

FCC Test Report

Equipment	:	N300 Ceiling-Mount AP
Brand Name	:	EDIMAX
Model No.	:	EW-7476HPN,GAP-476HPN,CAP300
FCC ID	:	NDD9574761414
Standard	:	47 CFR FCC Part 15.247
Operating Band	:	2400 MHz – 2483.5 MHz
FCC Classification	:	DTS
Applicant Manufacturer	:	EDIMAX TECHNOLOGY CO., LTD. No.3,Wu-Chuan 3rd Road,Wu-Ku Industrial Park, New Taipei City, Taiwan

The product sample received on Aug. 08, 2014 and completely tested on Nov. 03, 2014. We, SPORTON, would like to declare that the tested sample has been evaluated in accordance with the procedures given in ANSI C63.10-2009 and shown compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by:

Vic Hsiao / Supervisor

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Accessories and Support Equipment	7
1.3	Testing Applied Standards	7
1.4	Testing Location Information	8
1.5	Measurement Uncertainty	8
2	TEST CONFIGURATION OF EUT	9
2.1	The Worst Case Modulation Configuration	9
2.2	The Worst Case Power Setting Parameter	9
2.3	The Worst Case Measurement Configuration	10
2.4	Test Setup Diagram	12
3	TRANSMITTER TEST RESULT	14
3.1	AC Power-line Conducted Emissions	14
3.2	6dB Bandwidth	17
3.3	RF Output Power	19
3.4	Power Spectral Density	23
3.5	Transmitter Bandedge Emissions	25
3.6	Transmitter Unwanted Emissions	28
4	TEST EQUIPMENT AND CALIBRATION DATA	57

APPENDIX A. TEST PHOTOS

APPENDIX B. PHOTOGRAPHS OF EUT

Summary of Test Result

	Conformance Test Specifications					
Report Clause	Ref. Std. Clause	Description	Measured	Limit	Result	
1.1.2	15.203	Antenna Requirement	Antenna connector mechanism complied	FCC 15.203	Complied	
3.1	15.207	AC Power-line Conducted Emissions	[dBuV]: 12.359 MHz 42.99 (Margin 7.01dB) - AV 43.17 (Margin 16.83dB) - QP	FCC 15.207	Complied	
3.2	15.247(a)	6dB Bandwidth	6dB Bandwidth Unit [MHz] 20M: 9.55 / 40M: 36.36	≥500kHz	Complied	
3.3	15.247(b)	RF Output Power (Maximum Peak Conducted Output Power)	Power [dBm]: 29.99	Power [dBm]:30	Complied	
3.4	15.247(d)	Power Spectral Density	PSD [dBm/100kHz]: -0.77	PSD [dBm/3kHz]:8	Complied	
3.5	15.247(c)	Transmitter Radiated Bandedge Emissions	Non-Restricted Bands: 2398.97MHz: 29.91dB Restricted Bands [dBuV/m at 3m]: 2483.50MHz 66.02 (Margin 7.98dB) - PK 52.95 (Margin 1.05dB) - AV	Non-Restricted Bands: > 20 dBc Restricted Bands: FCC 15.209	Complied	
3.6	15.247(c)	Transmitter Radiated Unwanted Emissions	[dBuV/m at 3m]: 4824MHz 55.37 (Margin 18.63dB) - PK 52.88 (Margin 1.12dB) - AV	Non-Restricted Bands: > 20 dBc Restricted Bands: FCC 15.209	Complied	

Revision History

Report No.	Version	Description	Issued Date
FR471572-01	Rev. 02	Initial issue of report	Jan. 07, 2015
			<u> </u>

1 General Description

1.1 Information

1.1.1 RF General Information

	RF General Information						
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N _{⊤x})	RF Output Power (dBm)	Co-location	
2400-2483.5	b	2412-2462	1-11 [11]	1	28.27	-	
2400-2483.5	g	2412-2462	1-11 [11]	1	29.77	-	
2400-2483.5	n (HT20)	2412-2462	1-11 [11]	2	29.99	-	
2400-2483.5	n (HT40)	2422-2452	3-9 [7]	2	28.86	-	

Note 1: RF output power specifies that Maximum Peak Conducted Output Power.

Note 2: 802.11b uses a combination of DSSS-DBPSK, DQPSK, CCK modulation.

Note 3: 802.11g/n uses a combination of OFDM-BPSK, QPSK, 16QAM, 64QAM modulation.

Note 4: Co-location, Co-location is generally defined as simultaneously transmitting (co-transmitting) antennas within 20 cm of each other. (i.e., EUT has simultaneously co-transmitting that operating

2.4GHz and 5GHz.)

1.1.2 Antenna Information

Antenna Category Integral antenna (antenna permanently attached) Temporary RF connector provided No temporary RF connector provided Transmit chains bypass antenna and soldered temporary RF connector provided for connected measurement. In case of conducted measurements the transmitter shall be connected to the measuring equipment via a suitable attenuator and correct for all losses in the RF path.

Antenna General Information						
Port. Ant. Cat. Ant. Type Gain (dBi)						
1	1 Integral PIFA		2.82			
2			2.46			
Domork						

Remark:

1. This EUT supports 1TX and Port 1 for emission in modulation mode 11b, 11g.

2. This EUT only supports 2TX and CDD function in modulation mode 11n.

1.1.3 Type of EUT

	Identify EUT				
EUT	Serial Number	N/A			
Pre	sentation of Equipment	Production ; Pre-Production ; Prototype			
		Type of EUT			
\square	Stand-alone				
	Combined (EUT where the radio part is fully integrated within another device)				
	Combined Equipment - Brand Name / Model No.:				
	Plug-in radio (EUT intended for a variety of host systems)				
	Host System - Brand Name / Model No.:				
	Other:				

1.1.4 Test Signal Duty Cycle

Operated Mode fo	Operated Mode for Worst Duty Cycle				
Operated normally mode for worst duty cycle					
Operated test mode for worst duty cycle					
Test Signal Duty Cycle (x)Power Duty Factor [dB] - (10 log 1/x)					
🖾 100% - IEEE 802.11b	0.00				
🖾 100% - IEEE 802.11g	0.00				
🖾 100% - IEEE 802.11n (HT20)	0.00				
🖂 100% - IEEE 802.11n (HT40)	0.00				

1.1.5 EUT Operational Condition

Supply Voltage	AC mains	DC DC	System
Type of DC Source	Internal DC supply	From PoE	External adapter

1.2 Accessories and Support Equipment

Accessories Information					
	Brand Name	APD	Model Name	WA-12M12R	
AC Adapter	Power Rating	I/P: 100-240Vac , 0.5A ; O/P: 12Vdc,1A			
	Power Cord	1.5 meter, non-shielded cable, with one ferrite core			

	Support Equipment - AC Conducted						
No.	No. Equipment Brand Name Model Name FCC ID						
1	Notebook	DELL	E5530	DoC			
2	PoE	D-Link	DWL-P200	-			
3	Notebook (Remote)	DELL	E5530	DoC			

Support Equipment - RF Conducted				
Equipment	Brand Name	Model Name	FCC ID	
Notebook	DELL	E5500	DoC	

	Support Equipment - Radiated Emission							
No.	Equipment	Brand Name	Model Name	FCC ID				
1	Notebook	DELL	E5530	DoC				
2	PoE (Remote)	D-Link	DWL-P200	-				
3	Notebook (Remote)	DELL	E5530	DoC				

1.3 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2009
- FCC KDB 558074 D01 v03r02
- FCC KDB 662911 D01 v02r01

1.4 Testing Location Information

	Testing Location								
	HWA YA	ADD	:	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.					
		TEL	:	886-3-327-3456 FAX	86-3-327-3456 FAX : 886-3-327-0973				
	Test Condition			Test Site No.	Test Engineer	Test Environment			
AC Conduction		CO04-HY	Zeus	24°C / 42%					
RF Conducted		TH01-HY	lan	23.5°C / 63%					
Radiated Emission				03CH02-HY	Hunter	24°C / 55%			

1.5 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

Measurement Uncertainty						
Test Item		Uncertainty				
AC power-line conducted emissions		±2.3 dB				
Emission bandwidth, 6dB bandwidth		±1.4 %				
RF output power, conducted		±0.6 dB				
Power density, conducted		±0.8 dB				
Unwanted emissions, conducted	9 – 150 kHz	±0.4 dB				
	0.15 – 30 MHz	±0.4 dB				
	30 – 1000 MHz	±0.5 dB				
	1 – 18 GHz	±0.7 dB				
	18 – 40 GHz	±0.8 dB				
	40 – 200 GHz	N/A				
All emissions, radiated	9 – 150 kHz	±2.5 dB				
	0.15 – 30 MHz	±2.3 dB				
	30 – 1000 MHz	±2.6 dB				
	1 – 18 GHz	±3.6 dB				
	18 – 40 GHz	±3.8 dB				
	40 – 200 GHz	N/A				
Temperature		±0.8 °C				
Humidity		±3 %				
DC and low frequency voltages		±3 %				
Time		±1.4 %				
Duty Cycle		±1.4 %				

2 Test Configuration of EUT

2.1 The Worst Case Modulation Configuration

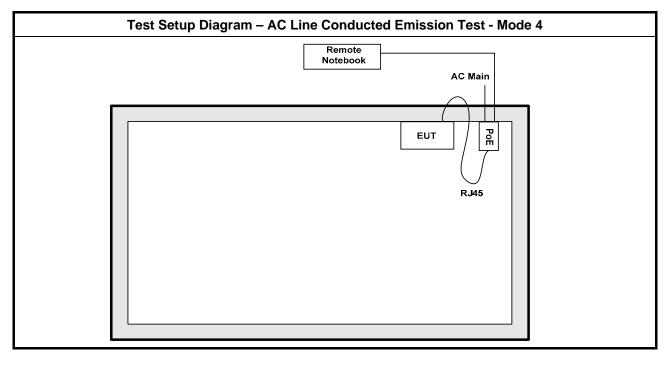
	Worst Modulation Used for Conformance Testing						
Modulation Mode Transmit Chains (N _{TX}) Data Rate / MCS Worst Data Rate /							
11b	1	1-11 Mbps	1 Mbps				
11g	1	6-54 Mbps	6 Mbps				
HT20	2	MCS 0-15	MCS 0				
HT40	2	MCS 0-15	MCS 0				

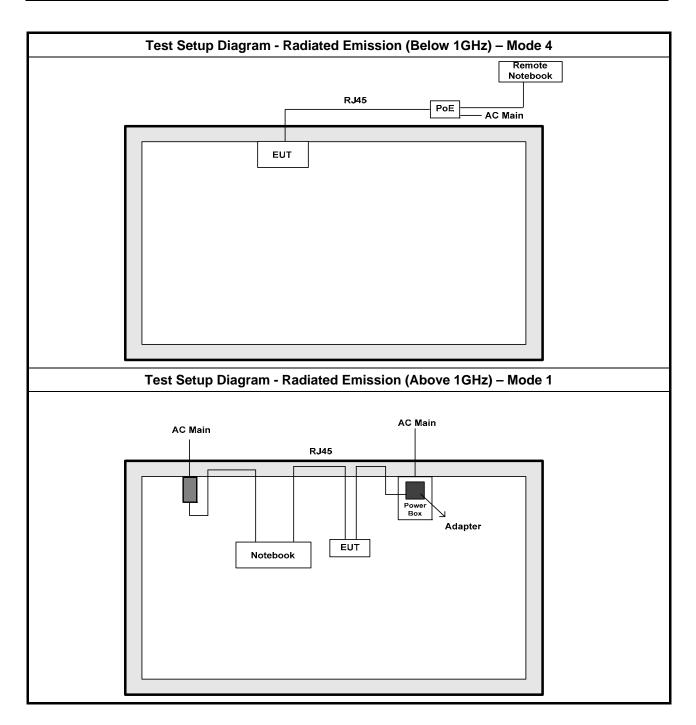
2.2 The Worst Case Power Setting Parameter

The Worst Case Power Setting Parameter (2400-2483.5MHz band)							
Test Software		MT7620 QA_V1.0.6.0					
			Test Frequency (MHz)				
Modulation Mode	N _{TX}	N _{TX} NCB: 20		CB: 20MHz		NCB: 40MHz	
		2412	2437	2462	2422	2437	2452
11b	1	0C	0F	19	-	-	-
11g	1	0C	18	11	-	-	-
HT20	2	0B,0B	18,18	12,12	-	-	-
HT40	2	-	-	-	0B,0B	14,14	0C,0C

2.3 The Worst Case Measurement Configuration

Tł	The Worst Case Mode for Following Conformance Tests					
Tests Item	AC power-line conducted emissions					
Condition	AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz					
Operating Mode Operating Mode Description						
1 Flash 4M: Adapter mode						
2 Flash 4M: PoE mode						
3	Flash 16M: Adapter mode					
4	4 Flash 16M: PoE mode					
For operatin	For operating mode 4 is the worst case and it was record in this test report.					


The Worst Case Mode for Following Conformance Tests					
Tests Item	Tests Item RF Output Power, Power Spectral Density, 6 dB Bandwidth				
Test Condition Conducted measurement at transmit chains					
Modulation Mode 11b, 11g, HT20, HT40					


Th	e Worst Case Mode for Fo	ollowing Conformance Te	sts		
Tests Item	Transmitter Radiated Unwanted Emissions Transmitter Radiated Bandedge Emissions				
Test Condition	regardless of spatial multi	Radiated measurement If EUT consist of multiple antenna assembly (multiple antenna are used in EUT regardless of spatial multiplexing MIMO configuration), the radiated test should be performed with highest antenna gain of each antenna type.			
	EUT will be placed in	fixed position.			
User Position	EUT will be placed in	mobile position and operati	ng multiple positions.		
	EUT will be a hand-he operating multiple pos	eld or body-worn battery-po sitions.	wered devices and		
Operating Mode < 1GHz	1GHz Operating Mode Description				
1	Flash 4M: Adapter mode				
2	Flash 4M: PoE mode				
3	Flash 16M: Adapter mode				
4	Flash 16M: PoE mode				
For operatin	g mode 4 is the worst cas	se and it was record in this	s test report.		
Operating Mode > 1GHz	Operating Mode Description				
1	Adapter mode				
Modulation Mode	11b, 11g, HT20, HT40				
	X Plane	Y Plane	Z Plane		
Orthogonal Planes of EUT	of Carlos				
Wosrt Planes of EUT	V				

2.4 Test Setup Diagram

Transmitter Test Result 3

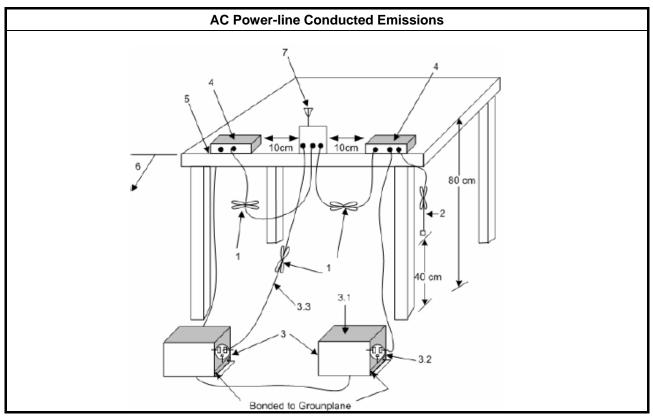
3.1 **AC Power-line Conducted Emissions**

3.1.1 **AC Power-line Conducted Emissions Limit**

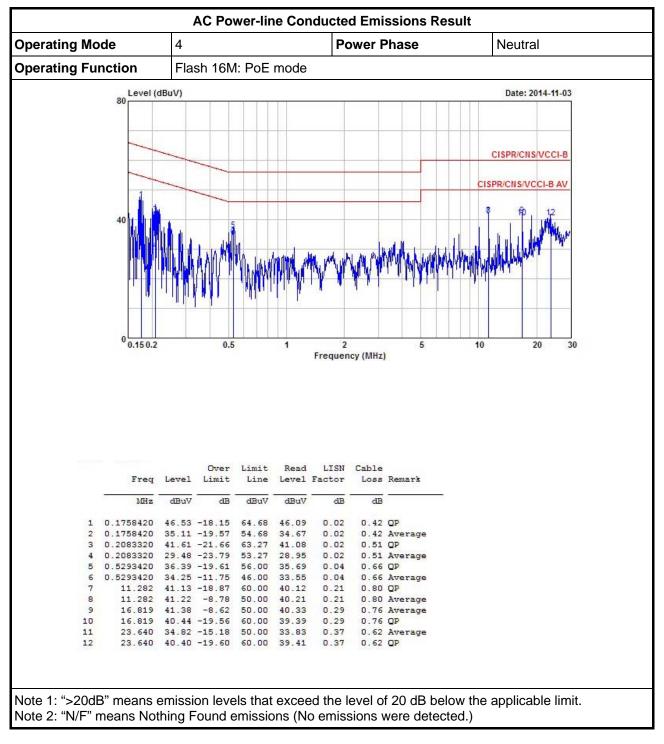
AC Power-line Conducted Emissions Limit						
Frequency Emission (MHz) Quasi-Peak Average						
0.15-0.5 66 - 56 * 56 - 46 *						
0.5-5	56	46				
5-30 60 50						
Note 1: * Decreases with the logarithm of the frequency.						

creases with the logarithm of the frequency

3.1.2 Measuring Instruments

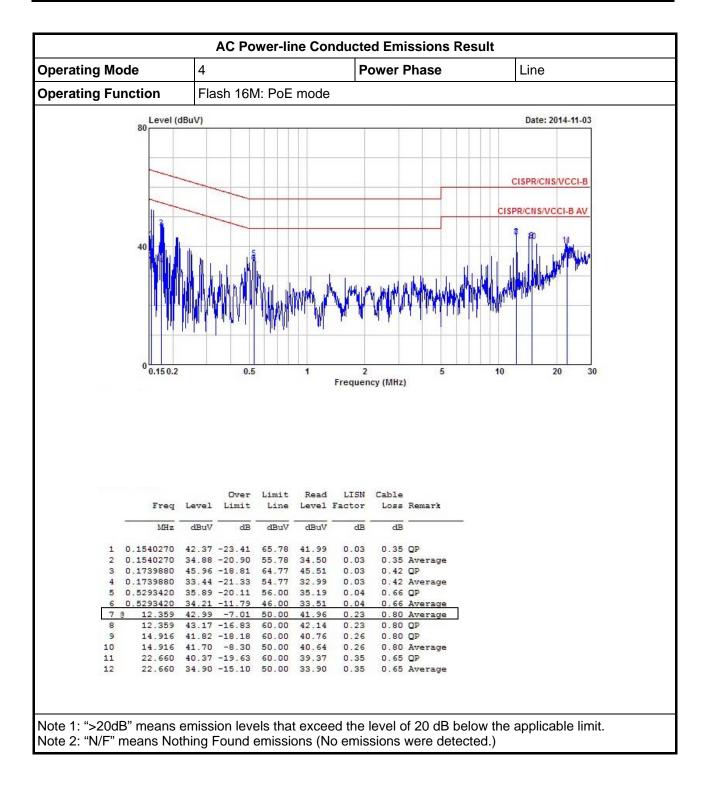

Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures


Test Method

Refer as ANSI C63.10-2009, clause 6.2 for AC power-line conducted emissions.

3.1.4 **Test Setup**



3.1.5 Test Result of AC Power-line Conducted Emissions

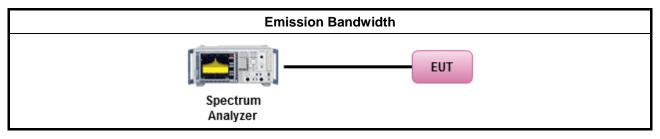
3.2 6dB Bandwidth

3.2.1 6dB Bandwidth Limit

6dB Bandwidth Limit

Systems using digital modulation techniques:

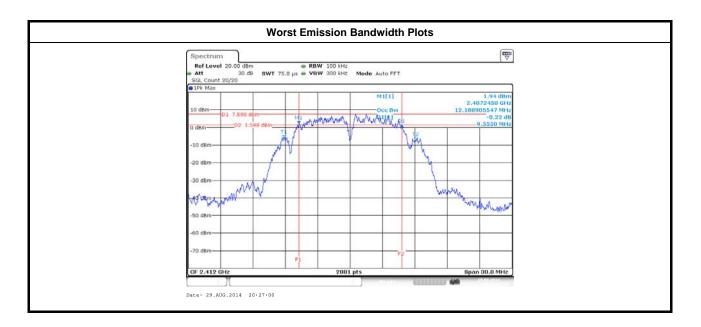
 \boxtimes 6 dB bandwidth ≥ 500 kHz.


3.2.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

	Test Method								
\square	For	r the emission bandwidth shall be measured using one of the options below:							
	\square	Refer as FCC KDB 558074, clause 8.1 Option 1 for 6 dB bandwidth measurement.							
		Refer as FCC KDB 558074, clause 8.2 Option 2 for 6 dB bandwidth measurement.							
		Refer as ANSI C63.10, clause 6.9.1 for occupied bandwidth testing.							
\square	For	conducted measurement.							
	\boxtimes	The EUT supports single transmit chain and measurements performance of this transmit chain port 1.							
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.							
	\boxtimes	The EUT supports multiple transmit chains using options given below:							
		Option 1: Multiple transmit chains measurements need to be performed on one of the active transmit chains (antenna outputs). All measurement had be performed on transmit chains 1.							
		Option 2: Multiple transmit chains measurements need to be performed on each transmit chains individually (antenna outputs). All measurement had be performed on all transmit chains.							


3.2.4 Test Setup

3.2.5 Test Result of Emission Bandwidth

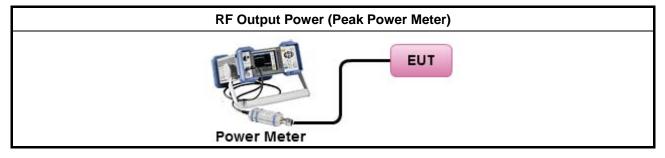
Emission Bandwidth Result							
Condition Emission Bandwidth (MHz)							
		Freq.	99% Bandwidth		6dB Bandwidth		
Modulation Mode	Ντχ	(MHz)	Chain Port 1	Chain Port 2	Chain Port 1	Chain Port 2	
11b	1	2412	12.18	-	9.55	-	
11b	1	2437	11.99	-	9.69	-	
11b	1	2462	12.24	-	9.64	-	
11g	1	2412	16.43	-	16.54	-	
11g	1	2437	16.47	-	16.56	-	
11g	1	2462	16.43	-	16.51	-	
HT20	2	2412	17.61	17.58	17.76	17.68	
HT20	2	2437	17.63	17.57	17.68	17.64	
HT20	2	2462	17.61	17.55	17.67	17.59	
HT40	2	2422	36.22	36.14	36.44	36.36	
HT40	2	2437	36.22	36.18	36.52	36.36	
HT40	2	2452	36.26	36.18	36.48	36.40	
Limi	it		N	/Α	≥500) kHz	
Resu	ılt			Complied			
ote 1: N _{TX} = Number	of Tran	smit Chains					

3.3 RF Output Power

3.3.1 RF Output Power Limit

		RF Output Power Limit						
Max	Maximum Peak Conducted Output Power or Maximum Conducted Output Power Limit							
\boxtimes	240	0-2483.5 MHz Band:						
	\boxtimes	If $G_{TX} \le 6 \text{ dBi}$, then $P_{Out} \le 30 \text{ dBm} (1 \text{ W})$						
	\square	Point-to-multipoint systems (P2M): If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)$ dBm						
		Point-to-point systems (P2P): If $G_{TX} > 6 \text{ dBi}$, then $P_{Out} = 30 - (G_{TX} - 6)/3 \text{ dBm}$						
		Smart antenna system (SAS):						
		Single beam: If $G_{TX} > 6 \text{ dBi}$, then $P_{Out} = 30 - (G_{TX} - 6)/3 \text{ dBm}$						
		Overlap beam: If $G_{TX} > 6$ dBi, then $P_{Out} = 30 - (G_{TX} - 6)/3$ dBm						
		Aggregate power on all beams: If $G_{TX} > 6 \text{ dBi}$, then $P_{Out} = 30 - (G_{TX} - 6)/3 + 8 \text{dBm}$						
e.i.r	.p. P	Power Limit:						
\square	240	0-2483.5 MHz Band						
	\boxtimes	Point-to-multipoint systems (P2M): $P_{eirp} \le 36 \text{ dBm} (4 \text{ W})$						
		Point-to-point systems (P2P): $P_{eirp} \leq MAX(36, [P_{Out} + G_{TX}]) dBm$						
		Smart antenna system (SAS)						
		Single beam: $P_{eirp} \le MAX(36, P_{Out} + G_{TX}) dBm$						
		□ Overlap beam: $P_{eirp} \le MAX(36, P_{Out} + G_{TX}) dBm$						
		Aggregate power on all beams: $P_{eirp} \leq MAX(36, [P_{Out} + G_{TX} + 8]) dBm$						
G _{TX}	= the	aximum peak conducted output power or maximum conducted output power in dBm, e maximum transmitting antenna directional gain in dBi. i.r.p. Power in dBm.						

3.3.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.3.3 Test Procedures

		Test Method								
\bowtie	Max	imum Peak Conducted Output Power								
		Refer as FCC KDB 558074, clause 9.1.1 (RBW ≥ EBW method).								
	\boxtimes	Refer as FCC KDB 558074, clause 9.1.2 (peak power meter for VBW ≥ DTS BW).								
\square	Max	imum Conducted Output Power								
	[dut	y cycle ≥ 98% or external video / power trigger]								
		Refer as FCC KDB 558074, clause 9.2.2.2 Method AVGSA-1 (spectral trace averaging).								
		Refer as FCC KDB 558074, clause 9.2.2.3 Method AVGSA-1 Alt. (slow sweep speed)								
	duty	cycle < 98% and average over on/off periods with duty factor								
		Refer as FCC KDB 558074, clause 9.2.2.4 Method AVGSA-2 (spectral trace averaging).								
		Refer as FCC KDB 558074, clause 9.2.2.5 Method AVGSA-2 Alt. (slow sweep speed)								
	RF	power meter and average over on/off periods with duty factor or gated trigger								
	\boxtimes	Refer as FCC KDB 558074, clause 9.2.3 Method AVGPM (using an RF average power meter).								
\square	For	conducted measurement.								
	\boxtimes	The EUT supports single transmit chain and measurements performance on this transmit chain port 1.								
		The EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.								
	\boxtimes	The EUT supports multiple transmit chains using options given below: Refer as FCC KDB 662911, In-band power measurements. Using the measure-and-sum approach, measured all transmit ports individually. Sum the power (in linear power units e.g., mW) of all ports for each individual sample and save them.								
	\boxtimes	If multiple transmit chains, EIRP calculation could be following as methods: $P_{total} = P_1 + P_2 + + P_n$ (calculated in linear unit [mW] and transfer to log unit [dBm]) EIRP _{total} = P _{total} + DG								

3.3.4 Test Setup

Directional Gain (DG) Result							
Transmit Chain	s No.	1	2	-	-		
Maximum G _{ANT}	(dBi)	2.82	2.46	-	-		
Modulation Mode	DG (dBi)	N _{TX}	N _{ss} (Min.)	STBC	Array Gain (dB)		
11b	2.82	1	1	-	0.00		
11g	2.82	1	1	-	0.00		
HT20	2.64	2	1 / 2	-	3.01		
HT40	2.64	2	1 / 2	-	3.01		
H1402.6421/2-3.01Note 1: For all transmitter outputs with equal antenna gains, directional gain is to be computed as follows: Any transmit signals are correlated, Directional Gain = $G_{ANT} + 10 \log(N_{TX})$ All transmit signals are completely uncorrelated, Directional Gain = G_{ANT} Note 2: For all transmitter outputs with unequal antenna gains, directional gain is to be computed as follows: Any transmit signals are correlated, Directional Gain = $10 \log[(10^{G1/20} + + 10^{GN/20})^2 / N_{TX}]$ 							

3.3.5 Directional Gain for Power Measurement

	Maximum Peak Conducted Output Power Result										
Condit	tion			RF Output Power (dBm)							
Modulation Mode	Ντχ	Freq. (MHz)	Chain Port 1	Chain Port 2	Sum Chain	Power Limit	DG (dBi)	EIRP Power	EIRP Limit		
11b	1	2412	23.58	-	23.58	30.00	2.82	26.40	36.00		
11b	1	2437	25.67	-	25.67	30.00	2.82	28.49	36.00		
11b	1	2462	28.27	-	28.27	30.00	2.82	31.09	36.00		
11g	1	2412	25.16	-	25.16	30.00	2.82	27.98	36.00		
11g	1	2437	29.77	-	29.77	30.00	2.82	32.59	36.00		
11g	1	2462	25.81	-	25.81	30.00	2.82	28.63	36.00		
HT20	2	2412	24.53	20.64	26.02	30.00	2.64	28.66	36.00		
HT20	2	2437	28.52	24.56	29.99	30.00	2.64	32.63	36.00		
HT20	2	2462	26.35	22.35	27.81	30.00	2.64	30.45	36.00		
HT40	2	2422	24.22	19.74	25.54	30.00	2.64	28.19	36.00		
HT40	2	2437	27.54	23.05	28.86	30.00	2.64	31.51	36.00		
HT40	2	2452	23.67	19.23	25.00	30.00	2.64	27.65	36.00		
Resu	Result				•	Complied	•		•		

3.3.6 Test Result of Maximum Peak Conducted Output Power

3.3.7 Test Result of Maximum Conducted Output Power

	Maximum Conducted Output Power Result									
Condit	ion			RF Output Power (dBm)						
Modulation Mode	Ντχ	Freq. (MHz)	Chain Port 1	Chain Port 2	Sum Chain	Power Limit	DG (dBi)	EIRP Power	EIRP Limit	
11b	1	2412	20.72	-	20.72	30.00	2.82	23.54	36.00	
11b	1	2437	21.57	-	21.57	30.00	2.82	24.39	36.00	
11b	1	2462	25.38	-	25.38	30.00	2.82	28.20	36.00	
11g	1	2412	20.17	-	20.17	30.00	2.82	22.99	36.00	
11g	1	2437	24.90	-	24.90	30.00	2.82	27.72	36.00	
11g	1	2462	20.98	-	20.98	30.00	2.82	23.80	36.00	
HT20	2	2412	19.41	15.42	20.87	30.00	2.64	23.51	36.00	
HT20	2	2437	23.94	20.54	25.57	30.00	2.64	28.22	36.00	
HT20	2	2462	21.24	16.99	22.63	30.00	2.64	25.27	36.00	
HT40	2	2422	19.29	14.79	20.61	30.00	2.64	23.25	36.00	
HT40	2	2437	22.68	18.00	23.95	30.00	2.64	26.60	36.00	
HT40	2	2452	18.69	14.20	20.01	30.00	2.64	22.66	36.00	
Resu	ılt	•		•		Complied			·	

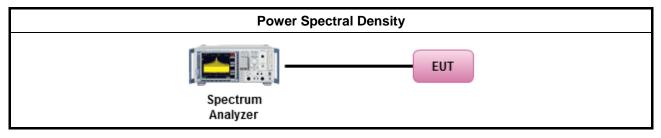
Power Spectral Density 3.4

3.4.1 **Power Spectral Density Limit**

Power Spectral Density Limit

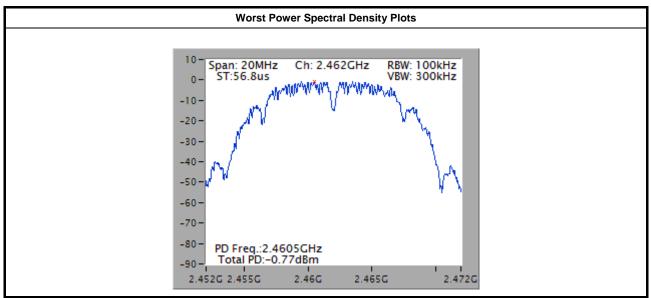
 \boxtimes Power Spectral Density (PSD) ≤ 8 dBm/3kHz

3.4.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures

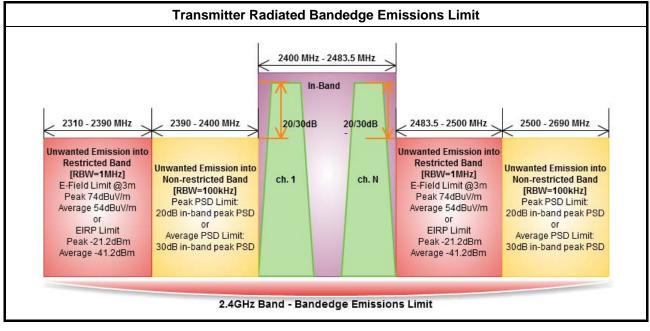
			Test Method						
	Peak power spectral density procedures that the same method as used to determine the conducted output power. If maximum peak conducted output power was measured to demonstrate compliance to the output power limit, then the peak PSD procedure below (Method PKPSD) shall be used. If maximum conducted output power was measured to demonstrate compliance to the output power limit, then one of the average PSD procedures shall be used, as applicable based on the following criteria (the peak PSD procedure is also an acceptable option).								
	\square	Refe	er as FCC KDB 558074, clause 10.2 Method PKPSD (RBW=3-100kHz;detector=peak)						
	[dut	y cycl	e ≥ 98% or external video / power trigger]						
	\square	Refe	er as FCC KDB 558074, clause 10.3 Method AVGPSD-1 (spectral trace averaging).						
		Refe	er as FCC KDB 558074, clause 10.4 Method AVGPSD-1 Alt. (slow sweep speed)						
	duty	/ cycle	e < 98% and average over on/off periods with duty factor						
		Refe	er as FCC KDB 558074, clause 10.5 Method AVGPSD-2 (spectral trace averaging).						
		Refe	er as FCC KDB 558074, clause 10.6 Method AVGPSD-2 Alt. (slow sweep speed)						
\square	For	condu	ucted measurement.						
	\boxtimes	The port	EUT supports single transmit chain and measurements performed on this transmit chain 1.						
		The	EUT supports diversity transmitting and the results on transmit chain port 1 is the worst case.						
	\square	The	EUT supports multiple transmit chains using options given below:						
		\boxtimes	Option 1: Measure and sum the spectra across the outputs. Refer as FCC KDB 662911, In-band power spectral density (PSD). Sample all transmit ports simultaneously using a spectrum analyzer for each transmit port. Where the trace bin-by-bin of each transmit port summing can be performed. (i.e., in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3, and so on up to the N_{TX} output to obtain the value for the first frequency bin of the summed spectrum.). Add up the amplitude (power) values for the different transmit chains and use this as the new data trace.						
			Option 2: Measure and add 10 $\log(N)$ dB, where N is the number of transmit chains. Refer as FCC KDB 662911, In-band power spectral density (PSD). Performed at each transmit chains and each transmit chains shall be compared with the limit have been reduced with 10 $\log(N)$. Or each transmit chains shall be add 10 $\log(N)$ to compared with the limit.						



3.4.4 Test Setup

3.4.5 Test Result of Power Spectral Density

			Power Spectral Density Result				
Condi	tion		Power Spectral Density				
Modulation Mode	Modulation Mode N _{TX}		Sum Chain (dBm/100kHz)	PSD Limit (dBm/3kHz)			
11b	1	2412	-5.56	8			
11b	1	2437	-3.52	8			
11b	1	2462	-0.77	8			
11g	1	2412	-9.22	8			
11g	1	2437	-4.31	8			
11g	1	2462	-8.22	8			
HT20	2	2412	-9.70	8			
HT20	2	2437	-4.28	8			
HT20	2	2462	-7.04	8			
HT40	2	2422	-12.52	8			
HT40	2	2437	-9.37	8			
HT40	2	2452	-12.69	8			
Resi	ılt	•	Com	plied			

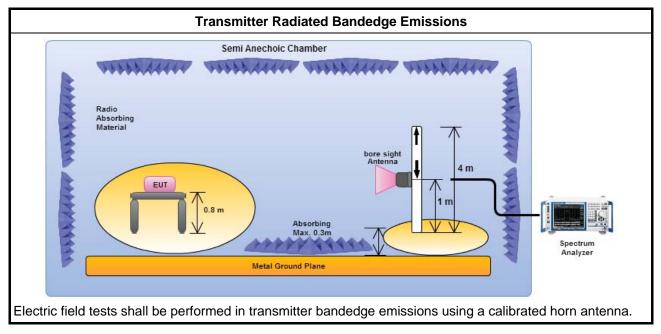


Note : Have been offset 15.2dBm for 3kHz data

3.5 Transmitter Bandedge Emissions

3.5.1 Transmitter Radiated Bandedge Emissions Limit

3.5.2 Measuring Instruments


Refer a test equipment and calibration data table in this test report.

3.5.3 Test Procedures

		Test Method							
\bowtie	The	The average emission levels shall be measured in [duty cycle \geq 98 or duty factor].							
\square	Refer as ANSI C63.10, clause 6.9.2.2 bandedge testing shall be performed at the lowest frequency channel and highest frequency channel within the allowed operating band.								
\square	For	the transmitter unwanted emissions shall be measured using following options below:							
	\boxtimes	Refer as FCC KDB 558074, clause 11 for unwanted emissions into non-restricted bands.							
	\boxtimes	Refer as FCC KDB 558074, clause 12 for unwanted emissions into restricted bands.							
		□ Refer as FCC KDB 558074, clause 12.2.5.1 Option 1 (trace averaging for duty cycle ≥98%)							
		Refer as FCC KDB 558074, clause 12.2.5.2 Option 2 (trace averaging + duty factor).							
		☐ Refer as FCC KDB 558074, clause 12.2.5.3 Option 3 (Reduced VBW≥1/T).							
		Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). VBW \geq 1/T, where T is pulse time.							
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.							
		Refer as FCC KDB 558074, clause 11.3 and 12.2.4 measurement procedure peak limit.							
\boxtimes	For	the transmitter bandedge emissions shall be measured using following options below:							
		Refer as FCC KDB 558074, clause 13.3 for narrower resolution bandwidth (100kHz) using the band power and summing the spectral levels (i.e., 1 MHz).							
	\square	Refer as ANSI C63.10, clause 6.9.2 for band-edge testing and the test distance is 3m.							
		Refer as ANSI C63.10, clause 6.9.3 for marker-delta method for band-edge measurements.							
\square	For	radiated measurement, refer as FCC KDB 558074, clause 12.2.7.							

3.5.4 Test Setup

3.5.5 Transmitter Radiated Bandedge Emissions

	2400-2483.5MHz Transmitter Radiated Bandedge Emissions (Non-restricted Band)									
Modulation	Ντχ	Test Freq. (MHz)	In-band PSD [i] (dBuV/100kHz)	Freq. (MHz)	Out-band PSD [o] (dBuV/100kHz)	[i] – [o] (dB)	Limit (dB)	Pol.		
11b	1	2412	103.01	2399.94	64.48	38.53	20	V		
11b	1	2462	107.67	2537.40	63.92	43.75	20	V		
11g	1	2412	97.62	2399.82	64.69	32.93	20	V		
11g	1	2462	102.87	2505.00	64.05	38.82	20	V		
HT20	2	2412	101.49	2399.82	66.65	34.84	20	V		
HT20	2	2462	100.57	2484.70	64.68	35.89	20	V		
HT40	2	2422	96.42	2398.97	66.51	29.91	20	V		
HT40	2	2452	99.47	2488.40	64.44	35.03	20	V		
Note 1: Measure	ment wo	rst emission	s of receive ante	nna polarization						

	2400-2483.5MHz Transmitter Radiated Bandedge Emissions (Restricted Band)									
Modulation Mode	Ντχ	Freq. (MHz)	Measure Distance (m)	Freq. (MHz) PK	Level (dBuV/m) PK	Limit (dBuV/m) PK	Freq. (MHz) AV	Level (dBuV/m) AV	Limit (dBuV/m) AV	Pol.
11b	1	2412	3	2388.29	62.92	74	2389.07	50.40	54	V
11b	1	2462	3	2483.50	64.44	74	2483.50	52.67	54	V
11g	1	2412	3	2389.07	69.40	74	2390.00	52.43	54	V
11g	1	2462	3	2485.00	69.63	74	2483.50	52.35	54	V
HT20	2	2412	3	2389.97	66.43	74	2390.00	52.28	54	V
HT20	2	2462	3	2484.70	71.94	74	2483.50	52.32	54	V
HT40	2	2422	3	2389.07	66.45	74	2388.94	52.63	54	V
HT40	2	2452	3	2486.60	66.02	74	2483.50	52.95	54	V
lote 1: Measure	ote 1: Measurement worst emissions of receive antenna polarization.									

3.6 Transmitter Unwanted Emissions

3.6.1 Transmitter Radiated Unwanted Emissions Limit

Restricted Band Emissions Limit								
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)					
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300					
0.490~1.705	24000/F(kHz)	33.8 - 23	30					
1.705~30.0	30	29	30					
30~88	100	40	3					
88~216	150	43.5	3					
216~960	200	46	3					
Above 960	500	54	3					

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

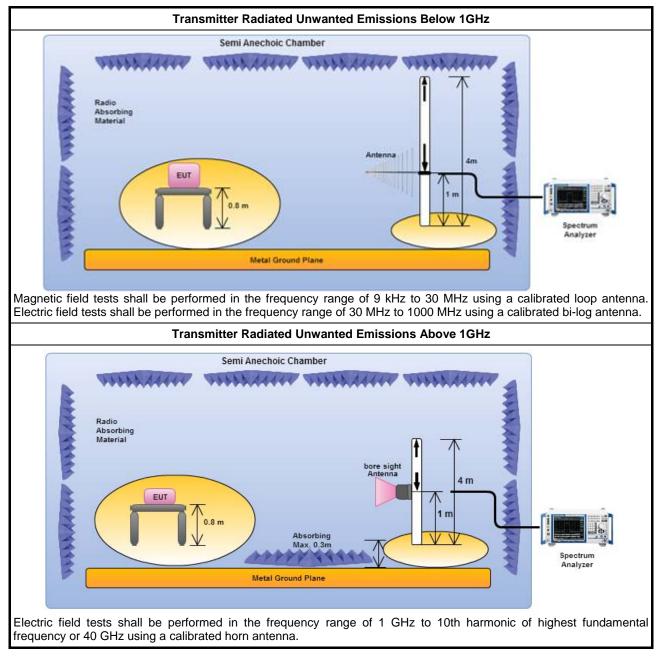
Un-restricted Band Emissions Limit						
RF output power procedure	Limit (dB)					
Peak output power procedure	20					
Average output power procedure	30					
Note 1: If the peak output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the peak conducted output power measured within						

any 100 kHz outside the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum measured in-band peak PSD level.

Note 2: If the average output power procedure is used to measure the fundamental emission power to demonstrate compliance to requirements, then the power in any 100 kHz outside of the authorized frequency band shall be attenuated by at least 30 dB relative to the maximum measured in-band average PSD level.

3.6.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

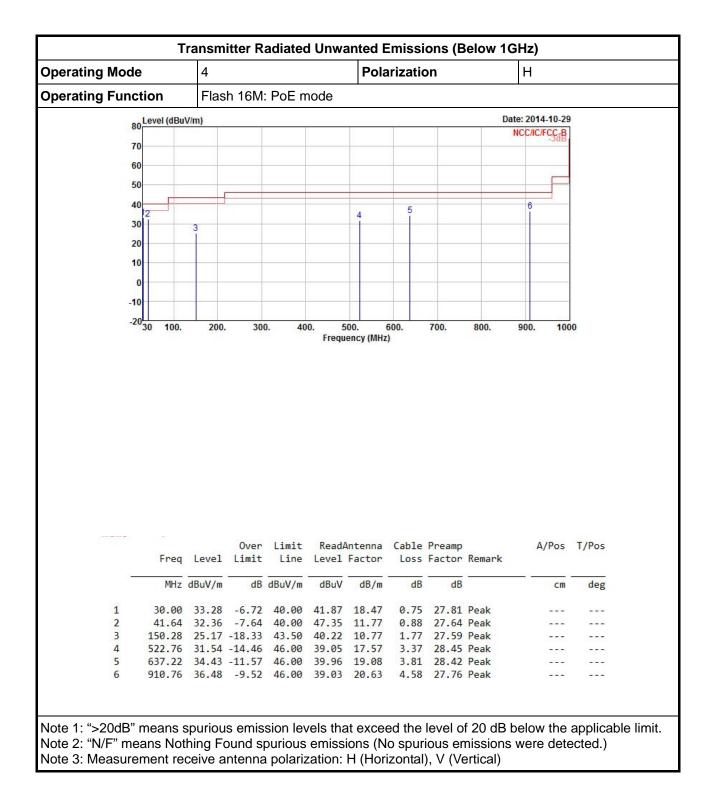


3.6.3 Test Procedures

		Test Method						
\boxtimes	Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).							
\square	The	average emission levels shall be measured in [duty cycle \geq 98 or duty factor].						
\square	For	the transmitter unwanted emissions shall be measured using following options below:						
	\square	Refer as FCC KDB 558074, clause 11 for unwanted emissions into non-restricted bands.						
	\boxtimes	Refer as FCC KDB 558074, clause 12 for unwanted emissions into restricted bands.						
		☐ Refer as FCC KDB 558074, clause 12.2.5.1 Option 1 (trace averaging for duty cycle ≥98%)						
		Refer as FCC KDB 558074, clause 12.2.5.2 Option 2 (trace averaging + duty factor).						
		☐ Refer as FCC KDB 558074, clause 12.2.5.3 Option 3 (Reduced VBW≥1/T).						
		Refer as ANSI C63.10, clause 4.2.3.2.3 (Reduced VBW). VBW \geq 1/T, where T is pulse time.						
		Refer as ANSI C63.10, clause 4.2.3.2.4 average value of pulsed emissions.						
		Refer as FCC KDB 558074, clause 11.3 and 12.2.4 measurement procedure peak limit.						
		Refer as FCC KDB 558074, clause 12.2.3 measurement procedure Quasi-Peak limit.						
\boxtimes	For	radiated measurement, refer as FCC KDB 558074, clause 12.2.7.						
	\boxtimes	Refer as ANSI C63.10, clause 6.4 for radiated emissions below 30 MHz and test distance is 3m.						
	\square	Refer as ANSI C63.10, clause 6.5 for radiated emissions 30 MHz to 1 GHz and test distance is 3m.						
	\boxtimes	Refer as ANSI C63.10, clause 6.6 for radiated emissions above 1 GHz and test distance is 3m.						

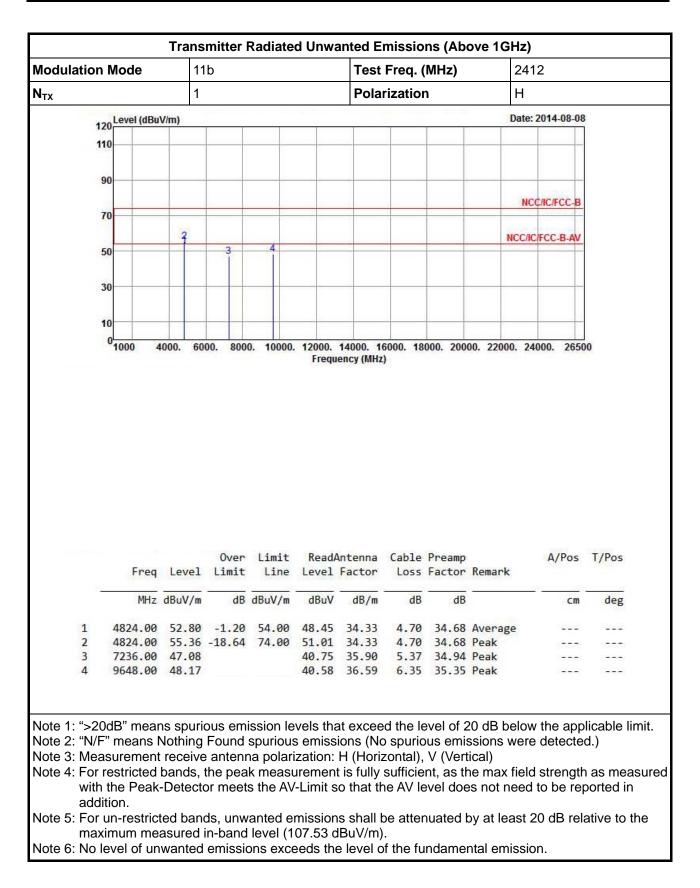
3.6.4 Test Setup

3.6.5 Transmitter Radiated Unwanted Emissions (Below 30MHz)


All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

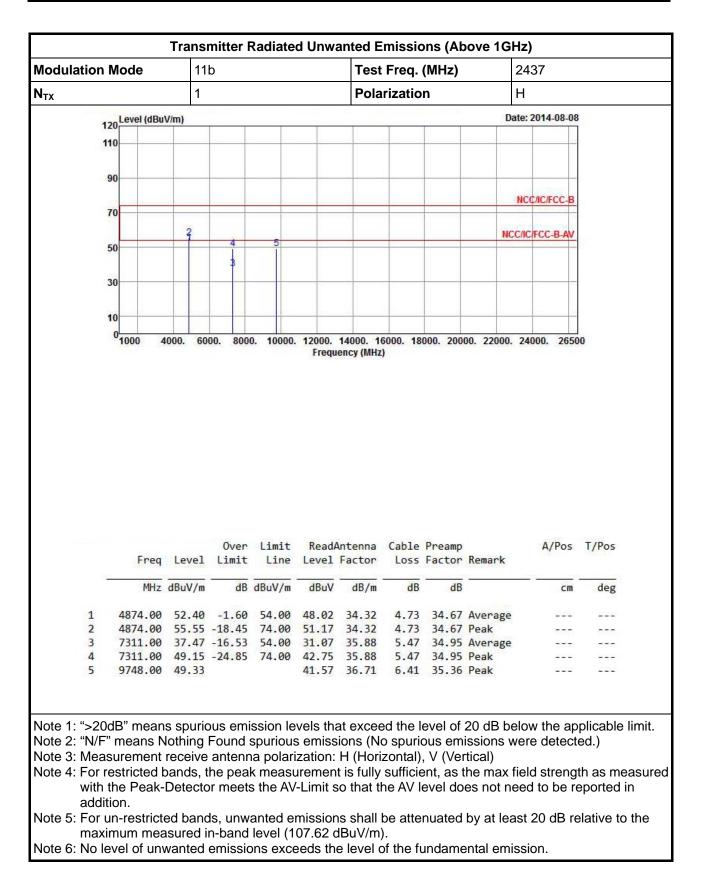
erating Fu		4				FUla	rizatio			V	
	nction	Flas	h 16M:	PoE m	node	•					
	80 Level (dBu	V/m)	m) Date: 2014-10-25								
										NCC/IC/FCC-E	
	70					1			1		
	60										
	50										
	40 12								6		_
	11 3				4		5		Ĩ		
	30										
	20					0					
	10						-	-			-
	0										
	-10										
	-20 <mark>30 100.</mark>				Freque	ency (MHz					
				Limit	ReadA	ntenna	Cable		Dente	A/Pos	T/Pos
		Level				ntenna	Cable	Preamp Factor	Remark	A/Pos	T/Pos
	Freq	Level dBuV/m	Limit		ReadA	ntenna	Cable		Remark	A/Pos cm	
_1	Freq 	dBuV/m 36.11	Limit 	Line dBuV/m 40.00	ReadA Level dBuV 49.82	ntenna Factor dB/m 13.10	Cable Loss dB 0.85	Factor dB 27.66	Peak		
2	Freq 	dBuV/m 36.11 36.83	Limit 	Line dBuV/m 40.00 40.00	ReadA Level dBuV 49.82 54.76	ntenna Factor dB/m 13.10 8.65	Cable Loss dB 0.85 0.95	Factor dB 27.66 27.53	Peak		
2	Freq 	dBuV/m 36.11 36.83 30.91	Limit dB -3.89 -3.17 -12.59	Line dBuV/m 40.00 40.00 43.50	ReadA Level dBuV 49.82 54.76 48.60	ntenna Factor dB/m 13.10 8.65 8.68	Cable Loss dB 0.85 0.95 1.34	Factor dB 27.66 27.53 27.71	Peak Peak Peak		
2	Freq 	dBuV/m 36.11 36.83	Limit dB -3.89 -3.17 -12.59 -14.68	Line dBuV/m 40.00 40.00 43.50 46.00	ReadA Level dBuV 49.82 54.76 48.60 38.90	ntenna Factor dB/m 13.10 8.65 8.68 17.60	Cable Loss dB 0.85 0.95 1.34 3.22	Factor dB 27.66 27.53	Peak Peak Peak Peak	cm 	deg

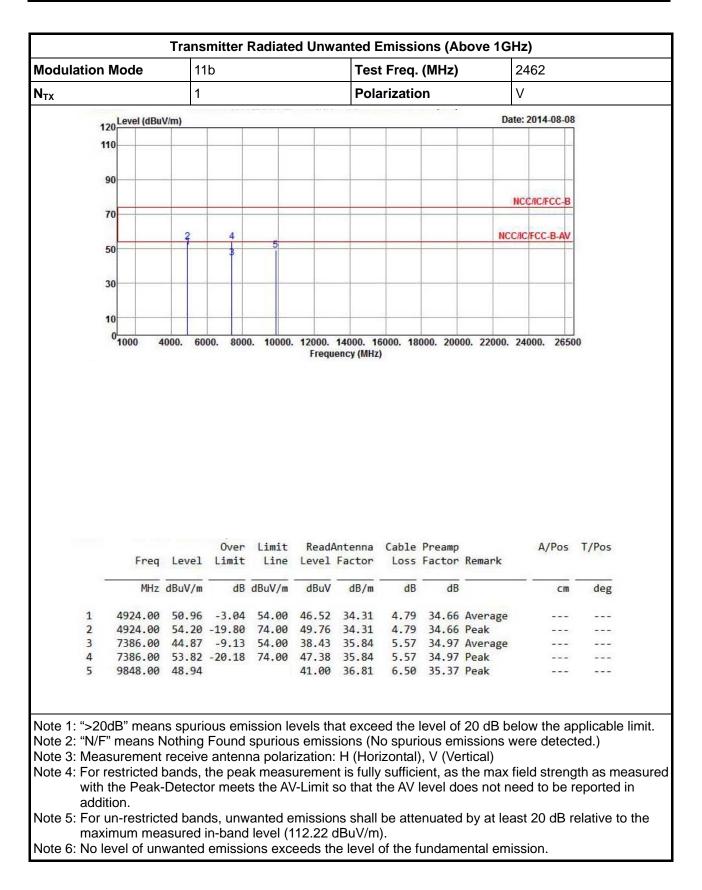
3.6.6 Transmitter Radiated Unwanted Emissions (Below 1GHz)

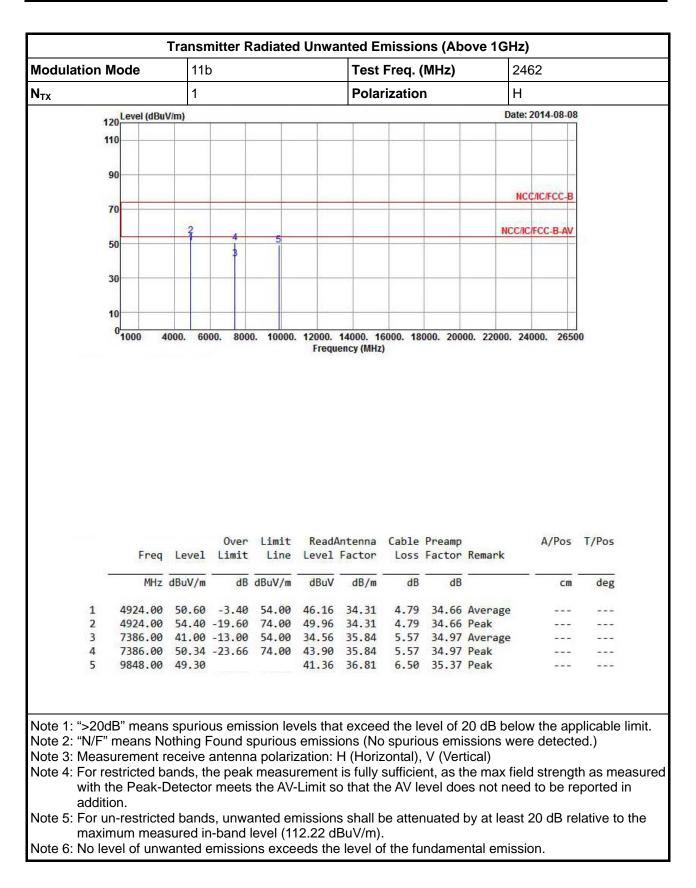


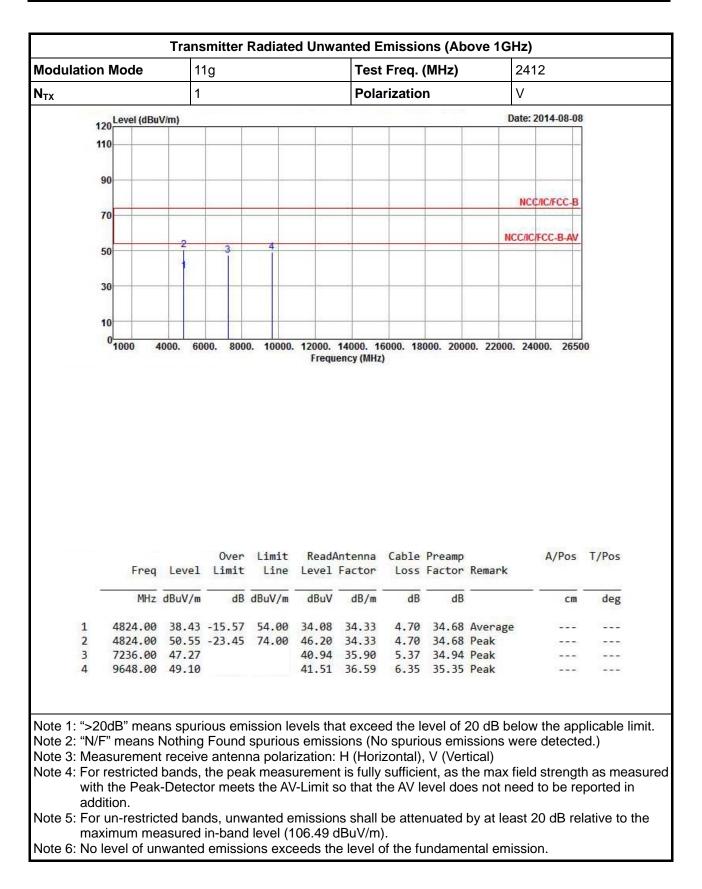

dulation				Vaciate				•	ove 1GH		
	Mode	11	b			Test	Freq. ((MHz)	2	2412	
		1				Pola	rization	า	١	/	
1	20 Level (dBu)	V/m)		1		17	12		Da	ate: 2014-08-08	3
	10						_				
0	200										
-	90										
										NCC/IC/FCC-B	
1	70										
		2		4					NC	C/IC/FCC-B-AV	
	50			4							
5	20										
	30										
	10										
	0	000. 60	00. 800		40000	44000 4	000 40	000 000	00 00000	24000. 2650	
	Freq	Level		Limit Line		Antenna Factor		Preamp Factor	Remark	A/Pos	T/Pos
		Level dBuV/m	Limit			Factor		Factor	Remark	A/Pos cm	T/Pos
1		dBuV/m	Limit dB	Line	Level dBuV	Factor	Loss dB	Factor dB	-	Cm	
2	MHz 4824.00 4824.00	dBuV/m 52.88 55.37	Limit dB -1.12	Line dBuV/m 54.00	Level dBuV 48.53 51.02	Factor dB/m 34.33 34.33	Loss dB 4.70 4.70	Factor dB 34.68 34.68	Average Peak	Cm	deg
2 3	MHz 4824.00 4824.00 7236.00	dBuV/m 52.88 55.37 47.96	Limit dB -1.12	Line dBuV/m 54.00	Level dBuV 48.53 51.02 41.63	Factor dB/m 34.33 34.33 35.90	Loss dB 4.70 4.70 5.37	Factor dB 34.68 34.94	Average Peak Peak	Cm	deg
2	MHz 4824.00 4824.00	dBuV/m 52.88 55.37 47.96	Limit dB -1.12	Line dBuV/m 54.00	Level dBuV 48.53 51.02 41.63	Factor dB/m 34.33 34.33	Loss dB 4.70 4.70 5.37	Factor dB 34.68 34.68	Average Peak Peak	Cm	deg
2 3 4 e 1: ">20 e 2: "N/F e 3: Mea e 4: For r with	MHz 4824.00 4824.00 7236.00 9648.00 0dB" mean " means N asurement restricted I the Peak-	dBuV/m 52.88 55.37 47.96 48.90 is spurio Nothing receive bands, f	Limit dB -1.12 -18.63 ous emi Found antenr the pea	Line dBuV/m 54.00 74.00 ission le spurious na polari k measu	Level dBuV 48.53 51.02 41.63 41.31 vels that s emiss zation: urement	Factor dB/m 34.33 35.90 36.59 at exceetions (Norized) H (Horized) is fully	Loss dB 4.70 4.70 5.37 6.35 d the le o spuric zontal), sufficie	Factor dB 34.68 34.94 35.35 evel of 2 bus emis V (Vert nt, as th	Average Peak Peak Peak Peak 0 dB bel ssions we ical) ne max fi	Cm	deg licable lim d.)
2 3 4 e 1: ">20 e 2: "N/F e 3: Mea e 4: For i with addi	MHz 4824.00 7236.00 9648.00 0dB" means " means N asurement restricted I the Peak- tion.	dBuV/m 52.88 55.37 47.96 48.90 Is spurid Nothing receive bands, f	Limit dB -1.12 -18.63 Dus emi Found e antenr the pea or meets	Line dBuV/m 54.00 74.00 ission le spurious ha polari k measu s the AV	Level dBuV 48.53 51.02 41.63 41.31 vels that is emissively an emissive emissi	Factor dB/m 34.33 34.33 35.90 36.59 at excees ions (No H (Horizizioni fully o that the	Loss dB 4.70 4.70 5.37 6.35 d the le o spuric zontal), sufficie ne AV le	Factor dB 34.68 34.94 35.35 evel of 2 bus emis V (Vert nt, as the evel doe	Average Peak Peak Peak 0 dB bel ssions we ical) ne max firs s not ne	cm ow the app ere detected eld strength	deg licable lim d.) n as measu
2 3	MHz 4824.00 4824.00 7236.00	dBuV/m 52.88 55.37 47.96	Limit dB -1.12	Line dBuV/m 54.00	Level dBuV 48.53 51.02 41.63	Factor dB/m 34.33 34.33 35.90	Loss dB 4.70 4.70 5.37	Factor dB 34.68 34.94		Average Peak Peak	Remark

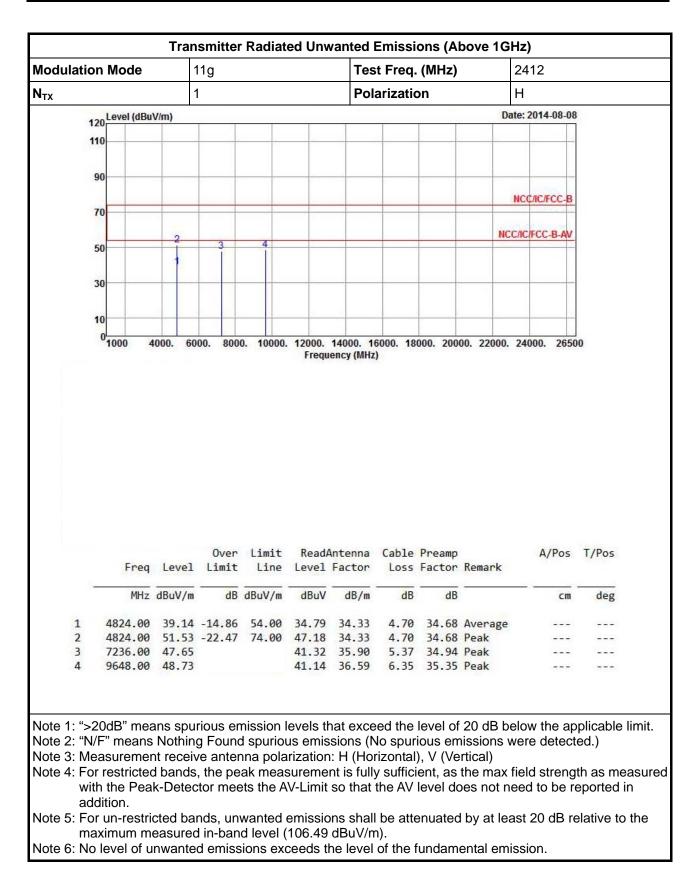
3.6.7 Transmitter Radiated Unwanted Emissions (Above 1GHz)

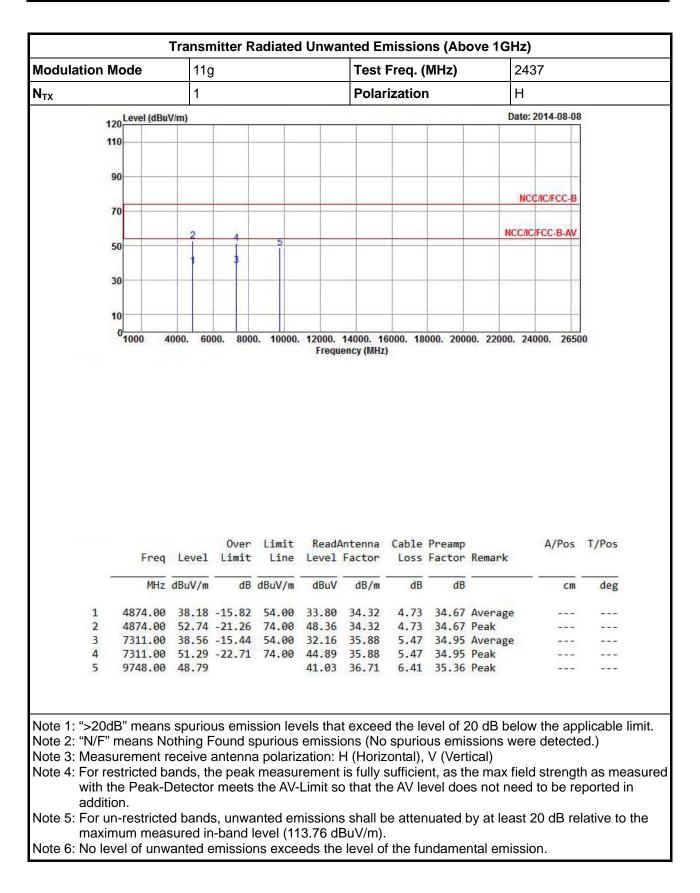


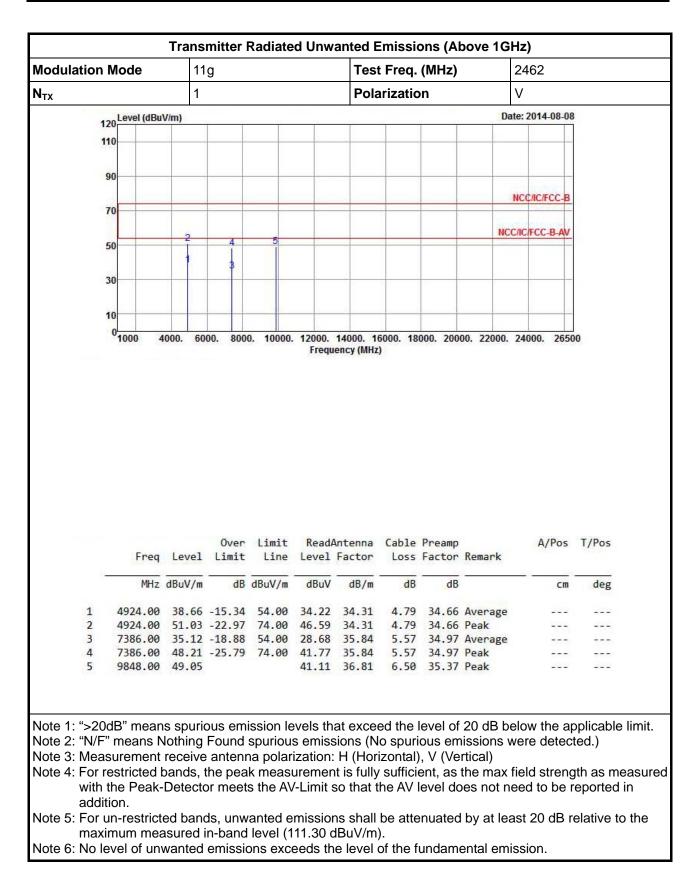


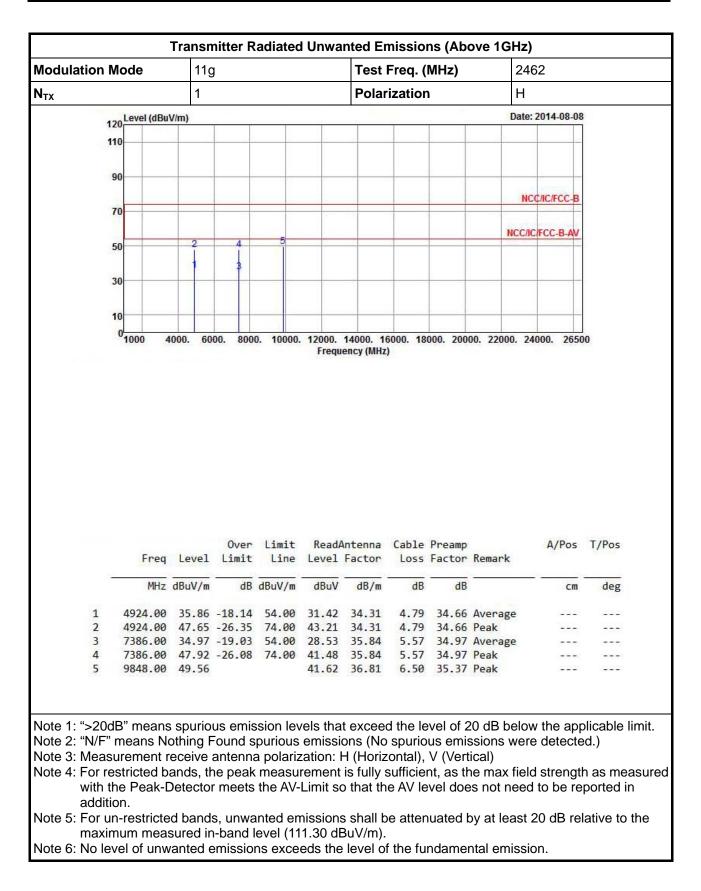


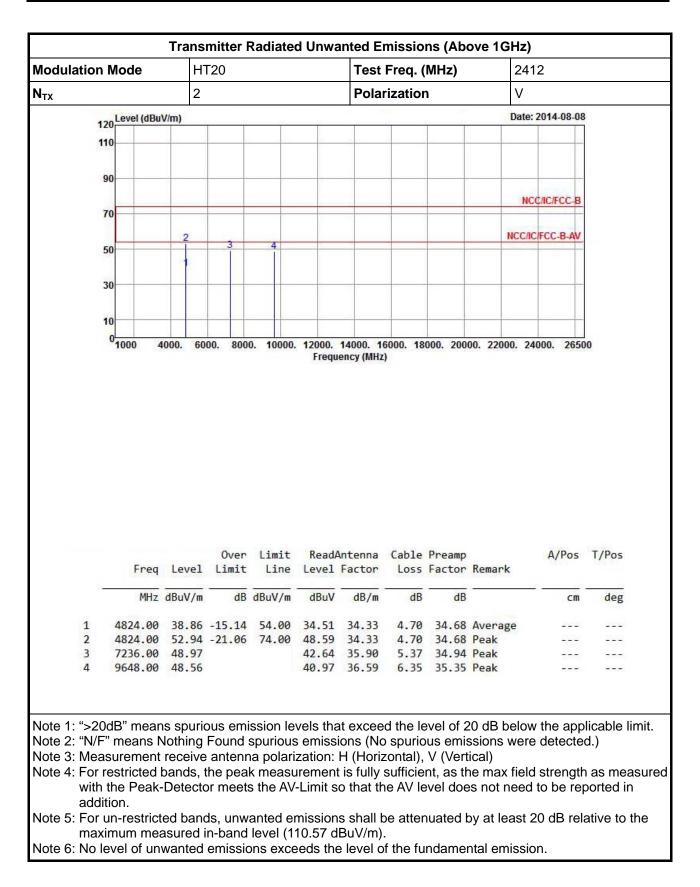


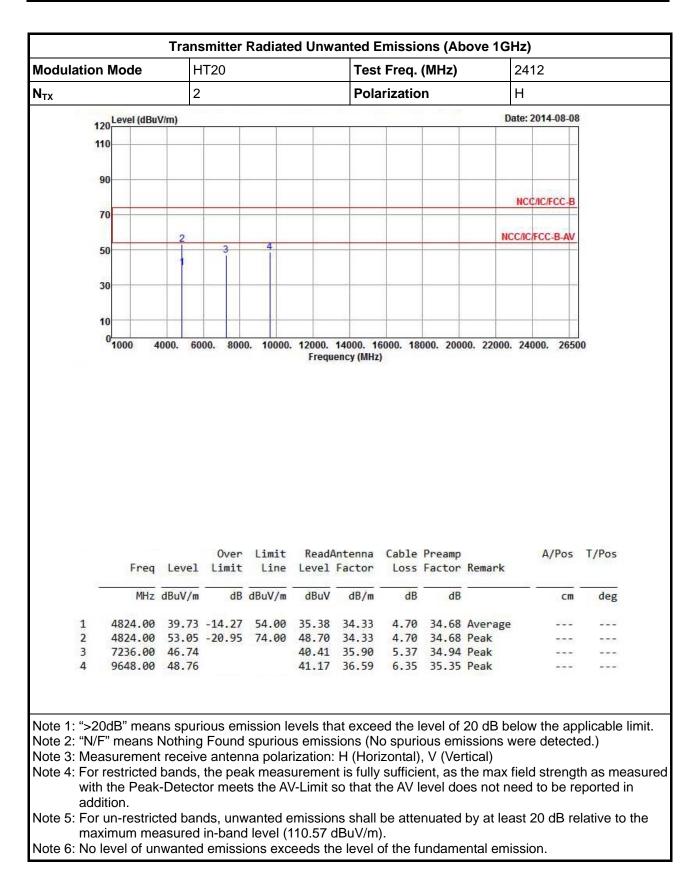


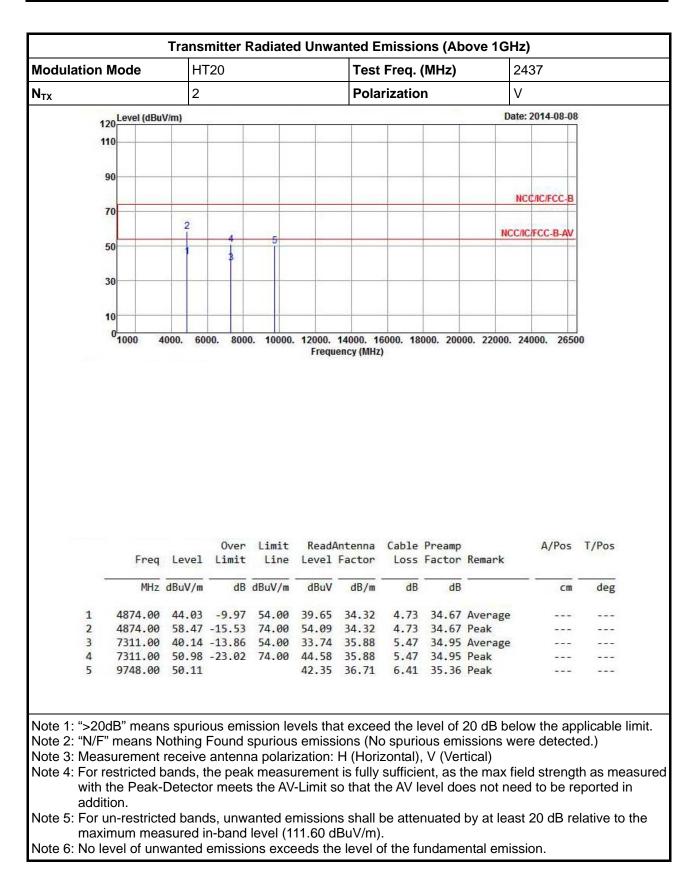


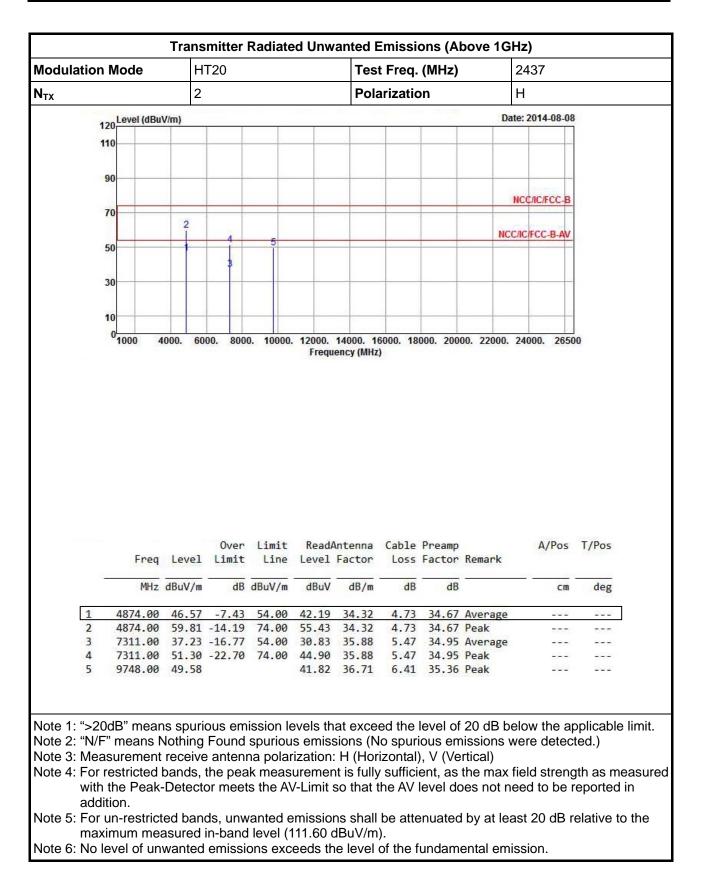


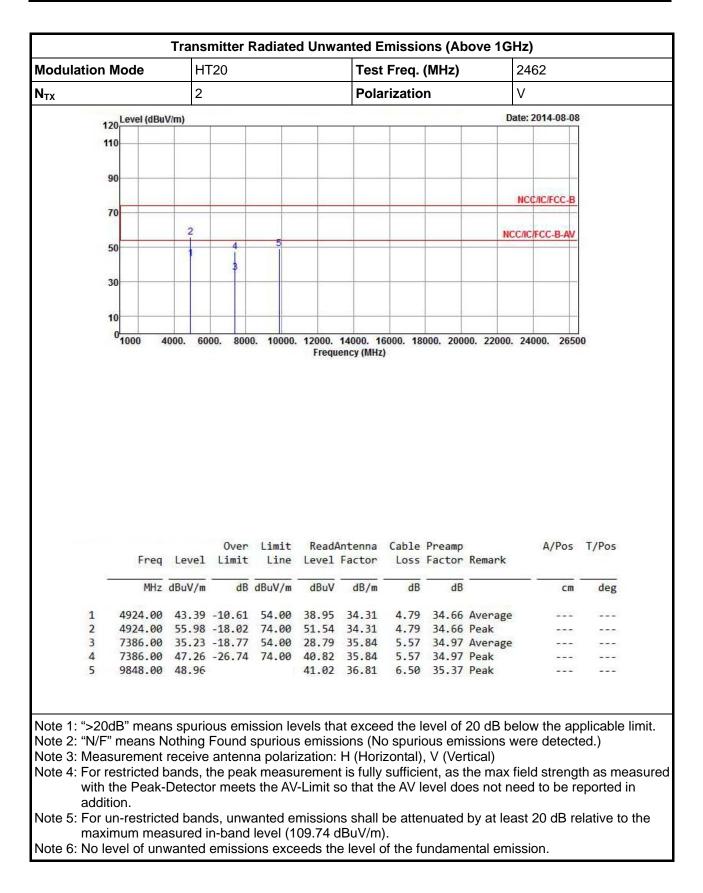


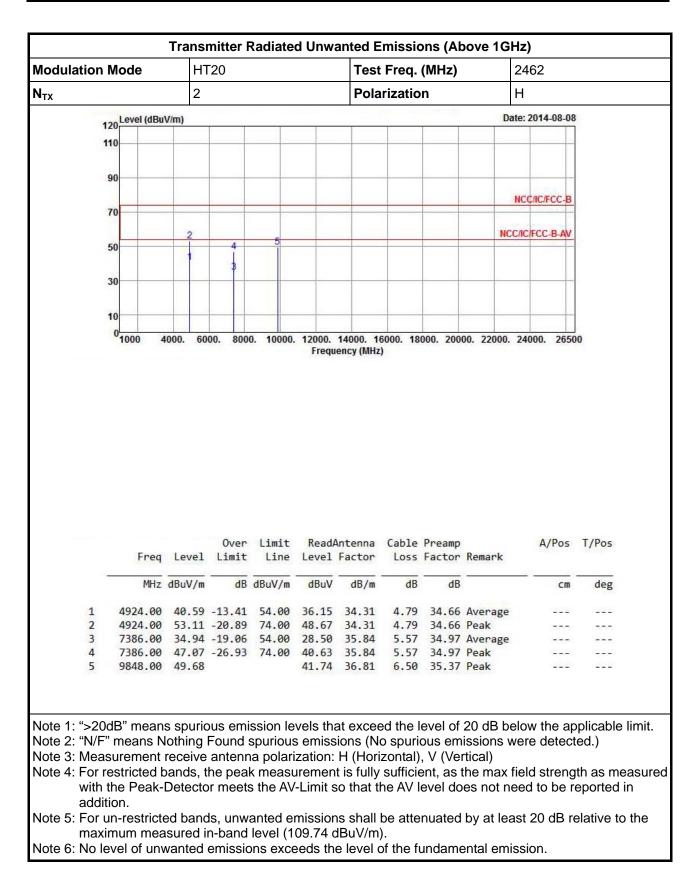


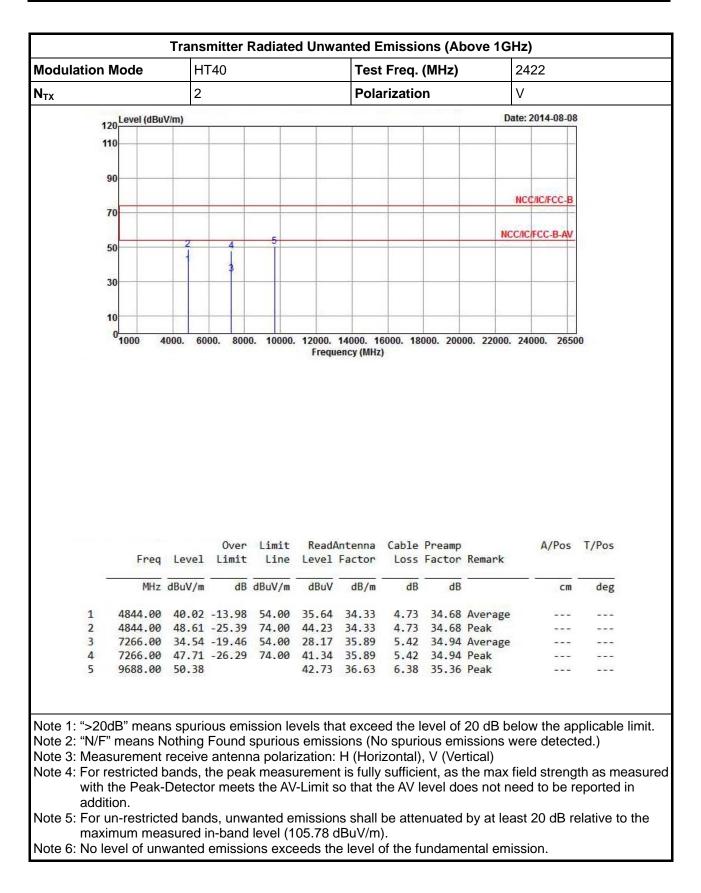


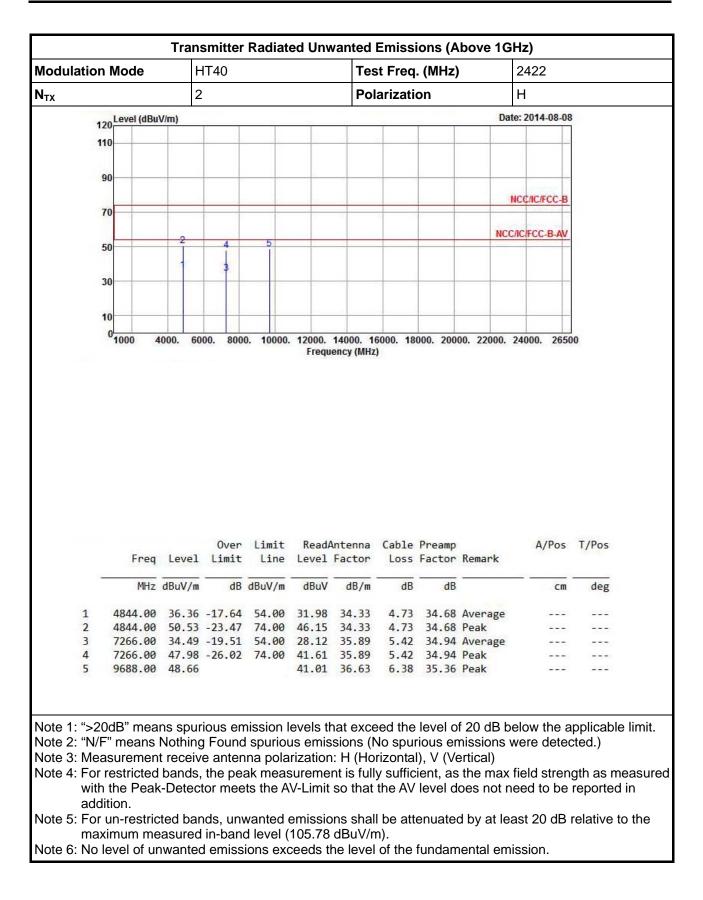


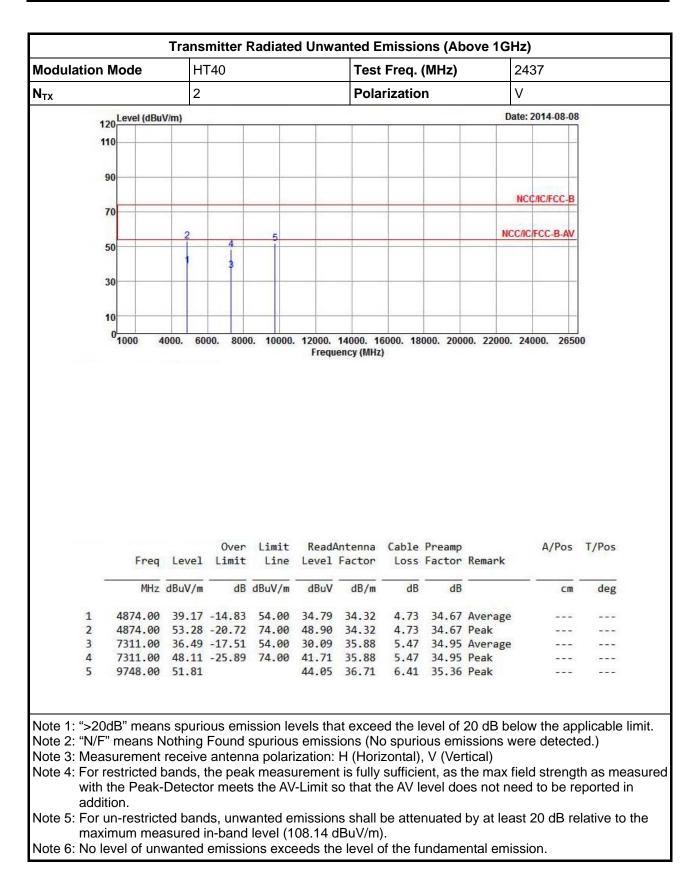


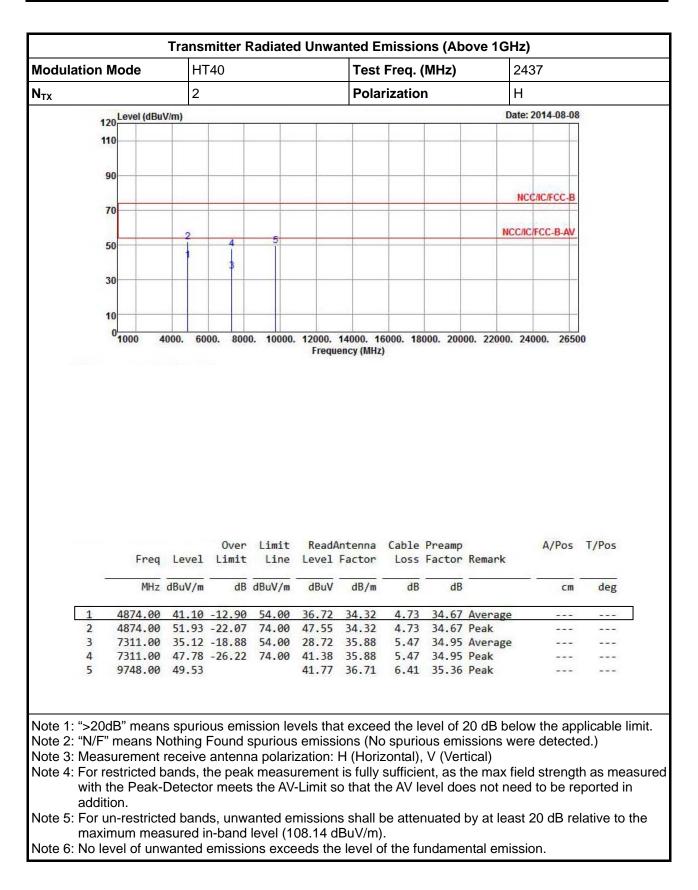


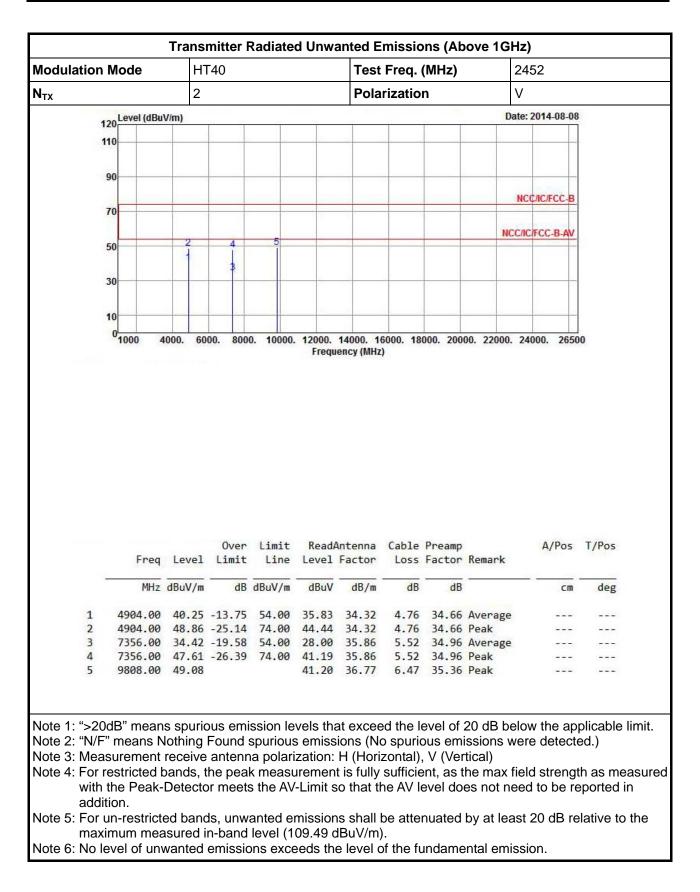


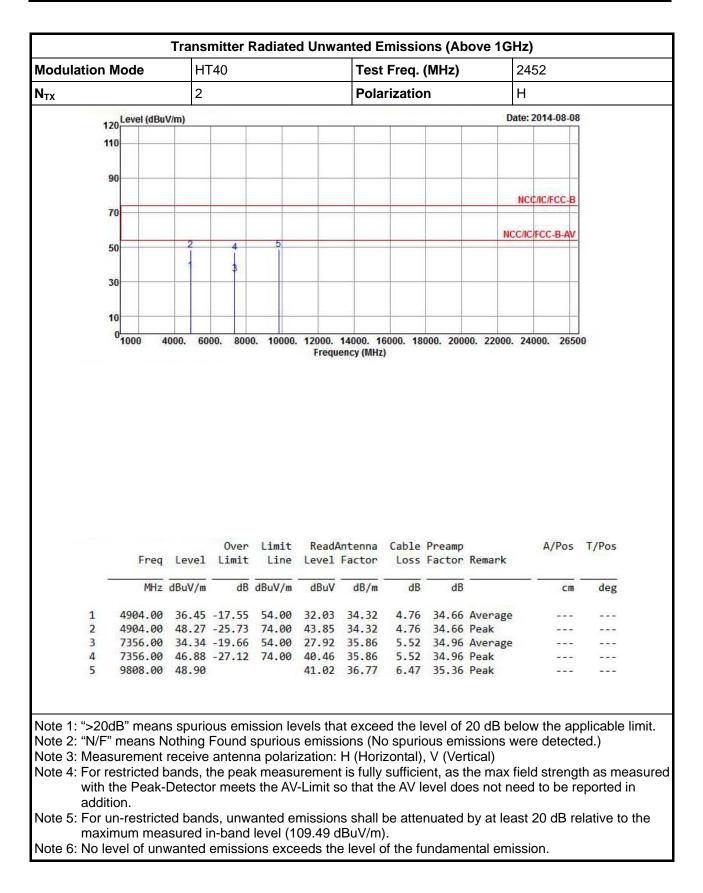












4 Test Equipment and Calibration Data

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
EMC Receiver	R&S	ESCS 30	100174	9kHz ~ 2.75GHz	Mar. 26, 2014	AC Conduction
LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	8127-477	9kHz ~ 30MHz	Jan. 21, 2014	AC Conduction
LISN (Support Unit)	EMCO	3810/2NM	9703-1839	9kHz ~ 30MHz	Apr. 21, 2014	AC Conduction
RF Cable-CON	HUBER+SUHNER	RG213/U	7.61183201e+012	9kHz ~ 30MHz	Oct. 30, 2014	AC Conduction
EMI Filter	LINDGREN	LRE-2030	2651	< 450 Hz	N/A	AC Conduction

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSV 40	101013	9kHz ~ 40GHz	Jan. 25, 2014	RF Conducted
AC Power Source	G.W	APS-9102	EL920581	AC 0V ~ 300V	Jul. 15, 2014	RF Conducted
Temp. and Humidity Chamber	Giant Force	GTH-225-20-SP-SD	MAA1112-007	-20 ~ 100 ℃	Nov. 20, 2013	RF Conducted
Signal Generator	R&S	SMR40	100116	10MHz ~ 40GHz	Jul. 31, 2014	RF Conducted
Power Sensor	Anritsu	MA2411B	0917017	300MHz ~ 40GHz	Jan. 28, 2014	RF Conducted
Power Meter	Anritsu	ML2495A	0949003	300MHz ~ 40GHz	Jan. 28, 2014	RF Conducted

Note: Calibration Interval of instruments listed above is one year.

<Below 1GHz>

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSP40	100593	9kHz ~ 40GHz	Oct. 02, 2014	Radiated Emission
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH02-HY	30MHz ~ 1GHz 3m	May 11, 2014	Radiated Emission
Amplifier	Agilent	8447D	2944A11149	100kHz ~ 1.3GHz	Jul. 22, 2014	Radiated Emission
RF Cable-R03m	Jye Bao	RG142	CB021	9kHz ~ 1GHz	Nov. 09, 2013	Radiated Emission
Bilog Antenna	SCHAFFNER	CBL61128	2723	30MHz ~ 2GHz	Sep. 20, 2014	Radiated Emission
Turn Table	Chaintek Instruments	3000	MF7802058	0 ~ 360 degree	N/A	Radiated Emission
Antenna Mast	MF	MF7802	MF780208205	1 ~ 4 m	N/A	Radiated Emission

Note: Calibration Interval of instruments listed above is one year.

<Above 1GHz>

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Spectrum Analyzer	R&S	FSP40	100593	9kHz ~ 40GHz	Oct. 03, 2013	Radiated Emission
3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH02-HY	30MHz ~ 1GHz 3m	May 11, 2014	Radiated Emission
Amplifier	Agilent	8449B	3008A02373	1GHz ~ 26.5GHz	Aug. 28, 2013	Radiated Emission
Horn Antenna	ETS-LINDGREN	3117	00091920	1GHz ~ 18GHz	Nov. 25, 2013	Radiated Emission
Horn Antenna	SCHWARZBECK	BBHA9170	BBHA9170154	15GHz ~ 40GHz	Jan. 10, 2014	Radiated Emission
RF Cable-high	SUHNER	SUCOFLEX106	03CH02-HY	1GHz ~ 40GHz	Mar. 05, 2014	Radiated Emission
Turn Table	Chaintek Instruments	3000	MF7802058	0 ~ 360 degree	N/A	Radiated Emission
Antenna Mast	MF	MF7802	MF780208205	1 ~ 4 m	N/A	Radiated Emission

Note: Calibration Interval of instruments listed above is one year.

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
Loop Antenna	TESEQ	HLA 6120	31244	9kHz ~ 30MHz	Dec. 02, 2012	Radiated Emission

Note: Calibration Interval of instruments listed above is two years.