

InterLab FCC Measurement/Technical Report on GSM/UMTS Module M00301

Report Reference: MDE_Opti_0709_FCCf

Test Laboratory:

7 layers AG Borsigstrasse 11 40880 Ratingen Germany

email: info@7Layers.de

Note

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the testing laboratory.

7 layers AG Borsigstrasse 11 40880 Ratingen, Germany Phone: +49 (0) 2102 749 0 Fax: +49 (0) 2102 749 350 www.7Layers.com Aufsichtsratsvorsitzender • Chairman of the Supervisory Board: Markus Becker Vorstand • Board: Dr. Hans-Jürgen Meckelburg René Schildknecht

Registergericht • registered in: Düsseldorf, HRB 44096 USt-IdNr • VAT Nr: DE 203159652

Table of Contents

0 Su	mmary	3
0.1 0.2	Technical Report Summary Measurement Summary	3 4
1 Ad	ministrative Data	5
1.1 1.2 1.3 1.4	- J	5 5 5 5
2 Te	stobject Data	6
2.1 2.2 2.3 2.4 2.5	General EUT Description EUT Main components Ancillary Equipment EUT Setups Operating Modes	6 7 7 7 8
3 Te	st Results	9
3.1	RF Power Output	9
4 Te	st Equipment	12
5 Ph	oto Report	13

0 Summary

0.1 Technical Report Summary

Type of Authorization

Certification for a GSM cellular radiotelephone device

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 0 to 19 and Parts 20 to 69 (10-1-06 Edition). The following subparts are applicable to the results in this test report.

Part 2

Subpart J - Equipment Authorization Procedures, Certification

Part 22

Subpart H – Cellular Radiotelephone Service

Part 24

Subpart E - Broadband PCS

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 0.2 Measurement Summary.

0.2 Measurement Summary

RF Power Outp			
	•	cording to FCC §2.1046	10-1-06
OP-Mode	Setup	Port	Final Result
op-mode 1-6	Setup_a01	antenna connector	passed
Frequency stab	oility		_
The measuremen	nt was performed ac	cording to FCC §2.1055	10-1-06
OP-Mode	Setup	Port	Final Result N/P
	ions at antenna te		
The measuremen	nt was performed ac	cording to FCC §2.1051	10-1-06
OP-Mode	Setup	Port	Final Result N/P
	of spurious radiati		
The measuremen	nt was performed ac	cording to FCC §2.1053	10-1-06
OP-Mode	Setup	Port	Final Result N/P
Emission and O	ccupied Bandwid	th	
The measuremen	nt was performed ac	ccording to FCC §2.1049	10-1-06
OP-Mode	Setup	Port	Final Result N/P
Band edge com			
	1.0	ccording to FCC §24.238	10-1-06
OP-Mode	Setup	Port	Final Result N/P

N/P: not performed

7 layers AG, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

Responsible for Accreditation Scope:

Responsible for Test Report:

1 Administrative Data

1.1 Testing Laboratory

1.1 Testing Laboratory	
Company Name:	7 Layers AG
Address	Borsigstr. 11 40880 Ratingen Germany
This facility has been fully described in a the registration number 96716.	report submitted to the FCC and accepted under
The test facility is also accredited by the test scher Akkreditierungs Rat	following accreditation organisation: DAR-Registration no. DAT-P-192/99-01
Responsible for Accreditation Scope:	DiplIng. Bernhard Retka DiplIng. Robert Machulec DiplIng. Thomas Hoell
Report Template Version:	2007-07-20
1.2 Project Data	
Responsible for testing and report: Receipt of EUT: Date of Test(s): Date of Report:	DiplIng. Andreas Petz See chapter 2.2 2007-08-10 2007-08-13
1.3 Applicant Data	
Company Name:	Option NV
Address:	Gaston Geenslaan 14 3001 Leuven Belgium
Contact Person:	Mr. Lodeweyckx
1.4 Manufacturer Data Company Name:	please see applicant data
Address:	
Contact Person:	

2 Testobject Data

2.1 General EUT Description

Equipment under Test: GSM/UMTS Module

Type Designation: M00301

Kind of Device: GSM 850/900/1800/1900 + UTRA FDD I/II/V

(optional) including HSDPA

Voltage Type:DCNominal Voltage:3.6 VMaximum Voltage:3.6 VMinimum Voltage:3.0 V

General product description:

The Equipment under Test (EUT) is a module that supports GSM/EDGE 850/900/1800/1900 and FDD I, II and V with HSDPA.

The manufacturer declared that nominal voltage is equal to high voltage.

The EUT provides the following ports:

Ports

antenna connector enclosure

The main components of the EUT are listed and described in Chapter 2.2

2.2 EUT Main components

Type, S/N, Short Descriptions etc. used in this Test Report

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status	Date of Receipt
EUT A	GSM/UMTS	MO0301	PE2476C0BG	2.0	2.5	2007-06-18
(Code:	Module					
37250f01)						
Remark: none						

NOTE: The short description is used to simplify the identification of the EUT in this test report.

2.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	HW Status	SW Status	Serial no.	FCC ID
AE1	Test Cradle	Cobra SPQ Cradle	V 1.0	-	-	-

2.4 EUT Setups

This chapter describes the combination of EUT's and ancillary equipment used for testing.

Setup No.	Combination of EUTs	Description
setup_a01	EUT A + AE1	

2.5 Operating Modes

This chapter describes the operating modes of the EUT's used for testing.

Op. Mode	Description of Operating Modes	Remarks
	UTRA FDD II HSDPA	
op-mode 1	Call established on Traffic Channel (TCH) 9262,	9262 is the lowest channel
	Carrier Frequency 1852.4 MHz	FDD II data call
op-mode 2	Call established on Traffic Channel (TCH) 9400,	9400 is a mid channel
	Carrier Frequency 1880 MHz	FDD II data call
op-mode 3	Call established on Traffic Channel (TCH) 9538,	9538 is the highest channel
	Carrier Frequency 1907.6 MHz	FDD II data call
	UTRA FDD V HSDPA	
op-mode 4	Call established on Traffic Channel (TCH) 4132,	4132 is the lowest channel
·	Carrier Frequency 826.4 MHz	FDD V data call HSUPA
op-mode 5	Call established on Traffic Channel (TCH) 4183,	4183 is a mid channel
	Carrier Frequency 836.6 MHz	FDD V data call HSUPA
op-mode 6	Call established on Traffic Channel (TCH) 4233,	4233 is the highest channel
•	Carrier Frequency 846.6 MHz	FDD V data call HSUPA

Subtests: (see Annex C of 3GPP TS 34.121, Table C.10.1.4)

Sub-test	βс	βd	βd (SF)	βc/βd	βHS (Note1, Note 2)	CM (dB) (Note 3)	MPR (dB) (Note 3)
1	2/15	15/15	64	2/15	4/15	0.0	0.0
2	12/15 (Note 4)	15/15 (Note 4)	64	12/15 (Note 4)	24/15	1.0	0.0
3	15/15	8/15	64	15/8	30/15	1.5	0.5
4	15/15	4/15	64	15/4	30/15	1.5	0.5
Note 1:	Note 1: Δ_{ACK} , Δ_{NACK} and Δ_{CQI} = 30/15 with β_{hs} = 30/15 * β_c .						
Note 2:	For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1AA, Δ _{ACK}						
	and $\Delta_{ m NACK}$ = 30/15 with $~eta_{hs}$ = 30/15 * $~eta_c$, and $\Delta_{ m CQl}$ = 24/15 with $~eta_{hs}$ = 24/15 * $~eta_c$.						
Note 3:	CM = 1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.						
Note 4:	For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 11/15 and β_d = 15/15.						

Test report Reference: MDE_Opti_0709_FCCf

3 Test Results

3.1 RF Power Output

Standard FCC Part 22, 10-1-06 FCC Part 24, 10-1-06

Subpart H Subpart E

The test was performed according to: FCC §2.1046, 10-1-06

3.1.1 Test Description

For performing the output power measurement the test system TS8950 GW by Rohde & Schwarz was used, which is a validated platform according to the PTCRB certification requirements.

The measured output power is an RMS value according to 3GPP requirements for 3G devices and was measured at the antenna connector of the EUT.

3.1.2 Test Requirements / Limits

§2.1046 Measurements Required: RF Power Output

(a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in § 2.1033(c)(8). The electrical characteristics of the output terminals when this test is made shall be stated.

§22.913 Effective radiated power limits

(a) Maximum ERP. ... The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

§24.232 Power and antenna height limits

- (c) Mobile/portable stations are limited to 2 watts EIRP peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.
- (d) Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage. The measurement results shall be properly adjusted for any instrument limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity etc., so as to obtain a true peak measurement for the emission in question over the full bandwidth of the channel.

Test report Reference: MDE_Opti_0709_FCCf

3.1.3 Test Protocol

Temperature: 21 °C Air Pressure: 1010 hPa Humidity: 35 %

Op. Mode Setup Port

see table below a01 antenna connector

subtest	op-mode	max. output power/dBm (RMS)
1	4	21.5
1	5	21.3
1	6	21.9
2	4	21.6
2	5	21.3
2	6	22.2
3	4	21.4
3	5	21.4
3	6	22.2
4	4	21.5
4	5	21.4
4	6	22.1

Remark: none

Temperature: 21 °C Air Pressure: 1010 hPa Humidity: 35 %

Op. Mode Setup Port

see table below a01 antenna connector

subtest	op-mode	max. output power/dBm (RMS)
1	1	21.1
1	2	20.9
1	3	21.4
2	1	21.2
2	2	20.9
2	3	21.7
3	1	21.2
3	2	21.0
3	3	21.8
4	1	21.2
4	2	22.2
4	3	20.2

Remark: none

Test report Reference: MDE_Opti_0709_FCCf Page 10 of 14

3.1.4 Test result: RF Power Output

Test Setup	Result
a01	passed

4 Test Equipment

TS8950GW

Name of Device	Туре	Serial Number	Manufacturer
Spectrum Analyser	FSU26	100136	Rohde & Schwarz GmbH & Co.KG:
Dual Channel Power meter	NRVD	100668	Rohde & Schwarz GmbH & Co.KG:
Diode Power Sensor	NRV-Z1	100149	Rohde & Schwarz GmbH & Co.KG:
Diode Power Sensor	NRV-Z1	100052	Rohde & Schwarz GmbH & Co.KG:
Signal Generator	SMP02	100129	Rohde & Schwarz GmbH & Co.KG:
Vector Signal Generator	SMIQ B3	101698	Rohde & Schwarz GmbH & Co.KG:
Vector Signal Generator	SMIQ B3	101699	Rohde & Schwarz GmbH & Co.KG:
Vector Signal Generator	SMIQ B3	100580	Rohde & Schwarz GmbH & Co.KG:
Vector Signal Generator	SMIQ B3	100582	Rohde & Schwarz GmbH & Co.KG:
Vector Signal Generator	SMIQ B3	100583	Rohde & Schwarz GmbH & Co.KG:
Vector Signal Generator	SMIQ B3	832492/061	Rohde & Schwarz GmbH & Co.KG:
GSM Signaling Unit	CRTU-G	100025	Rohde & Schwarz GmbH & Co.KG:
W-CDMA Signaling Unit	CRTU-W	100033	Rohde & Schwarz GmbH & Co.KG:
Power Supply	NGSM 32/10 DC	100043	Rohde & Schwarz GmbH & Co.KG:
System Controler	TS-PC 36	100016	Rohde & Schwarz GmbH & Co.KG:
Advanced Signal Conditioning Unit	ASCU850	100009	Rohde & Schwarz GmbH & Co.KG:
Advanced Signal Conditioning Unit	ASCU900	100015	Rohde & Schwarz GmbH & Co.KG:
Advanced Signal Conditioning Unit	ASCU1800	100023	Rohde & Schwarz GmbH & Co.KG:
Advanced Signal Conditioning Unit	ASCU1900	100018	Rohde & Schwarz GmbH & Co.KG:
Fading Simulator	ABFS	100041	Rohde & Schwarz GmbH & Co.KG:
Fading Simulator	ABFS	100047	Rohde & Schwarz GmbH & Co.KG:
Protocol Unit W-CDMA	CRTU-PU	100046	Rohde & Schwarz GmbH & Co.KG:
Industrial System Controler (spare)	PSL3		Rohde & Schwarz GmbH & Co.KG:
Industrial System Controler	PSL3	100035	Rohde & Schwarz GmbH & Co.KG:
Advanced Signal Conditioning Unit	ASCU FDD I+II	100002	Rohde & Schwarz GmbH & Co.KG:
Radio Unit W-CDMA	CRTU-RU	100035	Rohde & Schwarz GmbH & Co.KG:
Signal Switching and Conditioning Unit	SSCU-GW	100020	Rohde & Schwarz GmbH & Co.KG:
Fading Simulator	ABFS	100040	Rohde & Schwarz GmbH & Co.KG:
Distribution Unit		100025	Rohde & Schwarz GmbH & Co.KG:
Spectrum Analyser	FSU26	100090	Rohde & Schwarz GmbH & Co.KG:
Vector Signal Generator	SMU200A	101498	Rohde & Schwarz GmbH & Co.KG:
Vector Signal Generator	SMU200A	101499	Rohde & Schwarz GmbH & Co.KG:
Advanced Signal Conditioning Unit	ASCU FDD V	100014	Rohde & Schwarz GmbH & Co.KG:
SSCU Signal switching and conditioning	SSCU-EXT	100010	Rohde & Schwarz GmbH & Co.KG:
TS-COMB Combiner Box	TS-COMB	100004	Rohde & Schwarz GmbH & Co.KG:
CS-HUB Ethernet Hub / Optical Output	CS-HUB	100028	Rohde & Schwarz GmbH & Co.KG:
CS-TRIGA Trigger amplifier	CS-TRIGA	100041	Rohde & Schwarz GmbH & Co.KG:
ADU 200 Relay Box 5	Relay Box	A04388	Ontrak Control Systems Inc.: Mr. Fortir
Radio Unit W-CDMA	CRTÚ-RU	100212	Rohde & Schwarz GmbH & Co.KG:
Advanced Signal Conditioning Unit	ASCU IV-IX	100009	Rohde & Schwarz GmbH & Co.KG:

5 Photo Report

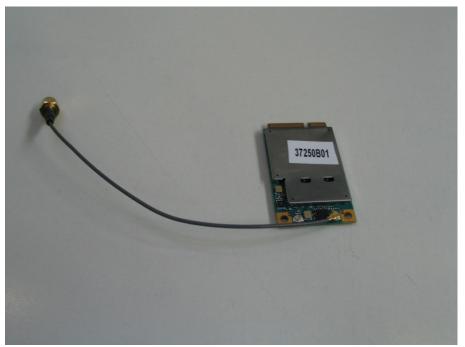


Photo 1: EUT (front side)

Photo 2: EUT (front side)

Photo 3: EUT (rear side)

Photo 4: Test cradle Cobra SPQ