Prediction of MPE limit at a given distance:

Equation from page 18 of OET Bulleting 65, Edition 97-01

$S=PG/4\pi R^2$

Where:

S= power density

P= power input to the antenna

G= power gain of the antenna in the idrection of interest relative to an isotropic radiator

R= distance to the center of radiation of the antenna

Maximum peak output power at antenna input terminal:	18	dBm
Maximum peak output power at antenna input terminal (linear):	63.0957	
Max Antenna Gain:	18	dBi
Max antenna Gain (linear):	63.0957	
Prediction distance:	200	cm
Prediction frequency:	5800	MHz
MPE limit for uncontrolled exposure at prediction freq:	1	mW/cm^2
Power density S at prediction frequency:	.007896	mW/cm ²
Maximum allowable antenna gain:	39.02	dBi

3.5 STANDARD ANTENNA SUBASSEMBLY FOR M5800SB-AP-60

Type: Sectoral Patch Antenna

Polarization: Vertical, Horizontal electrically selectable

Frequency: 5.7 to 5.9 GHz
Gain: +18 dBiL
Az Beamwidth: >60 degrees
El Beamwidth: >8 degrees
Cross Pol: >15 dB

Front/Back Ratio: >30 DB as mounted in M5800SB-AP-60

VSWR: < 2.0:1 over Bandwidth