Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.6.2 | |------------------------------|--|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | | | Frequency | 5200 MHz ± 1 MHz
5500 MHz ± 1 MHz
5800 MHz ± 1 MHz | | #### Head TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 36.0 | 4.66 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.8 ± 6 % | 4.50 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5200 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|---------------------------| | SAR measured | 100 mW input power | 8.13 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 81.2 mW /g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|---------------------------| | SAR measured | 100 mW input power | 2.32 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 23.1 mW /g ± 16.5 % (k=2) | ## Head TSL parameters at 5500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.6 | 4.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.2 ± 6 % | 4.82 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 5500 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|----------------------------| | SAR measured | 100 mW input power | 8.59 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 85.6 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|----------------------------| | SAR measured | 100 mW input power | 2.44 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 24.3 mW / g ± 16.5 % (k=2) | # Head TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.8 ± 6 % | 5.08 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|----------------------------| | SAR measured | 100 mW input power | 7.93 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 78.9 mW / g ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|----------------------------| | SAR measured | 100 mW input power | 2.25 mW / g | | SAR for nominal Head TSL parameters | normalized to 1W | 22.4 mW / g ± 16.5 % (k=2) | #### Body TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 49.0 | 5.30 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 49.0 ± 6 % | 5.41 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL at 5200 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|----------------------------| | SAR measured | 100 mW input power | 7.60 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 76.0 mW / g ± 18.1 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|----------------------------| | SAR measured | 100 mW input power | 2.13 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 21.3 mW / g ± 17.6 % (k=2) | ## Body TSL parameters at 5500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.6 | 5.65 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 48.3 ± 6 % | 5.86 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL at 5500 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|----------------------------| | SAR measured | 100 mW input power | 8.18 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 81.7 mW / g ± 18.1 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|----------------------------| | SAR measured | 100 mW input power | 2.27 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 22.7 mW / g ± 17.6 % (k=2) | ## Body TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.2 | 6.00 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.8 ± 6 % | 6.21 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|----------------------------| | SAR measured | 100 mW input power | 7.55 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 75.4 mW / g ± 18.1 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|----------------------------| | SAR measured | 100 mW input power | 2.10 mW / g | | SAR for nominal Body TSL parameters | normalized to 1W | 21.0 mW / g ± 17.6 % (k=2) | #### **Appendix** #### Antenna Parameters with Head TSL at 5200 MHz | Impedance, transformed to feed point | 49.8 Ω - 6.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.2 dB | #### Antenna Parameters with Head TSL at 5500 MHz | Impedance, transformed to feed point | 51.9 Ω - 4.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.8 dB | #### Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | 54.6 Ω - 1.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.6 dB | #### Antenna Parameters with Body TSL at 5200 MHz | Impedance, transformed to feed point | 50.0 Ω - 5.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.0 dB | ## Antenna Parameters with Body TSL at 5500 MHz | Impedance, transformed to feed point | 52.1 Ω - 2.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 30.1 dB | ## Antenna Parameters with Body TSL at 5800 MHz | Impedance, transformed to feed point | $56.0 \Omega + 0.5 j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 24.9 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.203 ns | |----------------------------------|----------| |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|-------------------|--| | Manufactured on | December 30, 2005 | | #### **DASY5 Validation Report for Head TSL** Date: 20.06.2011 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 5GHz; Type: D5GHz; Serial: D5GHzV2 - SN: 1040 Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium: HSL 502 A Medium parameters used: f = 5200 MHz; $\sigma = 4.5$ mho/m; $\epsilon_r = 35.8$; $\rho = 1000$ kg/m 3 , Medium parameters used: f = 5500 MHz; $\sigma = 4.82$ mho/m; $\epsilon_r = 35.2$; $\rho = 1000$ kg/m 3 , Medium parameters used: f = 5800 MHz; $\sigma = 5.08$ mho/m; $\epsilon_r = 34.8$; $\rho = 1000$ kg/m 3 Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.41, 5.41, 5.41), ConvF(4.91, 4.91, 4.91), ConvF(4.81, 4.81, 4.81); Calibrated: 04.03.2011 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 08.06.2011 - Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 - DASY52 52.6.2(482); SEMCAD X 14.4.5(3634) ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.544 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 30.178 W/kg SAR(1 g) = 8.13 mW/g; SAR(10 g) = 2.32 mW/g Maximum value of SAR (measured) = 18.566 mW/g ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.669 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 34.025 W/kg SAR(1 g) = 8.59 mW/g; SAR(10 g) = 2.44 mW/g Maximum value of SAR (measured) = 20.159 mW/g ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 61.830 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 32.874 W/kg SAR(1 g) = 7.93 mW/g; SAR(10 g) = 2.25 mW/g Maximum value of SAR (measured) = 18.884 mW/g ## Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 21.06.2011 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 5GHz; Type: D5GHz; Serial: D5GHzV2 - SN: 1040 Communication System: CW; Frequency: 5200 MHz, Frequency: 5500 MHz, Frequency: 5800 MHz Medium: MSL 501 Medium parameters used: f = 5200 MHz; σ = 5.41 mho/m; ϵ_r = 49; ρ = 1000 kg/m³, Medium parameters used: f = 5500 MHz; σ = 5.86 mho/m; ϵ_r = 48.3; ρ = 1000 kg/m³, Medium parameters used: f = 5800 MHz; σ = 6.21 mho/m; ϵ_r = 47.8; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(4.91, 4.91, 4.91), ConvF(4.43, 4.43, 4.43), ConvF(4.38, 4.38, 4.38); Calibrated: 04.03.2011 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 08.06.2011 - Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 - DASY52 52.6.2(482); SEMCAD X 14.4.5(3634) ## Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 58.999 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 29.005 W/kg SAR(1 g) = 7.6 mW/g; SAR(10 g) = 2.13 mW/g Maximum value of SAR (measured) = 17.369 mW/g ## Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 59.120 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 33.982 W/kg SAR(1 g) = 8.18 mW/g; SAR(10 g) = 2.27 mW/g Maximum value of SAR (measured) = 19.380 mW/g ## Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 55.208 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 33.965 W/kg SAR(1 g) = 7.55 mW/g; SAR(10 g) = 2.1 mW/g Maximum value of SAR (measured) = 18.403 mW/g ## Impedance Measurement Plot for Body TSL Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com ## IMPORTANT NOTICE #### **USAGE OF THE DAE 3** The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points: Battery Exchange: The battery cover of the DAE3 unit is connected to a fragile 3-pin battery connector. Customer is responsible to apply outmost caution not to bend or damage the connector when changing batteries. Shipping of the DAE: Before shipping the DAE to SPEAG for calibration the customer shall remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts transportation. The package shall be marked to indicate that a fragile instrument is inside. **E-Stop Failures**: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, Customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements. Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect. **DASY Configuration Files:** Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file. #### **Important Note:** Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer. #### Important Note: Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the E-stop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure. #### Important Note: To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE. Schmid & Partner Engineering ### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Amphenol CN (Auden) Accreditation No.: SCS 108 Certificate No: DAE3-495_Apr11 | CAL | IBRA | TIO | N C | ERT | ATE | |-----|------|-----|-----|-----|-----| | | | | | | | Object DAE3 - SD 000 D03 AD - SN: 495 Calibration procedure(s) QA CAL-06.v22 Calibration procedure for the data acquisition electronics (DAE) Calibration date: April 28, 2011 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------------|-------------|----------------------------|-----------------------| | Keithley Multimeter Type 2001 | SN: 0810278 | 28-Sep-10 (No:10376) | Sep-11 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Occordary Claridards | | | | Calibrated by: Name Fin Bomholt Function Signature Approved by: Dominique Steffen Technician **R&D** Director Issued: April 28, 2011 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: DAE3-495_Apr11 Page 1 of 5 ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 108 #### Glossary_ DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. ### **Methods Applied and Interpretation of Parameters** - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty. - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement. - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement. - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage. - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage - Input Offset Measurement. Output voltage and statistical results over a large number of zero voltage measurements. - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance. - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement. - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated. - Power consumption: Typical value for information. Supply currents in various operating modes. ## **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: 1LSB = $6.1\mu V$, full range = -100...+300 mV Low Range: 61nV , 1LSB = full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | х | Y | z | |----------------------------|----------------------|----------------------|----------------------| | High Range | 404.324 ± 0.1% (k=2) | 405.291 ± 0.1% (k=2) | 405.622 ± 0.1% (k=2) | | Low Range | 3.95043 ± 0.7% (k=2) | 3.97613 ± 0.7% (k=2) | 3.95159 ± 0.7% (k=2) | ## **Connector Angle** | Connector Angle to be used in DASY system | 227.5 ° ± 1 ° | |-------------------------------------------|---------------| |-------------------------------------------|---------------| ## **Appendix** 1. DC Voltage Linearity | High Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 199993.1 | -2.74 | -0.00 | | Channel X + Input | 20001.66 | 1.46 | 0.01 | | Channel X - Input | -19994.94 | 5.16 | -0.03 | | Channel Y + Input | 200006.0 | 1.16 | 0.00 | | Channel Y + Input | 20002.16 | 1.86 | 0.01 | | Channel Y - Input | -19997.98 | 2.02 | -0.01 | | Channel Z + Input | 200005.6 | 1.57 | 0.00 | | Channel Z + Input | 20003.05 | 3.05 | 0.02 | | Channel Z - Input | -19998.31 | 1.59 | -0.01 | | Low Range | Reading (μV) | Difference (μV) | Error (%) | |-------------------|--------------|-----------------|-----------| | Channel X + Input | 2000.3 | 0.26 | 0.01 | | Channel X + Input | 199.66 | -0.24 | -0.12 | | Channel X - Input | -200.28 | -0.38 | 0.19 | | Channel Y + Input | 2001.0 | 1.06 | 0.05 | | Channel Y + Input | 200.75 | 0.85 | 0.42 | | Channel Y - Input | -202.12 | -2.12 | 1.06 | | Channel Z + Input | 1999.0 | -1.13 | -0.06 | | Channel Z + Input | 198.35 | -1.65 | -0.82 | | Channel Z - Input | -200.94 | -1.04 | 0.52 | 2. Common mode sensitivity DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Common mode
Input Voltage (mV) | High Range
Average Reading (μV) | Low Range
Average Reading (μV) | |-----------|-----------------------------------|------------------------------------|-----------------------------------| | Channel X | 200 | 2.91 | 1.12 | | | - 200 | 0.15 | -1.40 | | Channel Y | 200 | -0.69 | -0.74 | | | - 200 | -0.12 | -0.47 | | Channel Z | 200 | 2.83 | 2.71 | | | - 200 | -4.22 | -4.44 | ## 3. Channel separation DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | Input Voltage (mV) | Channel X (μV) | Channel Y (μV) | Channel Z (μV) | |-----------|--------------------|----------------|----------------|----------------| | Channel X | 200 | | 2.33 | 0.36 | | Channel Y | 200 | 2.17 | - | 4.08 | | Channel Z | 200 | 3.22 | -0.54 | | #### 4. AD-Converter Values with inputs shorted DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | | High Range (LSB) | Low Range (LSB) | |-----------|------------------|-----------------| | Channel X | 15791 | 16416 | | Channel Y | 15742 | 16582 | | Channel Z | 15883 | 16533 | #### 5. Input Offset Measurement DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input 10MΩ | | Average (μV) | min. Offset (μV) | max. Offset (μV) | Std. Deviation (μV) | |-----------|--------------|------------------|------------------|---------------------| | Channel X | -1.87 | -3.03 | -0.77 | 0.45 | | Channel Y | -1.74 | -2.98 | -0.06 | 0.56 | | Channel Z | -1.44 | -2.79 | -0.14 | 0.61 | #### 6. Input Offset Current Nominal Input circuitry offset current on all channels: <25fA 7. Input Resistance (Typical values for information) | | Zeroing (kOhm) | Measuring (MOhm) | |-----------|----------------|------------------| | Channel X | 200 | 200 | | Channel Y | 200 | 200 | | Channel Z | 200 | 200 | 8. Low Battery Alarm Voltage (Typical values for information) | Typical values | Alarm Level (VDC) | | |----------------|-------------------|--| | Supply (+ Vcc) | +7.9 | | | Supply (- Vcc) | -7.6 | | 9. Power Consumption (Typical values for information) | Typical values | Switched off (mA) | Stand by (mA) | Transmitting (mA) | |----------------|-------------------|---------------|-------------------| | Supply (+ Vcc) | +0.01 | +6 | +14 | | Supply (- Vcc) | -0.01 | -8 | -9 |