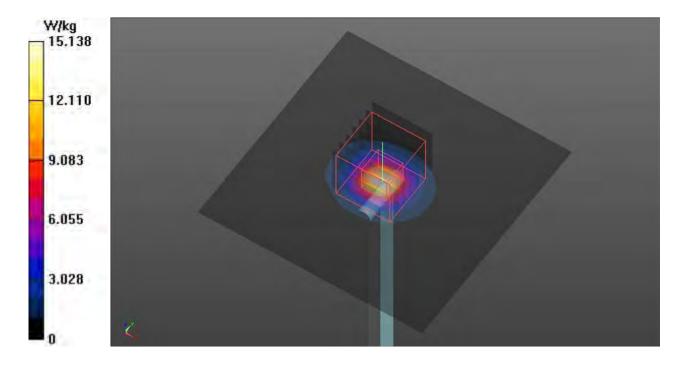
Medium: B5G_140724 Medium parameters used: f = 5200 MHz; $\sigma = 5.299$ S/m; $\epsilon_r = 47.682$; $\rho = 5.299$ S/m; $\epsilon_r = 47.682$; $\epsilon_r = 47.682$;

Date: 2014/7/24

 1000 kg/m^3

Ambient Temperature: 22.5 $^{\circ}$ C; Liquid Temperature: 21.3 $^{\circ}$ C

DASY5 Configuration:


- Probe: EX3DV4 SN3820; ConvF(4.44, 4.44, 4.44); Calibrated: 2014/5/15;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1424; Calibrated: 2014/2/11
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1238
- Measurement SW: DASY52, Version 52.8 (8);SEMCAD X Version 14.6.10 (7331)

Pin=100mW/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 15.1 W/kg

Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 57.14 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 30.3 W/kg

SAR(1 g) = 7.42 W/kg; SAR(10 g) = 2.11 W/kg

Maximum value of SAR (measured) = 15.4 W/kg

System Check_B5800_140724

DUT: Dipole 5 GHz_SN: 1167

Communication System: CW; Frequency: 5800 MHz; Duty Cycle: 1:1

Medium: B5G_140724 Medium parameters used: f = 5800 MHz; $\sigma = 6.101$ S/m; $\varepsilon_r = 46.68$; $\rho =$

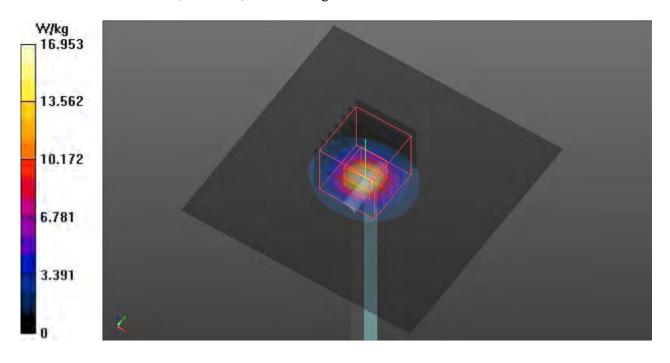
Date: 2014/7/24

 1000 kg/m^3

Ambient Temperature: 22.5 °C; Liquid Temperature: 21.3 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3820; ConvF(4, 4, 4); Calibrated: 2014/5/15;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1424; Calibrated: 2014/2/11
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1238
- Measurement SW: DASY52, Version 52.8 (8);SEMCAD X Version 14.6.10 (7331)


Pin=100mW/Area Scan (91x91x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 17.0 W/kg

Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm Reference Value = 55.20 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 32.3 W/kg

SAR(1 g) = 7.52 W/kg; SAR(10 g) = 2.13 W/kg

Maximum value of SAR (measured) = 16.2 W/kg

P01 802.11b_Horizontal Up_0.5cm_Ch11

DUT: 380666

Communication System: WLAN_2.4G; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: B2450_140721 Medium parameters used: f = 2462 MHz; σ = 2.021 S/m; ϵ_r = 51.245; ρ =

Date: 2014/7/21

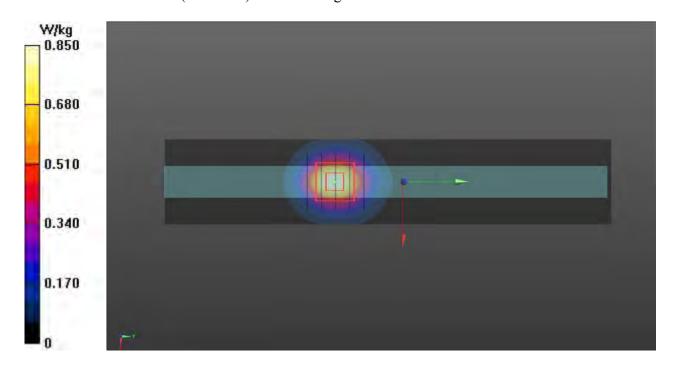
 1000 kg/m^3

Ambient Temperature: 22.8 $^{\circ}$ C; Liquid Temperature: 21.4 $^{\circ}$ C

DASY5 Configuration:

- Probe: EX3DV4 SN3820; ConvF(6.87, 6.87, 6.87); Calibrated: 2014/5/15;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1424; Calibrated: 2014/2/11
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1238
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch11/Area Scan (41x211x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.850 W/kg


Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.119 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.13 W/kg

SAR(1 g) = 0.584 W/kg; SAR(10 g) = 0.289 W/kg

Maximum value of SAR (measured) = 0.848 W/kg

P02 802.11b_Horizontal Down_0.5cm_Ch11

DUT: 380666

Communication System: WLAN 2.4G; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: B2450_140721 Medium parameters used: f = 2462 MHz; $\sigma = 2.021$ S/m; $\varepsilon_r = 51.245$; $\rho =$

Date: 2014/7/21

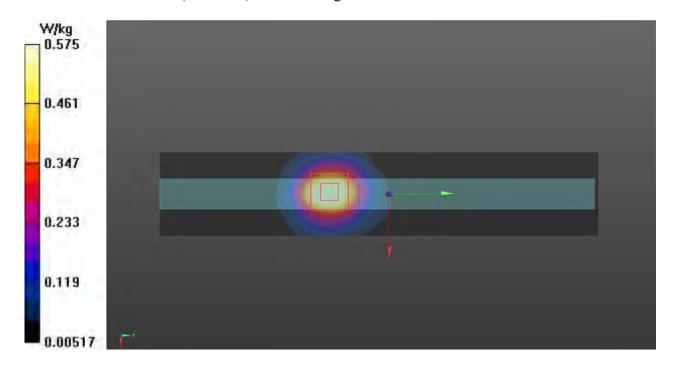
 1000 kg/m^3

Ambient Temperature: 22.8 $^{\circ}$ C; Liquid Temperature: 21.4 $^{\circ}$ C

DASY5 Configuration:

- Probe: EX3DV4 SN3820; ConvF(6.87, 6.87, 6.87); Calibrated: 2014/5/15;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1424; Calibrated: 2014/2/11
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1238
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch11/Area Scan (41x211x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.676 W/kg


Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.916 V/m; Power Drift = -0.13 dB

Peak SAR (extrapolated) = 0.764 W/kg

SAR(1 g) = 0.402 W/kg; SAR(10 g) = 0.205 W/kg

Maximum value of SAR (measured) = 0.575 W/kg

P06 802.11b_Vertical Front _0.5cm_Ch11

DUT: 380666

Communication System: WLAN_2.4G; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: B2450_140721 Medium parameters used: f = 2462 MHz; σ = 2.021 S/m; ϵ_r = 51.245; ρ =

Date: 2014/7/21

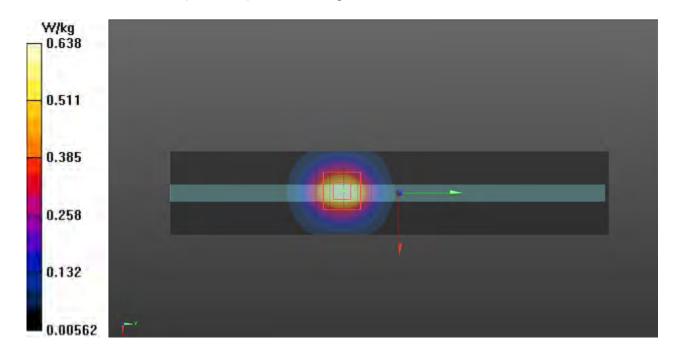
 1000 kg/m^3

Ambient Temperature: 22.8 °C; **Liquid Temperature**: 21.4 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3820; ConvF(6.87, 6.87, 6.87); Calibrated: 2014/5/15;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1424; Calibrated: 2014/2/11
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1238
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch11/Area Scan (121x211x1): Interpolated grid: dx=0.400 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.654 W/kg


Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.545 V/m; Power Drift = -0.17 dB

Peak SAR (extrapolated) = 0.845 W/kg

SAR(1 g) = 0.439 W/kg; SAR(10 g) = 0.221 W/kg

Maximum value of SAR (measured) = 0.638 W/kg

P07 802.11b_Vertical Back_0.5cm_Ch11

DUT: 380666

Communication System: WLAN_2.4G; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: B2450_140721 Medium parameters used: f = 2462 MHz; σ = 2.021 S/m; ϵ_r = 51.245; ρ =

Date: 2014/7/21

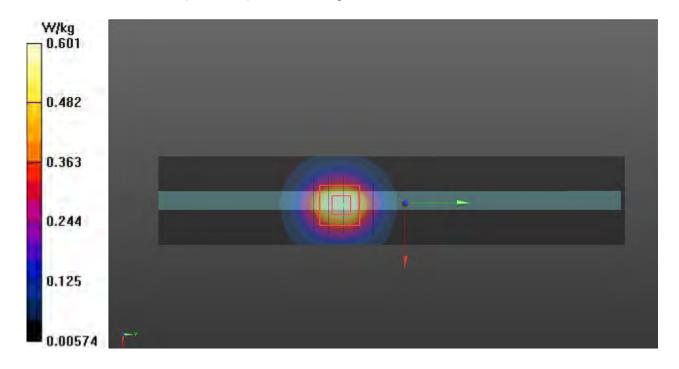
 1000 kg/m^3

Ambient Temperature: 22.8 °C; Liquid Temperature: 21.4 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3820; ConvF(6.87, 6.87, 6.87); Calibrated: 2014/5/15;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1424; Calibrated: 2014/2/11
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1238
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch11/Area Scan (121x211x1): Interpolated grid: dx=0.400 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.696 W/kg


Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 4.342 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.801 W/kg

SAR(1 g) = 0.414 W/kg; SAR(10 g) = 0.208 W/kg

Maximum value of SAR (measured) = 0.601 W/kg

P08 802.11b_Tip Mode_0.5cm_Ch11

DUT: 380666

Communication System: WLAN_2.4G; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: B2450_140721 Medium parameters used: f = 2462 MHz; $\sigma = 2.021$ S/m; $\varepsilon_r = 51.245$; $\rho =$

Date: 2014/7/21

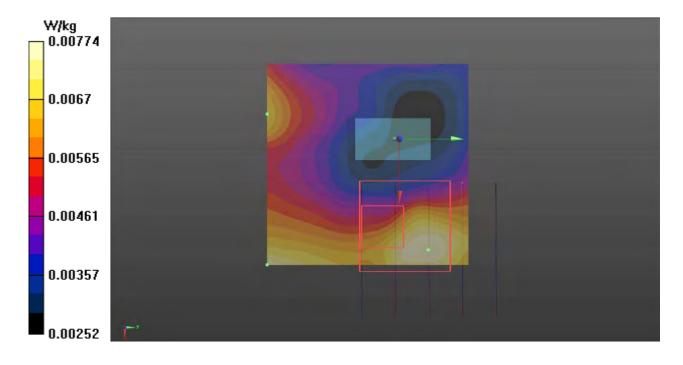
 1000 kg/m^3

Ambient Temperature: 22.8 $^{\circ}$ C; Liquid Temperature: 21.4 $^{\circ}$ C

DASY5 Configuration:

- Probe: EX3DV4 SN3820; ConvF(6.87, 6.87, 6.87); Calibrated: 2014/5/15;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1424; Calibrated: 2014/2/11
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1238
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch11/Area Scan (41x41x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.00774 W/kg


Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.015 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 0.0310 W/kg

SAR(1 g) = 0.0025 W/kg; SAR(10 g) = 0.000962 W/kg

Maximum value of SAR (measured) = 0.0304 W/kg

P03 802.11b_Horizontal Up_0.5cm_Ch11_90 degree

DUT: 380666

Communication System: WLAN_2.4G; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: B2450_140721 Medium parameters used: f = 2462 MHz; $\sigma = 2.021$ S/m; $\varepsilon_r = 51.245$; $\rho =$

Date: 2014/7/21

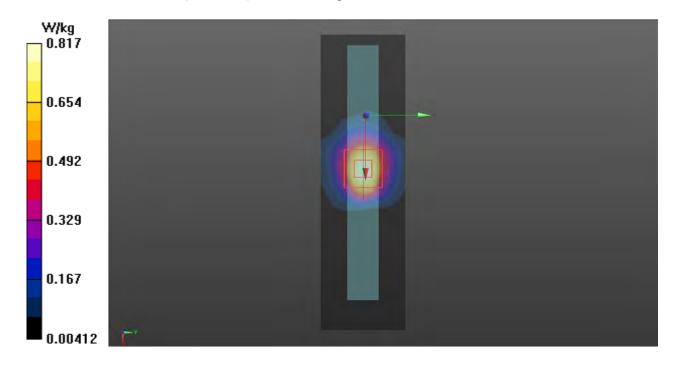
 1000 kg/m^3

Ambient Temperature: 22.8 $^{\circ}$ C; Liquid Temperature: 21.4 $^{\circ}$ C

DASY5 Configuration:

- Probe: EX3DV4 SN3820; ConvF(6.87, 6.87, 6.87); Calibrated: 2014/5/15;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1424; Calibrated: 2014/2/11
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1238
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch11/Area Scan (41x141x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.848 W/kg


Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.748 V/m; Power Drift = -0.14 dB

Peak SAR (extrapolated) = 1.08 W/kg

SAR(1 g) = 0.568 W/kg; SAR(10 g) = 0.289 W/kg

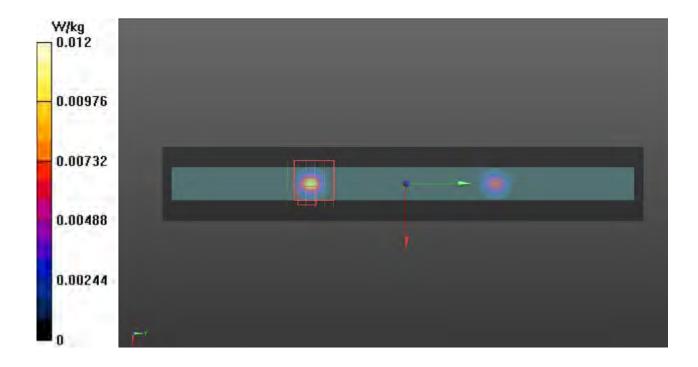
Maximum value of SAR (measured) = 0.817 W/kg

P09 802.11a_Horizontal Up_0.5cm_Ch36

DUT: 380666

Communication System: WLAN_5G; Frequency: 5180 MHz; Duty Cycle: 1:1 Medium: B5G_140724 Medium parameters used: f = 5180 MHz; $\sigma = 5.271$ S/m; $\epsilon_r = 47.719$; $\rho = 1000$ kg/m³

Date: 2014/7/24


Ambient Temperature: 22.5 °C; Liquid Temperature: 21.3 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3820; ConvF(4.44, 4.44, 4.44); Calibrated: 2014/5/15;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1424; Calibrated: 2014/2/11
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1238
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch36/Area Scan (41x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0122 W/kg

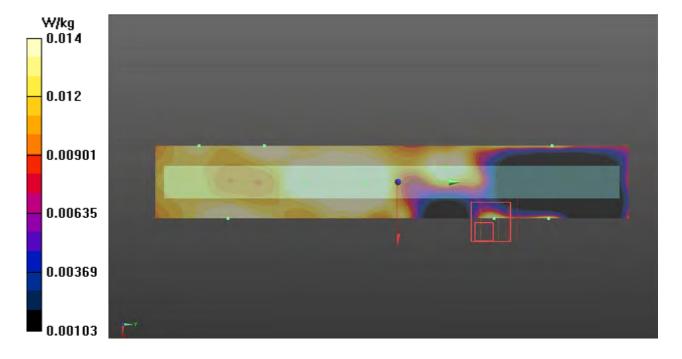
Ch36/Zoom Scan (6x6x12)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm Reference Value = 1.352 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 0.0550 W/kg SAR(1 g) = 0.01 W/kg; SAR(10 g) = 0.00551 W/kg Maximum value of SAR (measured) = 0.0178 W/kg

P10 802.11a_Horizontal Down_0.5cm_Ch36

DUT: 380666

Communication System: WLAN_5G; Frequency: 5180 MHz; Duty Cycle: 1:1 Medium: B5G_140724 Medium parameters used: f = 5180 MHz; $\sigma = 5.271$ S/m; $\epsilon_r = 47.719$; $\rho = 1000$ kg/m³

Date: 2014/7/24


Ambient Temperature: 22.5 °C; Liquid Temperature: 21.3 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3820; ConvF(4.44, 4.44, 4.44); Calibrated: 2014/5/15;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1424; Calibrated: 2014/2/11
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1238
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch36/Area Scan (41x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0188 W/kg

Ch36/Zoom Scan (6x6x12)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm Reference Value = 1.365 V/m; Power Drift = -0.15 dB Peak SAR (extrapolated) = 0.0700 W/kg SAR(1 g) = 0.014 W/kg; SAR(10 g) = 0.00715 W/kg Maximum value of SAR (measured) = 0.0143 W/kg

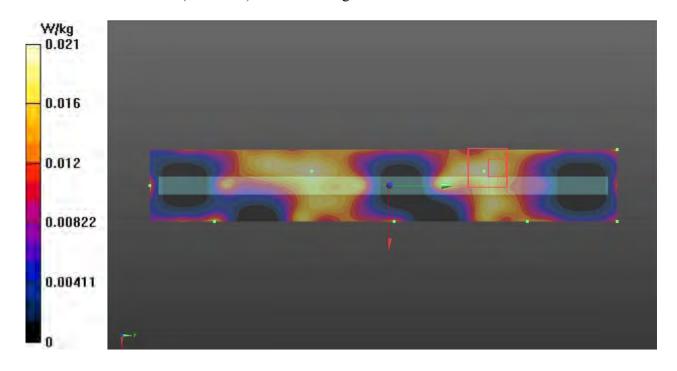
P11 802.11a_Vertical Front_0.5cm_Ch36

DUT: 380666

Communication System: WLAN_5G; Frequency: 5180 MHz; Duty Cycle: 1:1 Medium: B5G_140724 Medium parameters used: f = 5180 MHz; $\sigma = 5.271$ S/m; $\epsilon_r = 47.719$; $\rho = 1000$ kg/m³

Date: 2014/7/24

Ambient Temperature: 22.5 °C; Liquid Temperature: 21.3 °C


DASY5 Configuration:

- Probe: EX3DV4 SN3820; ConvF(4.44, 4.44, 4.44); Calibrated: 2014/5/15;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1424; Calibrated: 2014/2/11
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1238
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch36/Area Scan (41x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0205 W/kg

Ch36/Zoom Scan (6x6x12)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm Reference Value = 1.318 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 0.102 W/kg SAR(1 g) = 0.00794 W/kg; SAR(10 g) = 0.00458 W/kg

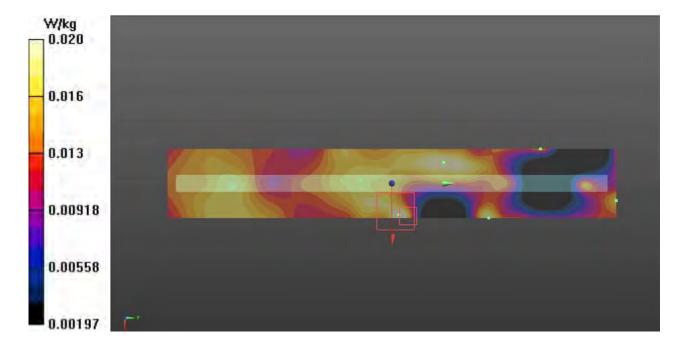
Maximum value of SAR (measured) = 0.0406 W/kg

P12 802.11a_Vertical Back_0.5cm_Ch36

DUT: 380666

Communication System: WLAN_5G; Frequency: 5180 MHz; Duty Cycle: 1:1 Medium: B5G_140724 Medium parameters used: f = 5180 MHz; $\sigma = 5.271$ S/m; $\epsilon_r = 47.719$; $\rho = 1000$ kg/m³

Date: 2014/7/24


Ambient Temperature: 22.5 °C; Liquid Temperature: 21.3 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3820; ConvF(4.44, 4.44, 4.44); Calibrated: 2014/5/15;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1424; Calibrated: 2014/2/11
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1238
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch36/Area Scan (41x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0213 W/kg

Ch36/Zoom Scan (6x6x12)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm Reference Value = 1.054 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 0.0770 W/kg SAR(1 g) = 0.00984 W/kg; SAR(10 g) = 0.00558 W/kg Maximum value of SAR (measured) = 0.0200 W/kg

P13 802.11a_Tip Mode_0.5cm_Ch36

DUT: 380666

Communication System: WLAN_5G; Frequency: 5180 MHz; Duty Cycle: 1:1

Medium: B5G_140724 Medium parameters used: f = 5180 MHz; $\sigma = 5.271$ S/m; $\epsilon_r = 47.719$; $\rho = 6.271$ Medium: $\epsilon_r = 47.719$

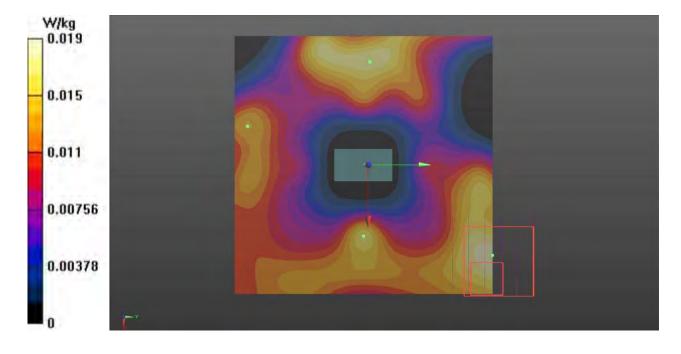
Date: 2014/7/24

 1000 kg/m^3

Ambient Temperature: 22.5 °C; Liquid Temperature: 21.3 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3820; ConvF(4.44, 4.44, 4.44); Calibrated: 2014/5/15;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1424; Calibrated: 2014/2/11
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1238
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)


Ch36/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0189 W/kg

Ch36/Zoom Scan (6x6x12)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm Reference Value = 1.423 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 0.0920 W/kg

SAR(1 g) = 0.00975 W/kg; SAR(10 g) = 0.00413 W/kg

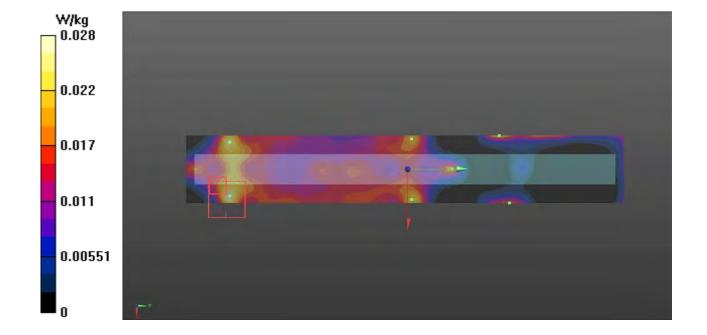
Maximum value of SAR (measured) = 0.0543 W/kg

P14 802.11ac_VHT80_Horizontal Down_0.5cm_Ch42

DUT: 380666

Communication System: WLAN_5G; Frequency: 5210 MHz; Duty Cycle: 1:1.571 Medium: B5G_140724 Medium parameters used: f = 5210 MHz; $\sigma = 5.313$ S/m; $\epsilon_r = 47.666$; $\rho = 1000$ kg/m³

Date: 2014/7/24


Ambient Temperature: 22.5 °C; Liquid Temperature: 21.3 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3820; ConvF(4.44, 4.44, 4.44); Calibrated: 2014/5/15;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1424; Calibrated: 2014/2/11
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1238
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch42/Area Scan (41x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0275 W/kg

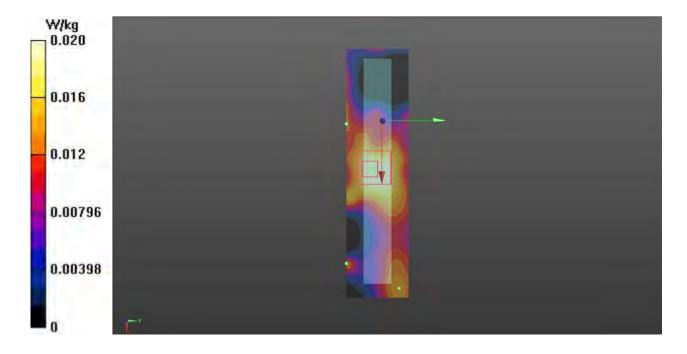
Ch42/Zoom Scan (6x6x12)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm Reference Value = 1.460 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 0.197 W/kg SAR(1 g) = 0.00677 W/kg; SAR(10 g) = 0.00312 W/kg Maximum value of SAR (measured) = 0.197 W/kg

P15 802.11a Horizontal Down 0.5cm Ch36 90 degree

DUT: 380666

Communication System: WLAN_5G; Frequency: 5180 MHz; Duty Cycle: 1:1 Medium: B5G_140724 Medium parameters used: f = 5180 MHz; $\sigma = 5.271$ S/m; $\epsilon_r = 47.719$; $\rho = 1000$ kg/m³

Date: 2014/7/24


Ambient Temperature: 22.5 °C; Liquid Temperature: 21.3 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3820; ConvF(4.44, 4.44, 4.44); Calibrated: 2014/5/15;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1424; Calibrated: 2014/2/11
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1238
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch36/Area Scan (41x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0199 W/kg

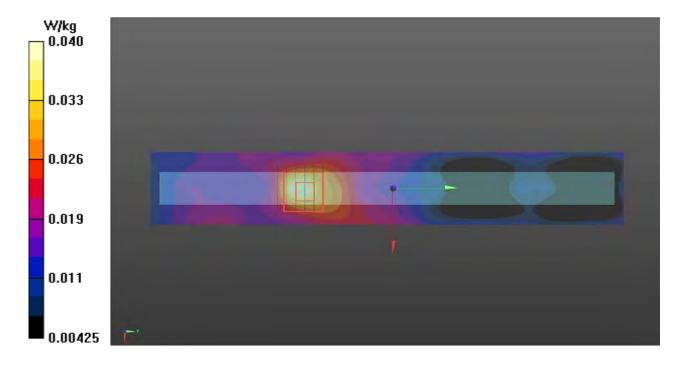
Ch36/Zoom Scan (6x6x12)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm Reference Value = 1.209 V/m; Power Drift = 0.17 dB Peak SAR (extrapolated) = 0.134 W/kg SAR(1 g) = 0.011 W/kg; SAR(10 g) = 0.00656 W/kg Maximum value of SAR (measured) = 0.0625 W/kg

P16 802.11a_Horizontal Up_0.5cm_Ch149

DUT: 380666

Communication System: WLAN_5G; Frequency: 5745 MHz; Duty Cycle: 1:1 Medium: B5G_140724 Medium parameters used: f = 5745 MHz; $\sigma = 6.03$ S/m; $\epsilon_r = 46.767$; $\rho = 1000$ kg/m³

Date: 2014/7/24


Ambient Temperature: 22.5 °C; Liquid Temperature: 21.3 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3820; ConvF(4, 4, 4); Calibrated: 2014/5/15;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1424; Calibrated: 2014/2/11
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1238
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch149/Area Scan (41x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0420 W/kg

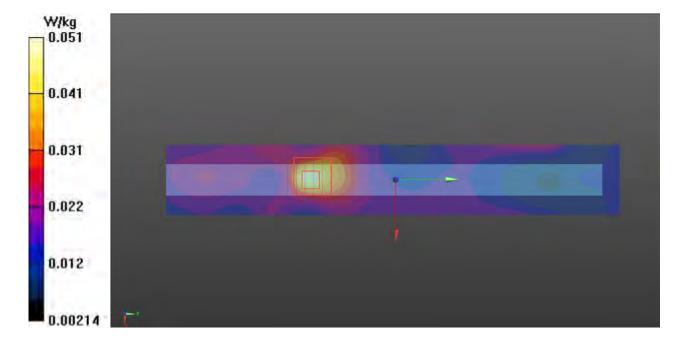
Ch149/Zoom Scan (6x6x12)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm Reference Value = 1.698 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 0.0860 W/kg SAR(1 g) = 0.024 W/kg; SAR(10 g) = 0.014 W/kg Maximum value of SAR (measured) = 0.0404 W/kg

P17 802.11a_Horizontal Down_0.5cm_Ch149

DUT: 380666

Communication System: WLAN_5G; Frequency: 5745 MHz; Duty Cycle: 1:1 Medium: B5G_140724 Medium parameters used: f = 5745 MHz; $\sigma = 6.03$ S/m; $\epsilon_r = 46.767$; $\rho = 1000$ kg/m³

Date: 2014/7/24


Ambient Temperature: 22.5 °C; Liquid Temperature: 21.3 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3820; ConvF(4, 4, 4); Calibrated: 2014/5/15;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1424; Calibrated: 2014/2/11
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1238
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch149/Area Scan (41x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0523 W/kg

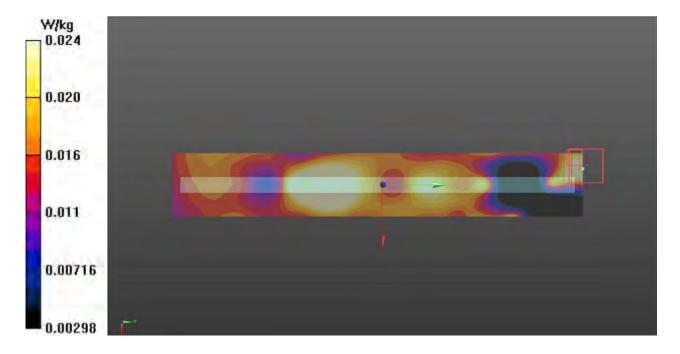
Ch149/Zoom Scan (6x6x12)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm Reference Value = 2.165 V/m; Power Drift = -0.13 dB Peak SAR (extrapolated) = 0.189 W/kg SAR(1 g) = 0.033 W/kg; SAR(10 g) = 0.013 W/kg Maximum value of SAR (measured) = 0.0507 W/kg

P18 802.11a_Vertical Front_0.5cm_Ch149

DUT: 380666

Communication System: WLAN_5G; Frequency: 5745 MHz; Duty Cycle: 1:1 Medium: B5G_140724 Medium parameters used: f = 5745 MHz; $\sigma = 6.03$ S/m; $\epsilon_r = 46.767$; $\rho = 1000$ kg/m³

Date: 2014/7/24


Ambient Temperature: 22.5 °C; Liquid Temperature: 21.3 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3820; ConvF(4, 4, 4); Calibrated: 2014/5/15;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1424; Calibrated: 2014/2/11
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1238
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch149/Area Scan (41x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0376 W/kg

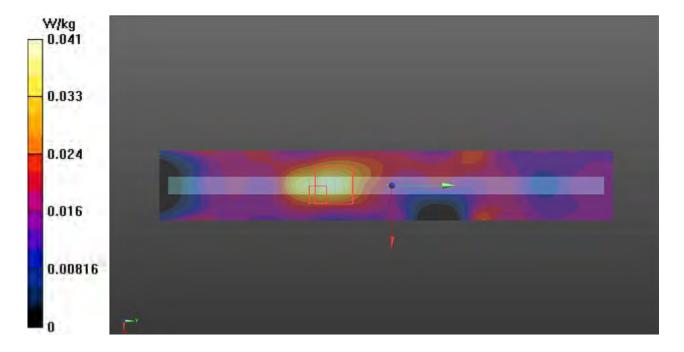
Ch149/Zoom Scan (6x6x12)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm Reference Value = 1.570 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 0.138 W/kg SAR(1 g) = 0.013 W/kg; SAR(10 g) = 0.00674 W/kg Maximum value of SAR (measured) = 0.0239 W/kg

P19 802.11a_Vertical Back_0.5cm_Ch149

DUT: 380666

Communication System: WLAN_5G; Frequency: 5745 MHz; Duty Cycle: 1:1 Medium: B5G_140724 Medium parameters used: f = 5745 MHz; $\sigma = 6.03$ S/m; $\epsilon_r = 46.767$; $\rho = 1000$ kg/m³

Date: 2014/7/24


Ambient Temperature: 22.5 °C; Liquid Temperature: 21.3 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3820; ConvF(4, 4, 4); Calibrated: 2014/5/15;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1424; Calibrated: 2014/2/11
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1238
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch149/Area Scan (41x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0408 W/kg

Ch149/Zoom Scan (6x6x12)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm Reference Value = 1.683 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 0.133 W/kg SAR(1 g) = 0.026 W/kg; SAR(10 g) = 0.013 W/kg Maximum value of SAR (measured) = 0.0406 W/kg

P20 802.11a_Tip Mode_0.5cm_Ch149

DUT: 380666

Communication System: WLAN_5G; Frequency: 5745 MHz; Duty Cycle: 1:1 Medium: B5G_140724 Medium parameters used: f = 5745 MHz; $\sigma = 6.03$ S/m; $\epsilon_r = 46.767$; $\rho = 1000$ kg/m³

Date: 2014/7/24


Ambient Temperature: 22.5 °C; Liquid Temperature: 21.3 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3820; ConvF(4, 4, 4); Calibrated: 2014/5/15;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1424; Calibrated: 2014/2/11
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1238
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch149/Area Scan (81x81x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0207 W/kg

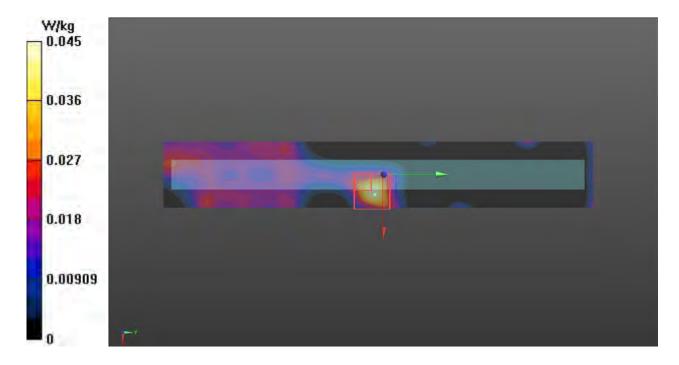
Ch149/Zoom Scan (6x6x12)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm Reference Value = 1.472 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.0720 W/kg SAR(1 g) = 0.011 W/kg; SAR(10 g) = 0.00562 W/kg Maximum value of SAR (measured) = 0.0192 W/kg

P21 802.11ac VHT80 Horizontal Down 0.5cm Ch155

DUT: 380666

Communication System: WLAN_5G; Frequency: 5775 MHz; Duty Cycle: 1:2.222 Medium: B5G_140724 Medium parameters used: f = 5775 MHz; $\sigma = 6.072$ S/m; $\epsilon_r = 46.729$; $\rho = 1000$ kg/m³

Date: 2014/7/24


Ambient Temperature: 22.5 °C; Liquid Temperature: 21.3 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3820; ConvF(4, 4, 4); Calibrated: 2014/5/15;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1424; Calibrated: 2014/2/11
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1238
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch155/Area Scan (41x131x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0454 W/kg

Ch155/Zoom Scan (6x6x12)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm Reference Value = 1.551 V/m; Power Drift = -0.12 dB Peak SAR (extrapolated) = 0.137 W/kg SAR(1 g) = 0.013 W/kg; SAR(10 g) = 0.00738 W/kg Maximum value of SAR (measured) = 0.0278 W/kg

P22 802.11ac_VHT80_Horizontal Down__0.5cm_Ch149_90 degree

DUT: 380666

Communication System: WLAN 5G; Frequency: 5745 MHz; Duty Cycle: 1:1

Medium: B5G_140724 Medium parameters used: f = 5745 MHz; $\sigma = 6.03$ S/m; $\varepsilon_r = 46.767$; $\rho = 6.03$ S/m; $\varepsilon_r = 6.03$

Date: 2014/7/24

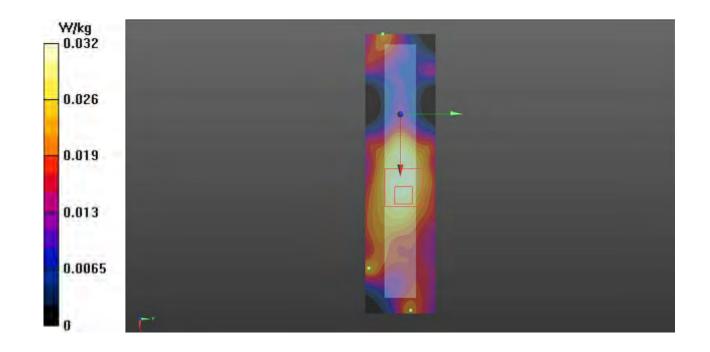
 1000 kg/m^3

Ambient Temperature: 22.5 °C; Liquid Temperature: 21.3 °C

DASY5 Configuration:

- Probe: EX3DV4 SN3820; ConvF(4, 4, 4); Calibrated: 2014/5/15;
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1424; Calibrated: 2014/2/11
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1238
- Measurement SW: DASY52, Version 52.8 (8); SEMCAD X Version 14.6.10 (7331)

Ch149/Area Scan (41x161x1): Interpolated grid: dx=1.000 mm, dy=1.000 mm Maximum value of SAR (interpolated) = 0.0325 W/kg


Ch149/Zoom Scan (6x6x12)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=2mm

Reference Value = 1.341 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.150 W/kg

SAR(1 g) = 0.031 W/kg; SAR(10 g) = 0.012 W/kg

Maximum value of SAR (measured) = 0.0912 W/kg

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Sporton-TW (Auden)

Accreditation No.: SCS 108

S

C

Certificate No: D2450V2-929_Feb14

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 929

Calibration procedure(s)

QA CAL-05.v9

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

February 12, 2014

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	US37292783	09-Oct-13 (No. 217-01827)	Oct-14
Power sensor HP 8481A	MY41092317	09-Oct-13 (No. 217-01828)	Oct-14
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-13 (No. 217-01736)	Apr-14
Type-N mismatch combination	SN: 5047.3 / 06327	04-Apr-13 (No. 217-01739)	Apr-14
Reference Probe ES3DV3	SN: 3205	30-Dec-13 (No. ES3-3205_Dec13)	Dec-14
DAE4	SN: 601	25-Apr-13 (No. DAE4-601_Apr13)	Apr-14
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-13)	In house check: Oct-14
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Sef The
Approved by:	Katja Pokovic	Technical Manager	A.M.

Issued: February 14, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D2450V2-929_Feb14

Page 1 of 6

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D2450V2-929_Feb14

Page 2 of 6

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.8.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	2450 MHz ± 1 MHz	

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.3 ± 6 %	2.04 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.2 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.06 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.9 W/kg ± 16.5 % (k=2)

Certificate No: D2450V2-929_Feb14

Appendix

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.4 Ω + 4.7 jΩ	
Return Loss	- 26.5 dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.125 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	September 26, 2013	

Certificate No: D2450V2-929_Feb14 Page 4 of 6

DASY5 Validation Report for Body TSL

Date: 12.02.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 929

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.04$ S/m; $\varepsilon_r = 51.3$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.35, 4.35, 4.35); Calibrated: 30.12.2013;

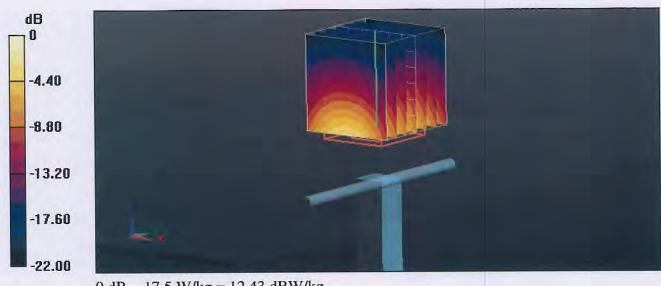
• Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 25.04.2013

• Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

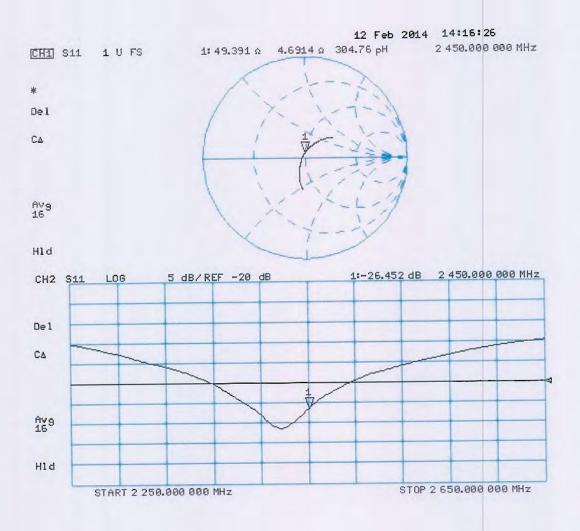
DASY52 52.8.7(1137); SEMCAD X 14.6.10(7164)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.294 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 27.6 W/kg


SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.06 W/kg

Maximum value of SAR (measured) = 17.5 W/kg

0 dB = 17.5 W/kg = 12.43 dBW/kg

Impedance Measurement Plot for Body TSL

s p e a g

CALIBRATION LABORATORY

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

Client

Sporton

Certificate No: Z14-97003

CALIBRATION CERTIFICATE

Object

D5GHzV2 - SN:1167

Calibration Procedure(s)

TMC-OS-E-02-194

Calibration procedure for dipole validation kits

Calibration date:

March 13, 2014

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	D# Cal Date	(Calibrated by, Certificate No.) Schedule	d Calibration
Power Meter NRVD	102083	11-Sep-13 (TMC, No.JZ13-443)	Sep-14
Power sensor NRV-Z5	100595	11-Sep-13 (TMC, No. JZ13-443)	Sep -14
Reference Probe EX3DV4	SN 3846	3- Sep-13 (SPEAG, No.EX3-3846_Sep13)	Sep-14
DAE4	SN 1331	23-Jan-14 (SPEAG, DAE4-1331_Jan14)	Jan -15
DAE4	SN 915	11-Jun-13 (SPEAG, DAE4-915_Jun13)	Jun -14
Signal Generator E4438C	MY49070393	13-Nov-13 (TMC, No.JZ13-394)	Nov-14
Network Analyzer E8362B	MY43021135	19-Oct-13 (TMC, No.JZ13-278)	Oct-14

Name Function Signature

Calibrated by: Yu Zongying SAR Test Engineer

Reviewed by: Qi Dianyuan SAR Project Leader

Approved by: Lu Bingsong Deputy Director of the laboratory

Issued: March 14, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

Glossary:

TSL

N/A

tissue simulating liquid

ConvF

sensitivity in TSL / NORMx,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) For hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms
 oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

s p e a g

CALIBRATION LABORATORY

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY52	52.8.7.1137
Extrapolation	Advanced Extrapolation	
Phantom	Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	
Frequency	5300 MHz ± 1 MHz 5600 MHz ± 1 MHz	

Head TSL parameters at 5300MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.1 ± 6 %	4.72 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	-	2

SAR result with Head TSL at 5300MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	8.12 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	81.3 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.35 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	23.5 mW /g ± 22.2 % (k=2)

Head TSL parameters at 5600MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22,0 ± 0.2) °C	35.4 ± 6 %	5.13 mho/m ± 6 %
Head TSL temperature change during test	<1.0 °C	- C	

SAR result with Head TSL at 5600MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	8.18 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	81.8 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.35 mW/g
SAR for nominal Head TSL parameters	normalized to 1W	23.5 mW /g ± 22.2 % (k=2)

CALIBRATION LABORATORY

Tel: +86-10-62304633-2079 E-mail: Info@emcite.com

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Http://www.emcite.com

Body TSL parameters at 5300MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.9	5.42 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.6 ± 6 %	5.28 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	(minute)	

SAR result with Body TSL at 5300MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	7.49 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	74.4 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm ³ (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.16 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.4 mW /g ± 22.2 % (k=2)

Body TSL parameters at 5600MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	48.5	5.77 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	47.1 ± 6 %	5.69 mho/m ± 6 %
Body TSL temperature change during test	<1.0 °C	-	

SAR result with Body TSL at 5600MHz

SAR averaged over 1 cm^3 (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	8.00 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	79.5 mW /g ± 23.0 % (k=2)
SAR averaged over 10 cm^3 (10 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.25 mW/g
SAR for nominal Body TSL parameters	normalized to 1W	22.3 mW /g ± 22.2 % (k=2)

CALIBRATION LABORATORY

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: Info@emcite.com

Fax: +86-10-62304633-2504 Http://www.emcite.com

Appendix

Antonna	Darametere	sarith	Hoad 1	IST	at 5300MHz
Antenna	Parameters	WITH	nead	JOL	at osuulvinz

Impedance, transformed to feed point	54.5Ω- 6.42jΩ	
Return Loss	- 22.5dB	

Antenna Parameters with Head TSL at 5600MHz

Impedance, transformed to feed point	46.7Ω- 6.72jΩ	
Return Loss	- 22.3dB	

Antenna Parameters with Body TSL at 5300MHz

Impedance, transformed to feed point	59.5Ω- 4.10jΩ	
Return Loss	- 20.5dB	

Antenna Parameters with Body TSL at 5600MHz

Impedance, transformed to feed point	43.9Ω- 4.61jΩ	
Return Loss	- 21.8dB	

General Antenna Parameters and Design

Electrical Delay (one direction)	1.104 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
-----------------	-------

speag

Date: 04.03.2014

CALIBRATION LABORATORY

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

DASY5 Validation Report for Head TSL

Test Laboratory: TMC, Beijing, China

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1167

Communication System: CW; Frequency: 5300 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5300 MHz; $\sigma = 4.724 \text{ mho/m}$; $\varepsilon_r = 36.07$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: EX3DV4 - SN3846; ConvF(5.04, 5.04, 5.04); Calibrated: 2013-09-03;

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn915; Calibrated: 2013-06-11

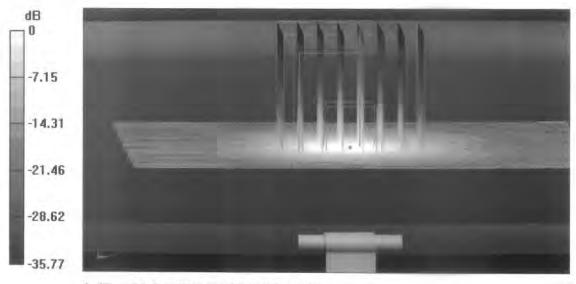
Phantom: ELI 4.0; Type: QDOVA001BA

Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5300 MHz/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 20.2 mW/g

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5300 MHz/Zoom Scan (4x4x1.4mm, graded), dist=1.4mm


(8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 70.382 V/m; Power Drift = -0.00 dB

Peak SAR (extrapolated) = 37.447 mW/g

SAR(1 g) = 8.12 mW/g; SAR(10 g) = 2.35 mW/g

Maximum value of SAR (measured) = 19.7 mW/g

0 dB = 21.2 mW/g = 26.53 dB mW/g

S P E A G

Date: 04.03.2014

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

DASY5 Validation Report for Head TSL

Test Laboratory: TMC, Beijing, China

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1167

Communication System: CW; Frequency: 5600 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5600 MHz; $\sigma = 5.126 \text{ mho/m}$; $\varepsilon_r = 35.43$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

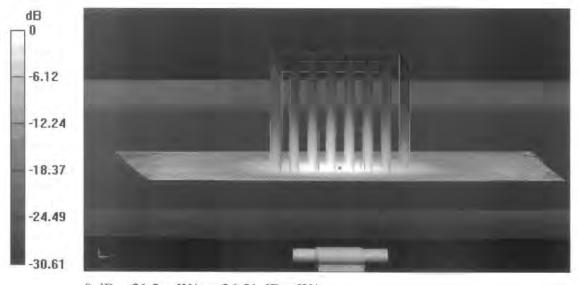
DASY5 Configuration:

- Probe: EX3DV4 SN3846; ConvF(4.52, 4.52, 4.52); Calibrated: 2013-09-03;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn915; Calibrated: 2013-06-11
- Phantom: ELI 4.0; Type: QDOVA001BA
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5600 MHz/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 21.2 mW/g

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5600 MHz/Zoom Scan (4x4x1.4mm, graded), dist=1.4mm


(8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

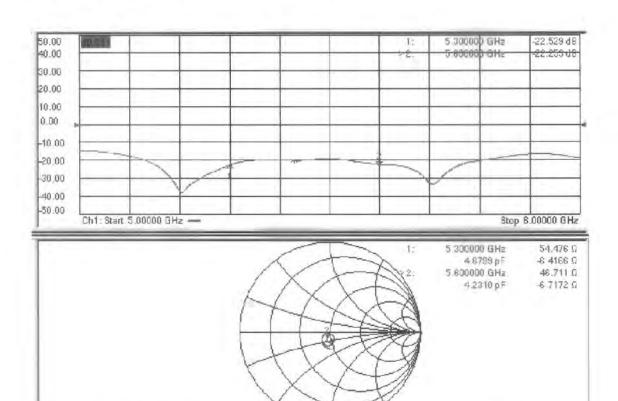
Reference Value = 71.227 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 38.432 mW/g

SAR(1 g) = 8.18 mW/g; SAR(10 g) = 2.35 mW/g

Maximum value of SAR (measured) = 20.1 mW/g

0 dB = 21.2 mW/g = 26.51 dB mW/g


s p e a g

CALIBRATION LABORATORY

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

Impedance Measurement Plot for Head TSL

>Ch1 Start 5 00000 GHz -

Stop 6,00000 GHz

Date: 11.03.2014

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

DASY5 Validation Report for Body TSL

Test Laboratory: TMC, Beijing, China

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1167

Communication System: CW; Frequency: 5300 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5300 MHz; $\sigma = 5.28 \text{ mho/m}$; $\varepsilon_r = 47.6$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

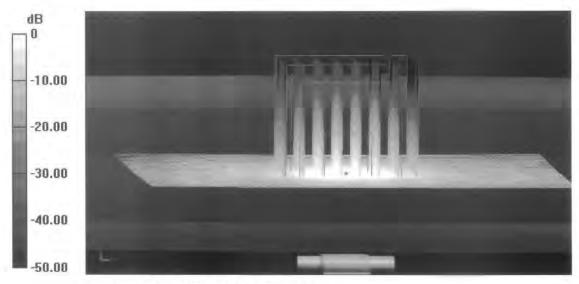
DASY5 Configuration:

- Probe: EX3DV4 SN3846; ConvF(4.17, 4.17, 4.17); Calibrated: 2013-09-03;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2014-01-23
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: xxxx
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5300 MHz/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 17.1 mW/g

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5300 MHz/Zoom Scan (4x4x1.4mm, graded), dist=1.4mm


(8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 64.848 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 31.172 mW/g

SAR(1 g) = 7.49 mW/g; SAR(10 g) = 2.16 mW/g

Maximum value of SAR (measured) = 17.4 mW/g

0 dB = 17.1 mW/g = 24.64 dB mW/g

S D e a g

Date: 13.03.2014

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

DASY5 Validation Report for Body TSL

Test Laboratory: TMC, Beijing, China

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1167

Communication System: CW; Frequency: 5600 MHz; Duty Cycle: 1:1

Medium parameters used: f = 5600 MHz; $\sigma = 5.69 \text{ mho/m}$; $\varepsilon_r = 47.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

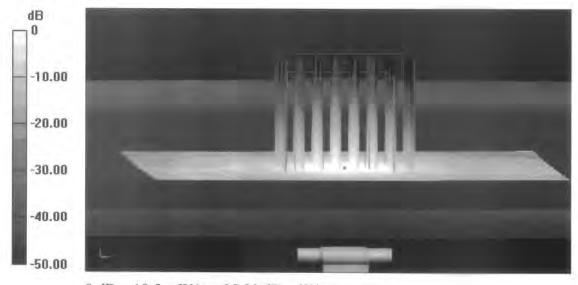
DASY5 Configuration:

- Probe: EX3DV4 SN3846; ConvF(3.77, 3.77, 3.77); Calibrated: 2013-09-03;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2014-01-23
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: xxxx
- Measurement SW: DASY52, Version 52.8 (1); SEMCAD X Version 14.6.5 (6469)

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5600 MHz/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 19.5 mW/g

System Performance Check with D5GHzV2 Dipole (graded grid)/d=10mm, Pin=100mW, f=5600 MHz/Zoom Scan (4x4x1.4mm, graded), dist=1.4mm

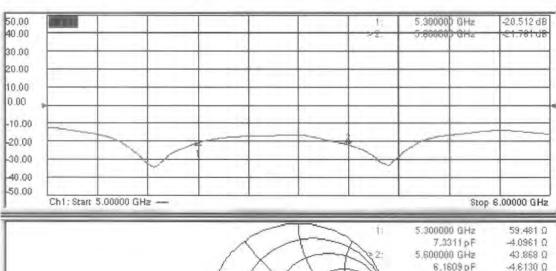

(8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

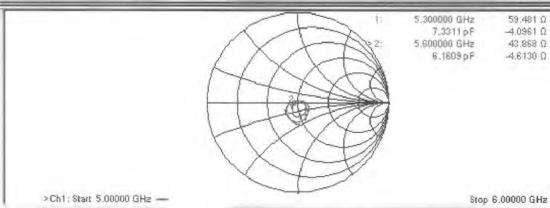
Reference Value = 66.677 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 37.302 mW/g

SAR(1 g) = 8 mW/g; SAR(10 g) = 2.25 mW/g

Maximum value of SAR (measured) = 19.6 mW/g


0 dB = 19.5 mW/g = 25.80 dB mW/g



S P e a g CALIBRATION LABORATORY

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

Impedance Measurement Plot for Body TSL

