Appendix A. RF Exposure Evaluation

1. Maximum Permissible Exposure

1.1. Applicable Standard

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6
(B) Limits for General	Population / Uncontro	lled Exposure		

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-1.34	614	1.63	(100)*	30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Power Density: $Pd(W/m^2) = \frac{E^2}{377}$

Note: f = frequency in MHz; *Plane-wave equivalent power density

1.2. MPE Calculation Method

$$\mathsf{E}(\mathsf{V/m}) = \frac{\sqrt{30 \times P \times G}}{d}$$

$$\mathbf{E} = \text{Electric field (V/m)}$$

 \mathbf{P} = Peak RF output power (W)

 $\mathbf{G} = \mathrm{EUT}$ Antenna numeric gain (numeric)

 \mathbf{d} = Separation distance between radiator and human body (m)

The formula can be changed to

$$377 \times d^2$$

From the peak EUT RF output power, the minimum mobile separation distance, d=0.2m, as well as the gain of the used antenna, the RF power density can be obtained.

1.3. Calculated Result and Limit

Antenna Type : Dipole Antenna Max Conducted Power for 2.4GHz Mobile For Single Chain: IEEE 802.11b

Operating Frequency (GHz)	Min. User Distance (cm)	Gain (dBi)	Numeric Gain	Output Power (dBm)	Conducted Power (mW)	Power Density (mW/cm2)
2.462	20	3	1.995262	18.42	69.5024	0.0276

IEEE 802.11g

Operating Frequency (GHz)	Min. User Distance (cm)	Gain (dBi)	Numeric Gain	Output Power (dBm)	Conducted Power (mW)	Power Density (mW/cm2)
2.437	20	3	1.995262	23.02	200.4472	0.0796

For Two Chains:

Configuration of IEEE 802.11n (20MHz)

Operating Frequency (GHz)	Min. User Distance (cm)	Gain (dBi)	Numeric Gain	Output Power (dBm)	Conducted Power (mW)	Power Density (mW/cm2)
2.412	20	3	1.995262	25.56	359.7493	0.1429

Configuration of IEEE 802.11n (40MHz)

Operating Frequency (GHz)	Min. User Distance (cm)	Gain (dBi)	Numeric Gain	Output Power (dBm)	Conducted Power (mW)	Power Density (mW/cm2)
2.422	20	3	1.995262	25.10	323.5937	0.1285

Configuration of IEEE 802.11n (20MHz)

Operating Frequency (GHz)	Min. User Distance (cm)	Gain (dBi)	Numeric Gain	Output Power (dBm)	Conducted Power (mW)	Power Density (mW/cm2)
2.412	20	3	1.995262	25.56	359.7493	0.1429

Configuration of IEEE 802.11n (20MHz)

Operating Frequency (GHz)	Min. User Distance (cm)	Gain (dBi)	Numeric Gain	Output Power (dBm)	Conducted Power (mW)	Power Density (mW/cm2)
2.412	20	3	1.995262	25.56	359.7493	0.1429

Configuration of IEEE 802.11n (20MHz)

Operating Frequency (GHz)	Min. User Distance (cm)	Gain (dBi)	Numeric Gain	Output Power (dBm)	Conducted Power (mW)	Power Density (mW/cm2)
5.785	20	3	1.995262	23.77	238.2319	0.0946

2.4 GHZ and 5GHZ worst case =0.1429 + 0.0946 = 0.2375 mW/cm2