

InterLab FCC Measurement/Technical Report on

GSM/UMTS Module M00301

Report Reference: MDE_Opti_0709_FCCc

Test Laboratory:

7 layers AG Borsigstrasse 11 40880 Ratingen Germany email: <u>info@7Layers.de</u>

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the testing laboratory.

7 layers AGAufsichBorsigstrasse 11Chairm.40880 Ratingen, GermanyMarkusPhone: +49 (0) 2102 749 0VorstanFax: +49 (0) 2102 749 350Dr. Harwww.7Layers.comRené SoInterLab® is a registered trademark of 7 layers AG

Aufsichtsratsvorsitzender• Chairman of the Supervisory Board: Markus Becker Vorstand• Board: Dr. Hans-Jürgen Meckelburg René Schildknecht Registergericht• registered in: Düsseldorf, HRB 44096 USt-IdNr• VAT Nr: DE 203159652

Table of Contents

0 Si	ummary	3
0.1 0.2	Technical Report Summary Measurement Summary	3 4
1 Ac	dministrative Data	5
1.1 1.2 1.3 1.4	Testing Laboratory Project Data Applicant Data Manufacturer Data	5 5 5 5
2 Pr	oduct labelling	6
2.1 2.2	FCC ID label Location of the label on the EUT	6 6
3 Te	est object Data	7
3.1 3.2 3.3 3.4 3.5	General EUT Description EUT Main components Ancillary Equipment EUT Setups Operating Modes	7 8 8 9 9
4 Τε	est Results	10
4.1 4.2	Conducted emissions (AC power line) Spurious radiated emissions	10 12
5 Te	est Equipment	15
6 Pł	noto Report	18
7 Se	etup Drawings	21
8 Ar	nnex measurement plots	22
8.1 8.2	AC Mains conducted Radiated Emissions	22 23

0 Summary

0.1 Technical Report Summary

Type of Authorization

Certification for an Unintentional Radiator (Class B digital device)

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 (10-1-06 Edition) and 15 (10-1-06 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

- Part 15, Subpart A General
- § 15.31 Measurement standards
- § 15.33 Frequency range of radiated measurements
- Part 15, Subpart B Unintentional Radiators
- § 15.101 Equipment authorization of unintentional radiators
- § 15.107 Conducted limits
- § 15.109 Radiated emission limits

Note: None.

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 0.2 Measurement Summary.

0.2 Measurement Summary

FCC Part 15, S	ubpart B	§ 15.107	
Conducted Emis	sions (AC power line)	
The measureme	ent was performed ac	cording to ANSI C63.4	2003
OP-Mode	Setup	Port	Final Result
op-mode 1	Setup_01	AC Port (power line)	passed
FCC Part 15, S	ubpart B	§ 15.109	
Spurious Radiat	ed Emissions		
The measureme	ent was performed ac	cording to ANSI C63.4	2003
OP-Mode	Setup	Port	Final Result
op-mode 2	Setup_02	Enclosure	passed

7 layers AG, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

Responsible for Accreditation Scope:

Talak Responsible for Test Report:

Z Post

1 Administrative Data

1.1 Testing Laboratory

Company	Name:		

7 Layers AG

Address

Borsigstr. 11 40880 Ratingen Germany

Dipl.-Ing. Bernhard Retka Dipl.-Ing. Robert Machulec Dipl.-Ing. Thomas Hoell

Dipl.-Ing. Andreas Petz

Gaston Geenslaan 14

2007-07-10 to 2007-07-26

This facility has been fully described in a report submitted to the FCC and accepted under the registration number 96716.

The test facility is also accredited by the following accreditation organisation:- Deutscher Akkreditierungs RatDAR-Registration no. DAT-P-192/99-01

Responsible for Accreditation Scope:

Report Template Version:

1.2 Project Data

Responsible for testing and report: Date of Test(s): Date of Report:

1.3 Applicant Data

Company Name:

Address:

Option NV

3001 Leuven Belgium

Mr. Lodeweyckx

2007-07-16

2007-08-03

Contact Person:

1.4 Manufacturer Data

Company Name:

please see applicant data

Address:

Contact Person:

2 Product labelling

2.1 FCC ID label

At the time of the report there was no FCC label available.

2.2 Location of the label on the EUT

see above

3 Test object Data

3.1 General EUT Description

Equipment under Test	GSM/UMTS Module
Type Designation:	MO0301
Kind of Device:	GSM 850/900/1800/1900 + UTRA FDD I/II/V
(optional)	including HSDPA
Voltage Type:	DC
Nominal Voltage:	3.6 V
Nominal voltage:	3.6 V
Maximum Voltage:	3.6 V
Minimum Voltage:	3.0 V

General product description:

The Equipment under Test (EUT) is a USB modem that supports GSM/EDGE 850/900/1800/1900 and FDD I, II and V with HSDPA.

The EUT provides the following ports:

Ports Enclosure

The main components of the EUT are listed and described in Chapter 3.2

3.2 EUT Main components

Type, S/N, Short Descriptions etc. used in this Test Report

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status	Date of Receipt
EUT A (Code: 37250c01)	GSM/UMTS Module	MO0301	004401440497 333	2.0	2.5.0	2007-06-28
Remark: none						
EUT B	GSM/UMTS	MO0301	004401440497	2.0	2.5.0	2007-07-09
(Code:	Module		333			
37250d01)						
Remark: none						

NOTE: The short description is used to simplify the identification of the EUT in this test report.

3.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	HW Status	SW Status	Serial no.	FCC ID
AE1	Printer	Epson Stylus C84	-	_	FBPT048906	-
AE2	Keyboard	Cherry RS6000	-	_	G0000273	-
AE3	Mouse	Logitech M- BB48	-	-	LZC9050547 8	-
AE4	Monitor	LG Flatron L1740BQ	-	_	509WANF1 W607	BEJL17NU
AE5	Laptop	Fujitsu Siemens AMILO Pro V3205	_	_	YK2H01426 7	_
AE6	AC Adapter	0335C2065	-	_	A30638114 250	-
AE7	Monitor	DELL 1907FPc	_	_	CN-VTC300- 64180-692- UVCSREV- A00	_
AE8	Test cradle	Cobra SPQ	V1.0	_	_	_
AE9	Test cradle	PEPIJN	V2.0	_	_	_

3.4 EUT Setups

This chapter describes the combination of EUTs and ancillary equipment used for testing.

Setup No.	Combination of EUTs	Description
Setup_01	EUT A	Setup for conducted test
	+AE1+AE2+AE3+AE4	
	+AE5+AE6+AE8	
Setup_02	EUT B	Setup for radiated test
	+AE1+AE2+AE3+AE5	
	+AE6+AE7+AE9	

3.5 Operating Modes

This chapter describes the operating modes of the EUTs used for testing.

Op. Mode	Description of Operating Modes	Remarks
op-mode 1	Call established on Traffic Channel (TCH) 661 is a mid channel
	661, Carrier Frequency 1880 MHz	PCS data call
op-mode 2	GSM 1900 idle mode	A mode of operation of a receiver or a transceiver, where the Equipment Under Test (EUT) is powered, available for service and available to respond to a request to set up a call.

4 Test Results

4.1 Conducted emissions (AC power line)

Standard FCC Part 15, 10-1-06 Subpart B

The test was performed according to: ANSI C 63.4, 2003

4.1.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C 63.4-2003. The Equipment Under Test (EUT) was setup in a shielded room to perform the conducted emissions measurements in a typical installation configuration. The EUT was powered from 50μ H || 50 Ohm Line Impedance Stabilization Network (LISN). The LISN's unused connections were terminated with 50 Ohm loads.

The measurement procedure consists of two steps. It is implemented into the EMI test software ES-K1 from R&S.

Step 1: Preliminary scan

Intention of this step is, to determine the conducted EMI-profile of the EUT. EMI receiver settings:

- Detector: Peak Maxhold
- Frequency range: 150 kHz 30 MHz
- Frequency steps: 5 kHz
- IF-Bandwidth: 9 kHz
- Measuring time / Frequency step: 20 ms
- Measurement on phase + neutral lines of the power cords

On basis of this preliminary scan the highest amplitudes and the corresponding frequencies relative to the limit are identified. Emissions above the limit and emissions which are in the 10 dB range below the limit are considered.

Step 2: Final measurement

Intention of this step is, to determine the highest emissions with the settings defined in the test specification for the frequencies identified in step 1.

EMI receiver settings:

- Detector: Quasi-Peak
- IF Bandwidth: 9 kHz
- Measuring time: 1 s / frequency

At each frequency determined in step 1, four measurements are performed in the following combinations:

- 1) Neutral lead reference ground (PE grounded)
- 2) Phase lead reference ground (PE grounded)
- 3) Neutral lead reference ground (PE floating)
- 4) Phase lead reference ground (PE floating)

The highest value is reported.

4.1.2 Test Requirements / Limits

FCC Part 15, Subpart B, §15.107

Frequency Range (MHz)	QP Limit (dBµV)	AV Limit (dBµV)
0.15 – 0.5	66 to 56	56 to 46
0.5 – 5	56	46
5 – 30	60	50

Used conversion factor: Limit (dB μ V) = 20 log (Limit (μ V)/1 μ V).

4.1.3 Test Protocol

Temperature:25 °CAir Pressure:1013 hPaHumidity:40 %

Op. Mode	e Setup		Port	
op-mode ?	1 Setup	_01	AC Port (power line	e)
Power line	Frequency MHz	Measured value dBµV	Delta to limit dBμV	Remarks
-	-	-	_	-

Remark: Please see annex for the measurement plot.

An empty table means that no final measurement was performed because no relevant frequencies (peaks) were found during the preliminary scan.

4.1.4 Test result: Conducted emissions (AC power line)

	`	,	_
FCC Part 15, Subpart B	Op. Mode	Result	
	op-mode 1	passed	_

4.2 Spurious radiated emissions

Standard FCC Part 15, 10-1-06 Subpart B

The test was performed according to: ANSI C 63.4, 2003

4.2.1 Test Description

Measurement below 1 GHz:

The test set-up was made in accordance to the general provisions of ANSI C 63.4-2003. The Equipment Under Test (EUT) was set up on a non-conductive table 1.0×2.0 m in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna.

The radiated emissions measurements were made in a typical installation configuration. The measurement procedure is implemented into the EMI test software ES-K1 from R&S.

Step 1: Preliminary scan (test to identify the highest amplitudes relative to the limit)

Intention of this step is, to determine the radiated EMI-profile of the EUT. Settings for step 1:

- Detector: Peak-Maxhold
- Frequency range: 30 1000 MHz
- Frequency steps: 60 kHz
- IF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 µs
- Turntable angle range: -180° to 180°
- Turntable step size: 90°
- Height variation range: 1 3 m
- Height variation step size: 2 m
- Polarisation: Horizontal + Vertical

On basis of this preliminary scan the highest amplitudes and the corresponding frequencies relative to the limit are identified. Emissions above the limit and emissions which are in the 10 dB range below the limit are considered.

Step 2:

A further measurement will be performed on the frequencies determined in step 1. Intention of this step is, to find out the approximate turntable angle and antenna height for each frequency.

Settings for step 2:

- Detector: Peak Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: -180° to 180°
- Turntable step size: 45°
- Height variation range: 1 4 m
- Height variation step size: 0.5 m
- Polarisation: horizontal + vertical

After this step the EMI test system has determined the following values for each frequency (of step 1):

- Frequency
- Azimuth value (of turntable)
- Antenna height
- The last two values have now the following accuracy:
- Azimuth value (of turntable): 45°
- Antenna height: 0.5 m

Step 3:

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum amplitude for each frequency found in step 2. The turntable azimuth and antenna height, which was determined in step 2, will be adjusted for each frequency. The turntable azimuth will be slowly varied by $+/-22.5^{\circ}$ around this value. The value of emission is continuously measured during this process. The turntable azimuth at the highest emission will be recorded and adjusted. In this position the antenna height is also slowly varied by +/-25 cm around the antenna height process. The turntable of emission is also continuously measured during this process. The antenna height of the highest emission will also be recorded and adjusted. Settings for step 3:

- Detector: Peak Maxhold
- Frequencies to be investigated: Frequencies determined in step 2
- IF Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: -22.5° to +22.5° around the value determined in step 2
- Height variation range: -0.25 m to +0.25 m around the value determined in step 2

Step 4: Final measurement (with QP detector)

With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4:

- Detector: Quasi-Peak(< 1GHz)
- Measured frequencies: in step 3 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 1 s

Measurement above 1 GHz:

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

The measurement distance was reduced to 1 m. The results were extrapolated by the extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements, inverse-linear-distance-squared for the power density measurements). Due to the fact that in this frequency range a double ridged wave guided horn antenna (up to 18 GHz) and a horn antenna (18–25 GHz) are used, the steps 2-4 as described before, are omitted. Step 1 was performed at one height of the receiving antenna only. Detector: Peak, Average (simultaneously)

RBW = VBW = 1 MHz; above 7 GHz 100 kHz

4.2.2 Test Requirements / Limits

FCC Part 15, Subpart B, §15.109, Radiated Emission Limits Frequency Range (MHz): Class B Limit (dBµV/m)

Frequency Range (MHz)	Class B Limit (dBµV/m)
30 – 88	40.0
88 – 216	43.5
216 – 960	46.0
above 960	54.0

§15.35(b)

..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

4.2.3 Test Protocol

Temperature:	27 °C
Air Pressure:	1012 hPa
Humidity:	40 %

Op. Mode	Setup	Port
op-mode 2	Setup_02	Enclosure

Polari- sation	Frequency MHz		rected va dBµV/m	llue	Limit dBµV/ m	Limit dBµV⁄ m	Limit dBµV⁄ m	Delta to limit dB	Delta to limit dB
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
Horizontal	509.94	43.50			46.0			2.5	
Horizontal	513.90	41.40			46.0			4.6	
Vertical	581.70	32.00			46.0			14.0	
Vertical	585.54	39.10			46.0			6.9	
Vertical	589.50	36.40			46.0			9.6	
Vertical	589.56	38.80			46.0			7.2	
Horizontal	597.66	43.10			46.0			2.9	
Horizontal	605.34	44.20			46.0			1.8	
Horizontal	613.38	43.50			46.0			2.5	
Horizontal	621.54	29.50			46.0			16.5	

Remark: Please see annex for the measurement plot. The measurement was performed up to 1GHz. For tests below 1 GHz an empty table means that no final measurement was performed because no relevant frequencies (peaks) were found during the preliminary scan.

For tests above 1 GHz spurious emissions in the range 20 dB below the limit are reported.

4.2.4 Test result: Spurious radiated emissions

FCC Part 15, Subpart B	Op. Mode	Result	
	op-mode 1	passed	

5 Test Equipment

EUT Digital Signalling System

Equipment	Туре	Serial No.	Manufacturer
Digital Radio	CMD 55	831050/020	Rohde & Schwarz
Communication Tester			
Signalling Unit for	PTW60	100004	Rohde & Schwarz
Bluetooth Spurious			
Emissions			
Universal Radio	CMU 200	102366	Rohde & Schwarz
Communication Tester			
Universal Radio	CMU 200	837983/052	Rohde & Schwarz
Communication Tester			
Bluetooth Signalling	CBT (1153.9000.35)	100302	Rohde & Schwarz
Unit			

EMI Test System

Equipment	Туре	Serial No.	Manufacturer
Comparison Noise	CNE III	99/016	York
Emitter			
EMI Analyzer	ESI 26	830482/004	Rohde & Schwarz
Signal Generator	SMR 20	846834/008	Rohde & Schwarz

EMI Radiated Auxiliary Equipment

Equipment	Туре	Serial No.	Manufacturer
Antenna mast 4m	MA 240	240/492	HD GmbH H. Deisel
Biconical dipole	VUBA 9117	9117108	Schwarzbeck
Broadband Amplifier 18MHz-26GHz	JS4-18002600-32	849785	Miteq
Broadband Amplifier 30MHz-18GHz	JS4-00101800-35	896037	Miteq
Broadband Amplifier 45MHz-27GHz	JS4-00102600-42	619368	Miteq
Cable "ESI to EMI Antenna"	EcoFlex10	W18.01-2 + W38.01-2	Kabel Kusch
Cable "ESI to Horn Antenna"	UFB311A + UFB293C	W18.02-2 + W38.02-2	Rosenberger-Microcoax
Double-ridged horn	HF 906	357357/002	Rohde & Schwarz
Double-ridged horn	HF 906	357357/001	Rohde & Schwarz
High Pass Filter	5HC3500/12750-1.2-KK	200035008	Trilithic
High Pass Filter	5HC2700/12750-1.5-KK	9942012	Trilithic
High Pass Filter	4HC1600/12750-1.5-KK	9942011	Trilithic
KUEP pre amplifier	Kuep 00304000	001	7layers
Logper. Antenna	HL 562 Ultralog	830547/003	Rohde & Schwarz
Loop Antenna	HFH2-Z2	829324/006	Rohde & Schwarz
Pyramidal Horn Antenna 26.5 GHz	Model 3160-09	9910-1184	EMCO

EMI Conducted Auxiliary Equipment

Equipment	Туре	Serial No.	Manufacturer
Cable "LISN to ESI"	RG214	W18.03+W48.03	Huber+Suhner
Two-Line V-Network	ESH 3-Z5	828304/029	Rohde & Schwarz
Two-Line V-Network	ESH 3-Z5	829996/002	Rohde & Schwarz

Auxiliary Test Equipment

Equipment	Туре	Serial No.	Manufacturer
Broadband Resist. Power Divider N	1506A / 93459	LM390	Weinschel
Broadband Resist. Power Divider SMA	1515 / 93459	LN673	Weinschel
Digital Multimeter 01	Voltcraft M-3860M	IJ096055	Conrad
Digital Multimeter 02	Voltcraft M-3860M	IJ095955	Conrad
Digital Oscilloscope	TDS 784C	B021311	Tektronix
Fibre optic link Satellite	FO RS232 Link	181-018	Pontis
Fibre optic link Transceiver	FO RS232 Link	182-018	Pontis
I/Q Modulation Generator	AMIQ-B1	832085/018	Rohde & Schwarz
Notch Filter ultra stable	WRCA800/960-6E	24	Wainwright
Spectrum Analyzer 9 kHz to 3 GHz	FSP3	838164/004	Rohde & Schwarz
Temperature Chamber	VT 4002	58566002150010	Vötsch
Temperature Chamber	KWP 120/70	59226012190010	Weiss
ThermoHygro Datalogger 03	Opus10 THI (8152.00)	7482	Lufft Mess- und Regeltechnik GmbH

Anechoic Chamber

Equipment	Туре	Serial No.	Manufacturer
Air Compressor (pneumatic)			Atlas Copco
Controller	CO 2000	CO2000/328/12470406 /L	Innco innovative constructions GmbH
EMC Camera	CE-CAM/1		CE-SYS
EMC Camera for observation of EUT	CCD-400E	0005033	Mitsubishi
Filter ISDN	B84312-C110-E1		Siemens&Matsushita
Filter telephone systems / modem	B84312-C40-B1		Siemens&Matsushita
Filter Universal 1A	B84312-C30-H3		Siemens&Matsushita
Fully/Semi AE Chamber	10.58x6.38x6		Frankonia
Turntable	DS 420S	420/573/99	HD GmbH, H. Deisel
Valve Control Unit (pneum.)	VE 615P	615/348/99	HD GmbH, H. Deisel

7 layers Bluetooth Full RF Test Solution

Bluetooth RF Conformance Test System TS8960

Equipment	Туре	Serial No.	Manufacturer
10 MHz Reference	MFS	5489/001	Efratom
Power Meter 832025/059	NRVD	832025/059	Rohde & Schwarz
Power Sensor A 832279/013	NRV-Z1	832279/013	Rohde & Schwarz
Power Sensor B 832279/015	NRV-Z1	832279/015	Rohde & Schwarz
Power Supply	E3632A	MY40003776	Agilent
Power Supply	PS-2403D	-	Conrad
RF Step Attenuator 833695/001	RSP	833695/001	Rohde & Schwarz
Rubidium Frequency Normal	MFS	002	Efratom
Signal Analyzer FSIQ26 832695/007	FSIQ26	832695/007	Rohde & Schwarz
Signal Generator 833680/003	SMP 03	833680/003	Rohde & Schwarz
Signal Generator A 834344/002	SMIQ03B	834344/002	Rohde & Schwarz
Signal Generator B 832870/017	SMIQ03B	832870/017	Rohde & Schwarz
Signal Switching and Conditioning Unit	SSCU	338826/005	Rohde & Schwarz
Signalling Unit PTW60 838312/014	PTW60 for TS8960	838312/014	Rohde & Schwarz
System Controller 829323/008	PSM12	829323/008	Rohde & Schwarz

6 Photo Report

Photo 1: Test setup for conducted measurements

Photo 2: Test setup for radiated measurements

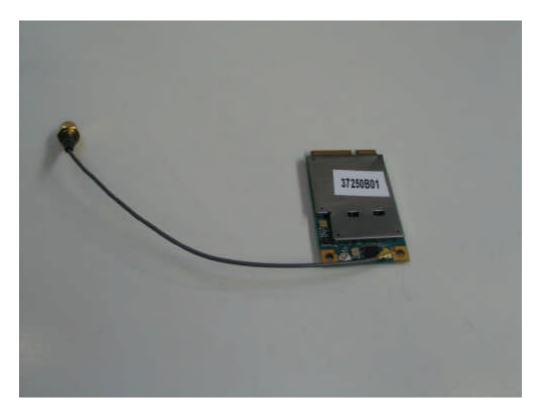


Photo 3: EUT (front side)

Photo 4: EUT (rear side)



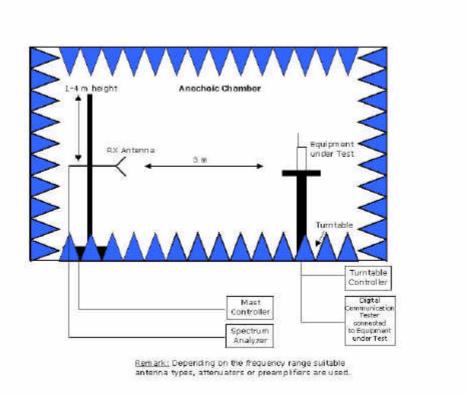
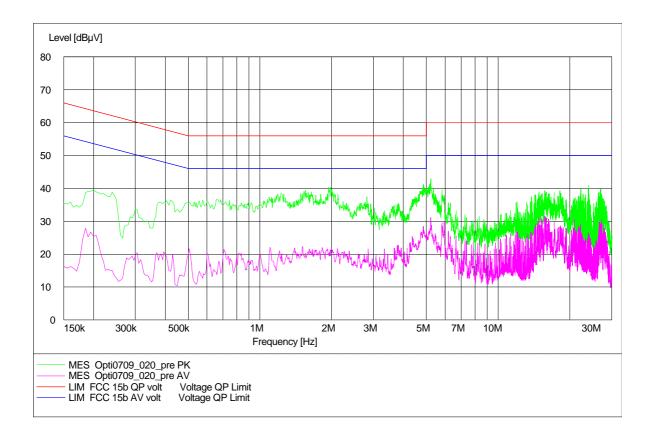

Photo 5: Test cradle Cobra SPQ

Photo 6: Test cradle Pepijn

7 Setup Drawings

Drawing 1: Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting ground plane.

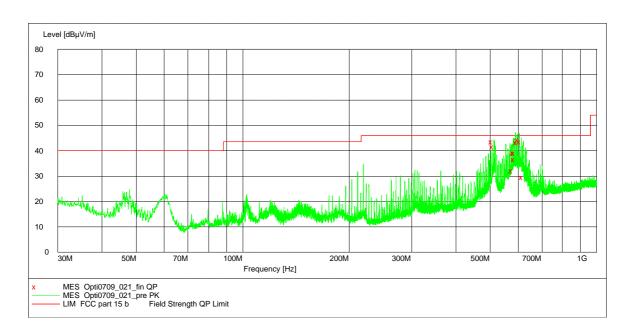


8 Annex measurement plots

8.1 AC Mains conducted

Op. Mode

op-mode 1



8.2 Radiated Emissions

Op. Mode

op-mode 2

