RF Exposure Evaluation

Page No. : 1 of 3

FCC ID : NDD9574381114

1. Maximum Permissible Exposure

1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ², H ² or S (minutes)	
0.3-3.0	614	1.63	(100)*	6	
3.0-30	1842 / f	4.89 / f	(900 / f)*	6	
30-300	61.4	0.163	1.0	6	
300-1500			F/300	6	
1500-100,000			5	6	

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ², H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

1.2. MPE Calculation Method

E (V/m) =
$$\frac{\sqrt{30 \times P \times G}}{d}$$
 Power Density: Pd (W/m²) = $\frac{E^2}{377}$

E = Electric field (V/m)

P = Peak RF output power (W)

G = EUT Antenna numeric gain (numeric)

d = Separation distance between radiator and human body (m)

The formula can be changed to

$$Pd = \frac{30 \times P \times G}{377 \times d^2}$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

Page No. : 2 of 3 FCC ID : NDD9574381114 FCC TEST REPORT **Report No. : FR102022**

1.3. Calculated Result and Limit

Antenna Type: PIFA Antenna (Mobile)

Max Conducted Power forIEEE 802.11b/g

Operating Frequency (GHz)	Min. User Distance (cm)	Gain (dBi)	Numeric Gain	Output Power (dBm)	Conducted Power (mW)	Power Density (mW/cm2)
2.437	20	2	1.584893	17.09	51.1682	0.0161

Max Conducted Power for IEEE 802.11n (20MHz)

Operating Frequency (GHz)	Min. User Distance (cm)	Gain (dBi)	Numeric Gain	Output Power (dBm)	Conducted Power (mW)	Power Density (mW/cm2)
2.437	20	2	1.584893	17.59	57.4116	0.0181

Max Conducted Power for IEEE 802.11n (40MHz)

Opera Frequ (GF	iency	Min. User Distance (cm)	Gain (dBi)	Numeric Gain	Output Power (dBm)	Conducted Power (mW)	Power Density (mW/cm2)
2.4 2.4	_	20	2	1.584893	17.39	54.8277	0.0173

Page No. : 3 of 3

FCC ID : NDD9574381114