

Radio Satellite Communication

Untertürkheimer Straße 6-10 . D-66117 Saarbrücken Telefon: +49 (0)681 598-9100 Telefax: -9075

RSC14

issue test report consist of 56 Pages

Page 1 (56)

Recognized by the Federal Communications Commission

Anechoic chamber registration no.: 90462 (FCC) Anechoic chamber registration no.: 3463 (IC) TCB ID: DE 0001

Accredited by the
German Accreditation Council
DAR–Registration Number
TTI–P–G 166/98
Deutscher
Akkreditierungs
Rat

Independent ETSI compliance test house

Accredited BluetoothTM Test Facility (BQTF)

Test report no.: 4-1152-01-02/03 FCC Part 24/15 Option PC card Chilli FCC ID: NCMOGLW1

CETECOM – ICT Services GmbH Untertürkheimerstr. 6-10 66117 Saarbrücken, Germany

Telephone: +49 (0) 681 / 598-0 Fax: +49 (0) 681 / 598-9075

Test report no..: 4-1152-01-02/03 Issue Date: 2003-11-17 Page 2 (56)

Table of Contents

1 General information

- 1.1 Notes
- 1.2
- Testing laboratory Details of applicant 1.3
- Application details 1.4
- 1.5 Test item
- **Test standards** 1.6
- 2 **Technical test**
- 2.1 2.2 Summary of test results
- Test report
- 1 **General information**

1.1 **Notes**

The test results of this test report relate exclusively to the test item specified in 1.5. The CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM ICT Services GmbH.

1.2 **Testing laboratory**

CETECOM ICT Services GmbH Untertürkheimer Straße 6 - 10 66117 Saarbrücken

Germany

: +49 681 598 - 9100 Telefone Telefax : +49 681 598 - 9075 E-mail : info@ict.cetecom.de : www.cetecom-ict.de Internet

Accredited testing laboratory

The test laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025.

DAR registration number: TTI-P-G-166/98

Listed by: Federal Communications Commission (FCC)

Identification/Registration No: 90462

Accredited Bluetooth[™] Test Facility (BQTF)

BLUETOOTH[™] is a trademark owned by Bluetooth SIG, Inc. and licensed to CETECOM

1.3 Details of applicant

Name : Option N.V.

Street : Kolonel Begaultlaan 45

City: B-3012 Leuven

Country: Belgium

Telephone: +32 16 317 411
Telefax: +32 16 207 164
Contact: Mr. Bruno Meeus
Telephone: +32 16 311 605

e-mail : b.meeus@option.com

1.4 Application details

Date of receipt of application : 2003-10-30 Date of receipt of test item : 2003-10-30

Date of test : 2003-10-30 to 2003-11-11

1.5 Test item

Type of equipment : Triple Band GSM/PCS PC card (GSM900/1800/PCS 1900)

Type designation : Wakou (here PCS1900 only)

Manufacturer : Option N.V.

Street

City

Country

Serial numbers : IMEI : 004999002423514

Additional information: :

Frequency : 1850.2 – 1909.8 MHz

Type of modulation : 300KGXW
Number of channels : 300 (PCS1900)
Antenna : Integral antenna
Power supply : Via PC-card slot

Output power PCS 1900 : cond : 28.66 dBm Peak , ERP: 23.76 dBm (Burst);

EIRP: 25.86 dBm (Burst)

Type of equipment : Temperature range : $-30^{\circ}\text{C} - +60^{\circ}\text{C}$

FCC – ID : NCMOGLW1

IC

Hardware : 1.1 Software : 4.0.2

1.6 Test standards: FCC Part 24

FCC Part 15

2 Technical test

For Part 24 we use the substitution method (TIA/EIA 603).

All measurements in this report are done in GSM mode. Device is able to transmit data in GPRS mode also. But because the current measurements are performed in PEAK mode no other results from GPRS mode are possible. The only different is the modulation average power, which is 3 dB higher (by using 2 timeslots in the Up-link).

Remarks:

For AC-conducted measurements we used a SONY laptop together with the card

Test setups:

Radiated measurements: Laptop with card

Conducted measurements: Laptop with card, AC powered

Part15: Laptop with card

This card is also able to work as a WLAN card in 2.4 GHz range.

The results of this part (FCC part15.247) you can find in the test report 4_1152-01-03/03 from our house.

No deviations from the technical specification(s) were ascertained in the course of the tests performed.

FINAL VERDICT: PASS

Technical responsibility for area of testing:

Date Section Name Signature

Technical responsibility for area of testing:

2003-11-17 RSC8412 Hausknecht D. Causkung

Date Section Name Signature

2.2 Test report

TEST REPORT

Test report no.: 4-1152-01-02/03

Test report no..: 4-1152-01-02/03 Issue Date: 2003-11-17 Page 6 (56) TEST REPORT REFERENCE LIST OF MEASUREMENTS PARAMETER TO BE MEASURED **PAGE Part PCS 1900 POWER OUTPUT** SUBCLAUSE § 24.232 7 FREQUENCY STABILITY SUBCLAUSE § 24.235 9 AFC FREQ ERROR vs. VOLTAGE 10 AFC FREQ ERROR vs. TEMPERATURE 10 **EMISSIONS LIMITS** 12 **§24.238** CONDUCTED SPURIOUS EMISSIONS 21 BLOCK EDGE COMPLIANCE FOR BLOCK A AND C 28 **OCCUPIED BANDWIDTH 30 §2.989 CONDUCTED EMISSIONS** 37 § 15.107/207 ADDITIONAL MEASUREMENTS FOR ANCILLARY EQUIPMENT PART 15.109 **39** TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS 44 **Test site** 46 Photographs of the equipment 49

POWER OUTPUT

SUBCLAUSE § 24.232

Summary:

This paragraph contains both average, peak output powers and EIRP measurements for the mobile station. In all cases, the peak output power is within the required mask (this mask is specified in the JTC standards, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Method of Measurements:

The mobile was set up for the max, output power with pseudo random data modulation.

The power was measured with R&S Signal Analyzer FSIQ 26 (peak and average)

This measurements were done at 3 frequencies, 1850,2 MHz, 1880,0 MHz and 1909,8 MHz (bottom, middle and top of operational frequency range)

Limits:

Power Step	Nominal Peak Output Power (dBm)	Tolerance (dB)
0	+30	± 2

Power Measurements:

Conducted:

Frequency (MHz)	Power Step	Peak Output Power (dBm)	Average Output Power (dBm)
1850.2	0	28.66	28.56
1880.0	0	28.41	28.31
1909.8	0	28.13	28.03
Measurement uncertainty		±0.5	5 dB

EIRP Measurements

Description: This is the test for the maximum radiated power from the phone.

Rule Part 24.232(b) specifies that "Mobile/portable stations are limited to 2 watts e.i.r.p. peak power..." and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage."

Method of Measurement:

- 1. In an anechoic antenna test chamber, a half-wave dipole antenna for the frequency band of interest is placed at the reference center of the chamber. An RF Signal source for the frequency band of interest is connected to the dipole with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A known (measured) power (Pin) is applied to the input of the dipole, and the power received (Pr) at the chamber's probe antenna is recorded.
- 2. A "reference path loss" is established as Pin + 2.1 Pr.
- 3. The EUT is substituted for the dipole at the reference centre of the chamber. The EUT is put into CW test mode and a scan is performed to obtain the radiation pattern.
- 4. From the radiation pattern, the co-ordinates where the maximum antenna gain occurs is identified.
- 5. The EUT is then put into pulse mode at its maximum power level (Power Step 0).
- 6. "Gated mode" power measurements are performed with the receiving antenna placed at the co-ordinates determined in Step 3 to determine the output power as defined in FCC Rule 24.232 (b) and (c). The "reference path loss" from Step 1 is added to this result.
- 7. This value is EIRP since the measurement is calibrated using a half-wave dipole antenna of known gain (2.1 dBi) and known input power (Pin).
- 8. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.1dBi.

Limits:

Power Step	Burst EIRP (dBm)
0	<33

Power Measurements (Radiated)

Frequency	Power Step	BURST PEAK (dBm)		MODULATION AVERAGE (dBm)	
(MHz)		EIRP	ERP	EIRP	ERP
1850.2	0	25.86	23.76	16.86	14.76
1880.0	0	24.49	22.39	15.49	13.39
1909.8	0	24.16	22.06	15.16	13.06
Measurement uncertainty			±	3 dB	

FREQUENCY STABILITY

SUBCLAUSE § 24.235

Method of Measurement:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the mobile station in a "call mode". This is accomplished with the use of a R&S CMU 200 DIGITAL RADIOCOMMUNICATION TESTER..

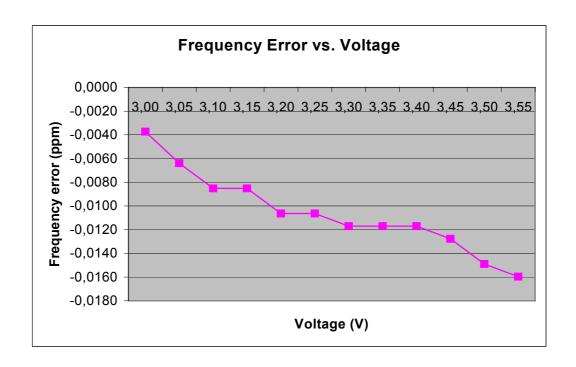
- 1. Measure the carrier frequency at room temperature.
- 2. Subject the mobile station to overnight soak at -30 C.
- 3. With the mobile station, powered with 3.3 Volts, connected to the CMU 200 and in a simulated call on channel 661 (centre channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.
- 4. Repeat the above measurements at 10 C increments from -30 C to +60 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.
- 5. Re-measure carrier frequency at room temperature with nominal 3.3 Volts. Vary supply voltage from minimum 3.0 Volts to maximum 3.6 Volts, in 12 steps re-measuring carrier frequency at each voltage. Pause at 3.3 V dc Volts for 1 1/2 hours un-powered, to allow any self heating to stabilize, before continuing.
- 6. Subject the mobile station to overnight soak at +60 C.
- 7. With the mobile station, powered with 3.3 Volts, connected to the CMU 200 and in a simulated call on channel 661(center channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.
- 8. Repeat the above measurements at 10 C increments from +60 C to -30 C. Allow at least 1 1/2 hours at each temperature, un-powered, before making measurements.
- 9. At all temperature levels hold the temperature to +/- 0.5 C during the measurement procedure.

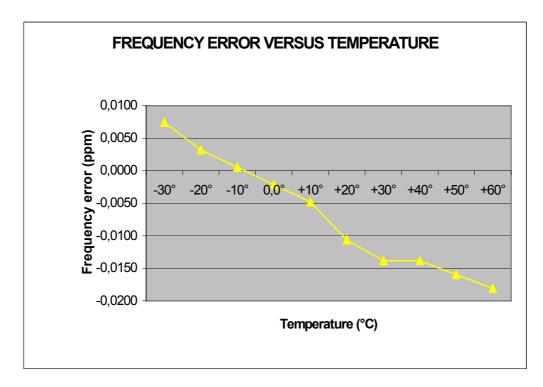
Measurement Limit:

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. This transceiver is specified to operate with an input voltage of between 3.0 V dc and 3.6 V dc, with a nominal voltage of 3.3 V dc.

Remarks:

We used a pc card extender with open power supply connection to power the card from an external power supply.


AFC FREQ ERROR vs. VOLTAGE


Voltage	Frequency Error	Frequency Error	Frequency Error
(V)	(Hz)	(%)	(ppm)
3,00	6	0,00000032	0,0032
3,05	-7	-0,0000037	-0,0037
3,10	-12	-0,00000064	-0,0064
3,15	-16	-0,00000085	-0,0085
3,20	-16	-0,00000085	-0,0085
3,25	-20	-0,00000106	-0,0106
3,30	-20	-0,00000106	-0,0106
3,35	-22	-0,00000117	-0,0117
3,40	-22	-0,00000117	-0,0117
3,45	-22	-0,00000117	-0,0117
3,50	-24	-0,00000128	-0,0128
3,55	-28	-0,00000149	-0,0149
3,60	-30	-0,00000160	-0,0160

AFC FREQ ERROR vs. TEMPERATURE

TEMPERATURE	Frequency Error	Frequency Error	Frequency Error
(°C)	(Hz)	(%)	(ppm)
-30°	14	0,0000074	0,0074
-20°	6	0,0000032	0,0032
-10°	1	0,0000005	0,0005
0,0°	-4	-0,00000021	-0,0021
+10°	-9	-0,00000048	-0,0048
+20°	-20	-0,00000106	-0,0106
+30°	-26	-0,00000138	-0,0138
+40°	-26	-0,00000138	-0,0138
+50°	-30	-0,00000160	-0,0160
+60°	-34	-0,00000181	-0,0181

EMISSIONS LIMITS

§24.238

Measurement Procedure:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4 – 1992 requirements and is recognised by the FCC to be in compliance for a 3 and a 10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. This was rounded up to 20 GHz. The resolution bandwidth is set as outlined in Part 24.238. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the USPCS band.

The final open field emission (here 10m semi-anechoic chamber listed by FCC) test procedure is as follows:

- a) The test item was placed on a 0.8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.
- b) The antenna output was terminated in a 50 ohm load.
- c) A double ridged waveguide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.
- d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and I MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded. e) Now each detected emissions were substituted by the Substitution method, in accordance with the TIA/EIA 603.

Measurement Limit:

Sec. 24.238 Emission Limits.

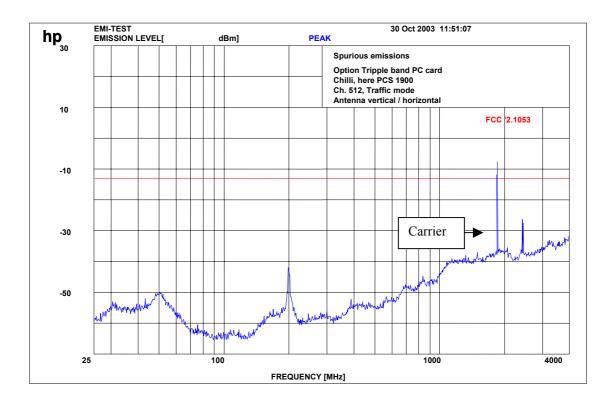
(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Measurement Results:

Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the USPCS band (1850.2 MHz, 1879.8 MHz and 1909.8 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the USPCS band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

RESULTS OF OPEN FIELD RADIATED TEST FOR FCC-24:

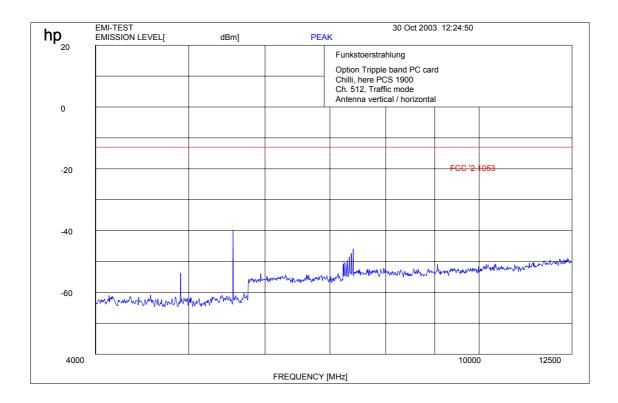
The final open field radiated levels are presented on the next pages.


All measurements were done in horizontal and vertical polarization, the plots show the worst case. As can be seen from this data, the emissions from the test item were within the specification limit.

RESULTS OF OPEN FIELD RADIATED TEST FOR FCC-24:

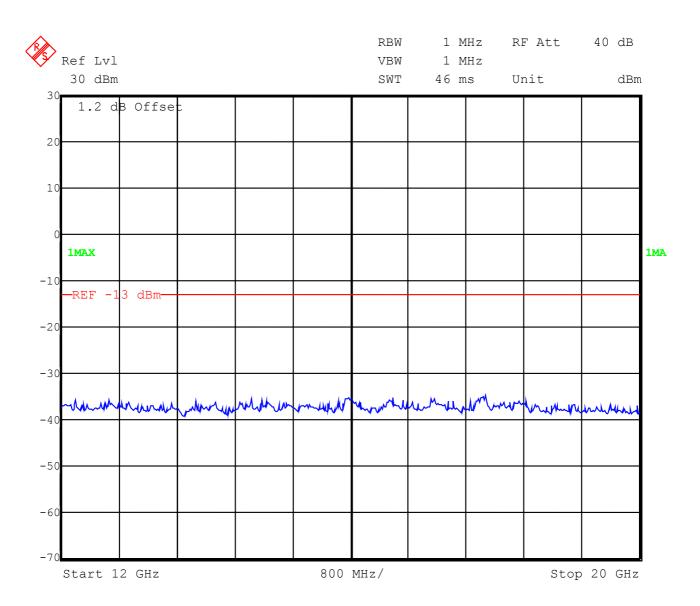
EMISSION LIMITATIONS					
f (MHz)		amplitude of emission (dBm)	limit max. allowed emission power (dBm)	actual attenuation below frequency of operation (dBc)	results
			CH 512		
1850.2		25.86	-13.0		carrier
3700.4		-39.8	(38.86 0dBc)	65.66	complies
No	other	peaks		< 10 dB	below limit
			CH 661	I I	
1880.0		24.49	-13.0		carrier
No	other	peaks	(37.49 dBc)	< 10 dB	below limit
40000		1	CH 810	Γ	
1909.8		24.16	-13.0 (37.16 dBc)		carrier
No	other	peaks		< 10 dB	below limit
Measure	Measurement uncertainty ± 0.5dB				

Channel 512 (up to 4 GHz)

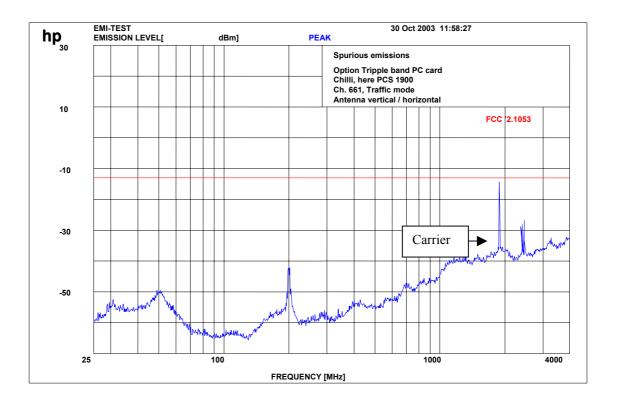

f < 1 GHz: RBW/VBW: 100 kHz $f \ge 1 \text{ GHz}: RBW/VBW: 1 \text{ MHz}$

Carrier reduced by a rejection filter to avoid overload of the preamp.

The peak at 2.4 GHz was caused by the beacon of the WLAN part of the card.

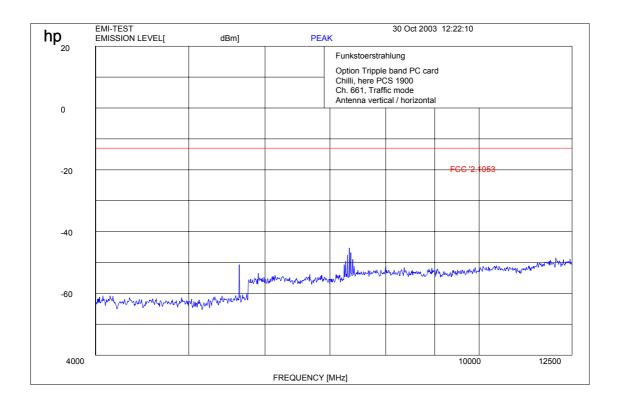

Channel 512 (up to 12 GHz)

f < 1 GHz: RBW/VBW: 100 kHz $f \ge 1 \text{ GHz}: RBW/VBW: 1 \text{ MHz}$



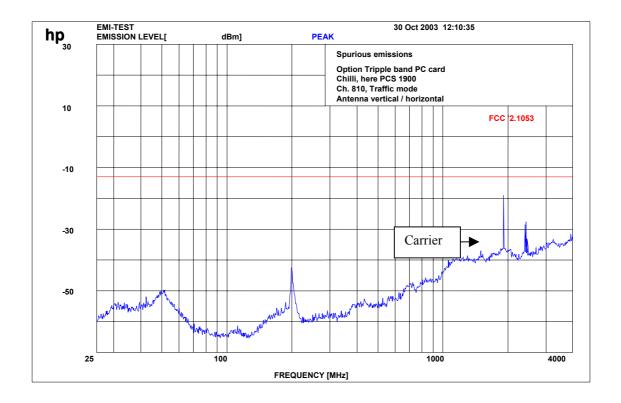
Spurious up to 25 GHz, valid for all three channels.

Channel 661 (up to 4 GHz)



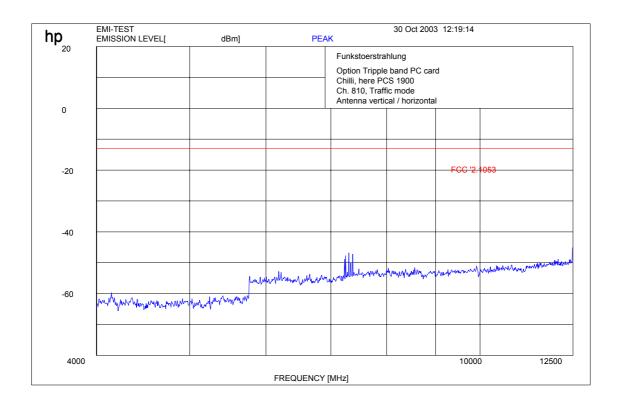
f < 1 GHz: RBW/VBW: 100 kHz $f \ge 1 \text{ GHz}: RBW/VBW 1 \text{ MHz}$

Carrier reduced by a rejection filter to avoid overload of the preamp. The carrier at 2.4 GHz was caused by the beacon of the WLAN module.


Channel 661 (up to 12 GHz)

f < 1 GHz: RBW/VBW: 100 kHz $f \ge 1 \text{ GHz}: RBW/VBW: 1 \text{ MHz}$

Channel 810 up to 4 GHz



f < 1 GHz: RBW/VBW: 100 kHz $f \ge 1 \text{ GHz}: RBW/VBW 1 \text{ MHz}$

Carrier reduced by a rejection filter to avoid overload of the preamp. The carrier at 2.4 GHz was caused by the beacon of the WLAN module.

Channel 810 up to 12 GHz

f < 1 GHz: RBW/VBW: 100 kHz $f \ge 1 \text{GHz}$: RBW/VBW 1 MHz

CONDUCTED SPURIOUS EMISSIONS

Measurement Procedure:

The following steps outline the procedure used to measure the conducted emissions from the mobile station.

1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency.

For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 19.1 GHz, data taken from 10 MHz to 20 GHz.

2. Determine mobile station transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

USPCS Transmitter

Channel Frequency

512 1850.2 MHz

661 1880.0 MHz

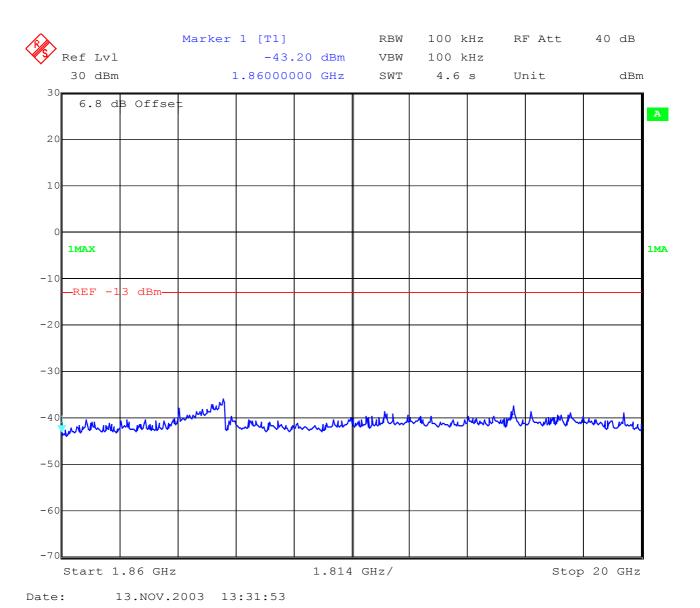
810 1909.8 MHz

Measurement Limit:

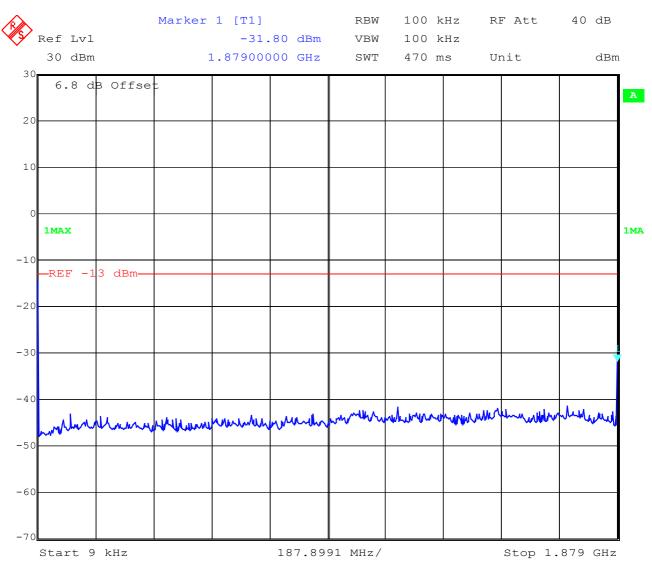
Sec. 24.238 Emission Limits.

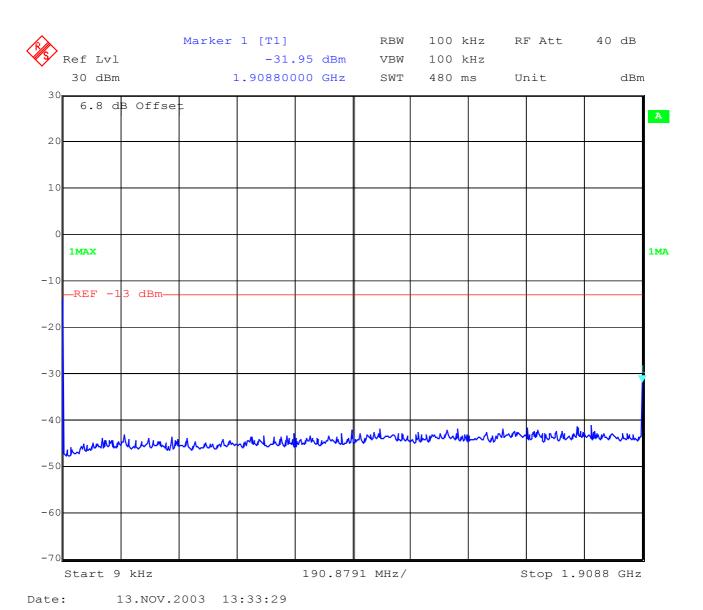

(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

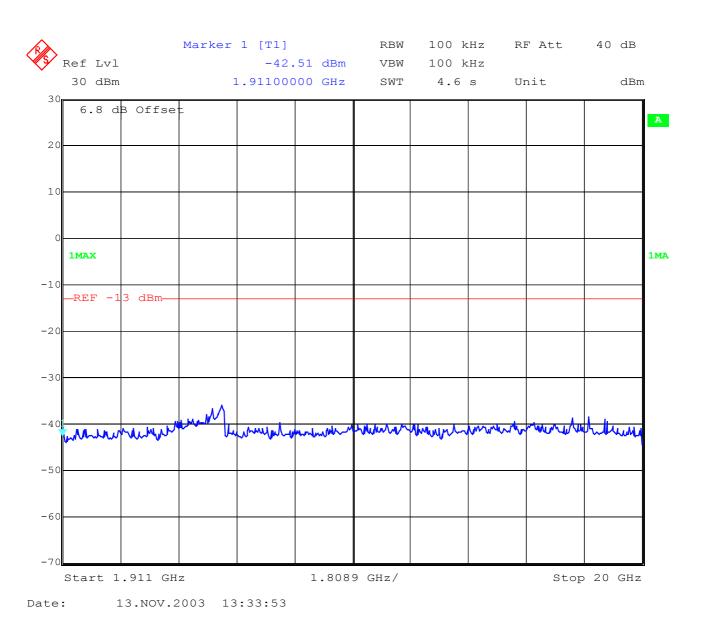
EMISSION LIMITATIONS					
f (MHz)		amplitude of emission (dBm)	limit max. allowed emission power (dBm)	actual attenuation below frequency of operation (dBc)	results
		1	CH 512		
1850.2		28.66	-13.0 (41.66 dBc)		carrier
No	other	peaks		< 10 dB	below limit
			СН 661	<u> </u>	
1880.0		28.41	-13.0 (41.41 dBc)		carrier
No	other	peaks	(12012 #20)	< 10 dB	below limit
			CH 810		
1909.8		28.13	-13.0 (41.13 dBc)		carrier
No	other	peaks	(1212 226)	< 10 dB	below limit
Measure	ment uncert	ainty		± 0.5dB	

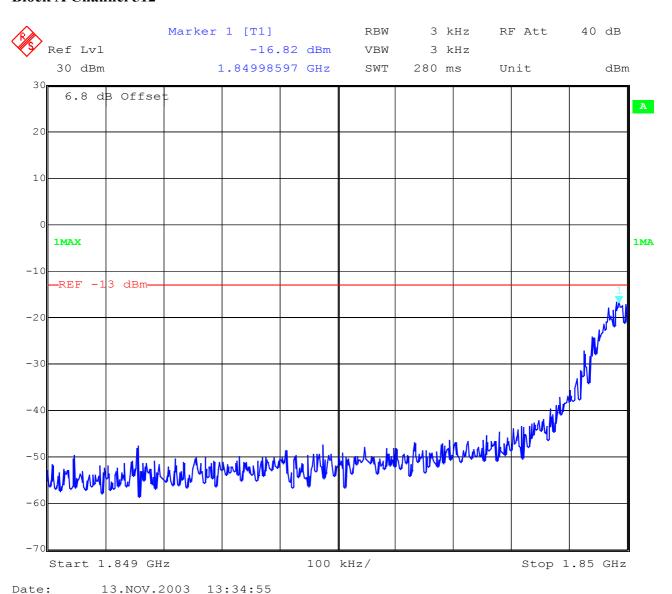


Test report no..: 4-1152-01-02/03 Issue Date: 2003-11-17 Page 22 (56)


Measurements:

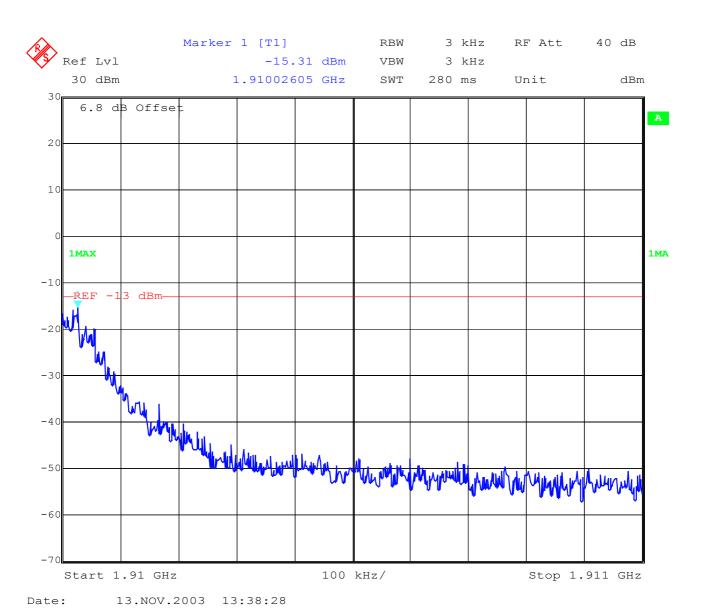





Block edge compliance for Block and C

Measurement Limit:

Sec. 24.238 Emission Limits.


(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +30 dBm to 0 dBm, this becomes a constant specification limit of -13 dBm.

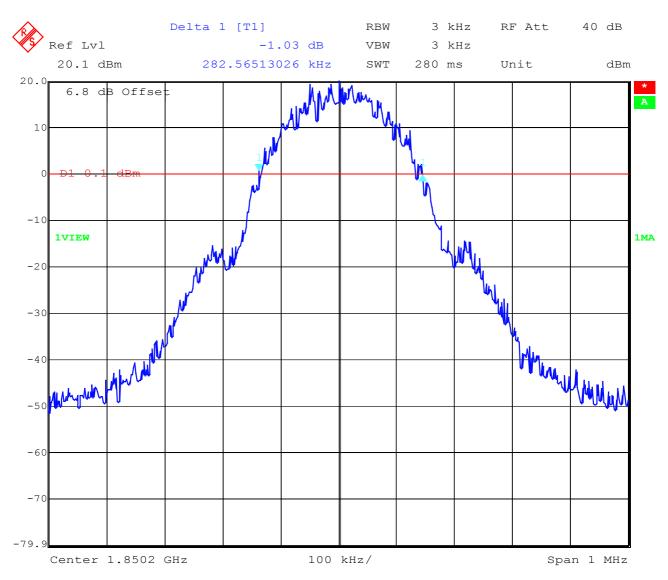
Measurements: Block A Channel 512

Block C Channel 810

OCCUPIED BANDWIDTH

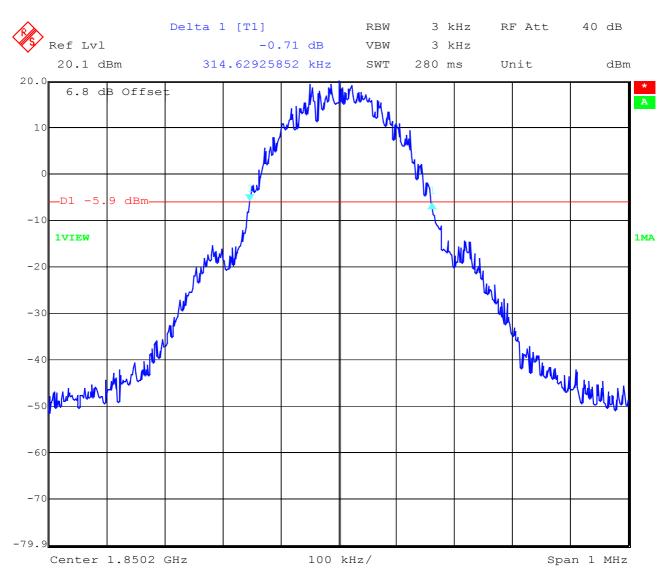
§2.989

Occupied Bandwidth Results

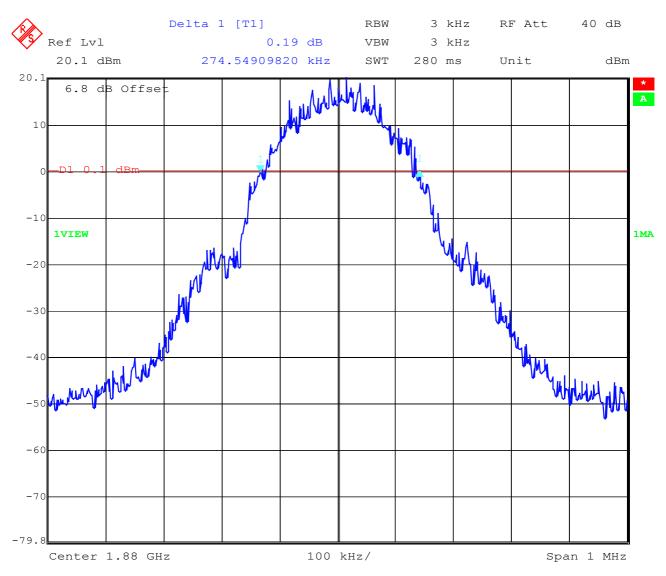

Similar to conducted emissions, occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the USPCS frequency band. Table 8.2 below lists the measured 99% power and -26dBC occupied bandwidths. Spectrum analyzer plots are included on the following pages.

Frequency	99% Occupied Bandwidth	-26 dBc Bandwidth
1850.2 MHz	282.565	314.629
1880.0 MHz	274.549	314.629
1909.8 MHz	296.593	332.665

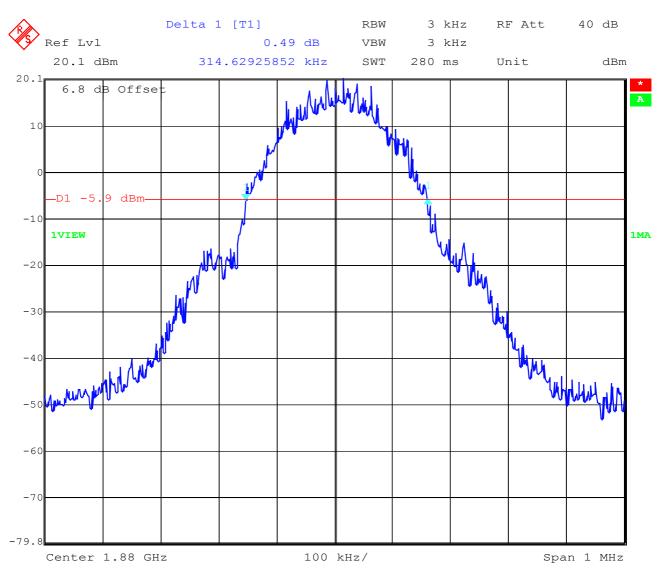
Part 24.238 (a) requires a measurement bandwidth of at least 1% of the occupied bandwidth. For ca. 281 kHz, this equates to a resolution bandwidth of at least 3.0 kHz. For this testing, a resolution bandwidth 3.0 kHz was used.


Channel 512 99% Occupied Bandwidth

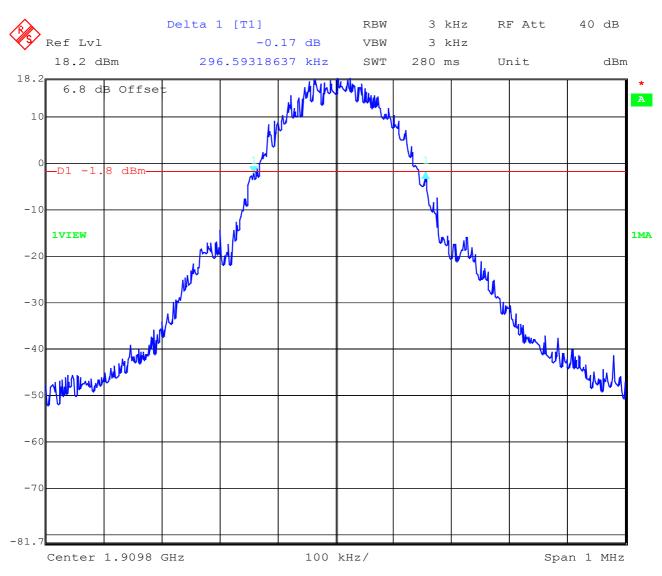
Date: 13.NOV.2003 13:40:24


Channel 512 -26 dBc Bandwidth

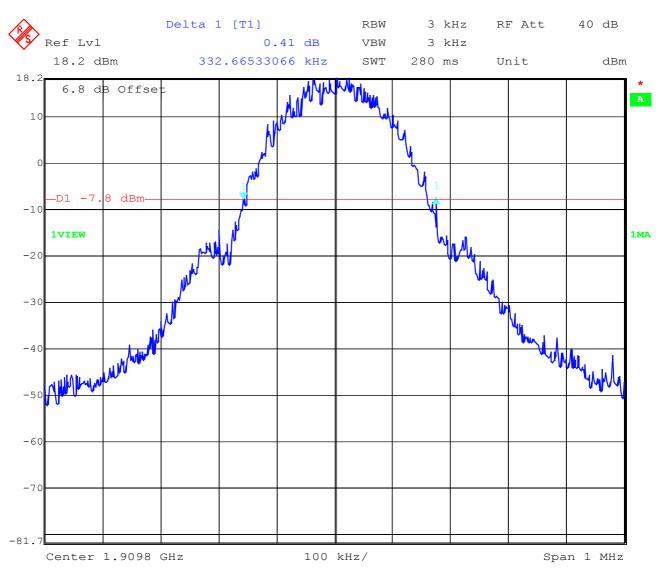
Date: 13.NOV.2003 13:41:03


Channel 661 99% Occupied Bandwidth

Date: 13.NOV.2003 13:42:52


Channel 661 -26 dBc Bandwidth

Date: 13.NOV.2003 13:42:23


Channel 810 99% Occupied Bandwidth

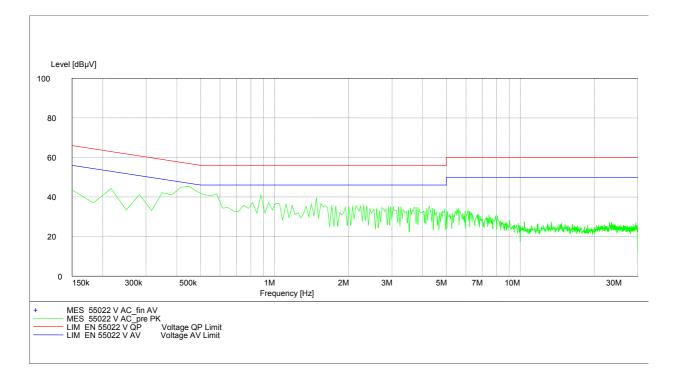
Date: 13.NOV.2003 13:44:12

Channel 810 -26 dBc Bandwidth

Date: 13.NOV.2003 13:44:49

CONDUCTED EMISSIONS

§ 15.107/207


CISPR 22

EUT: PC card PCS1900 "Chilli"

Manufacturer: Option N.V.

Operating Condition: In Sony laptop, traffic and idle mode, max hold, AC 110V power supply

Test Specification: CISPR 22 Comment: pass

no peaks near limit line

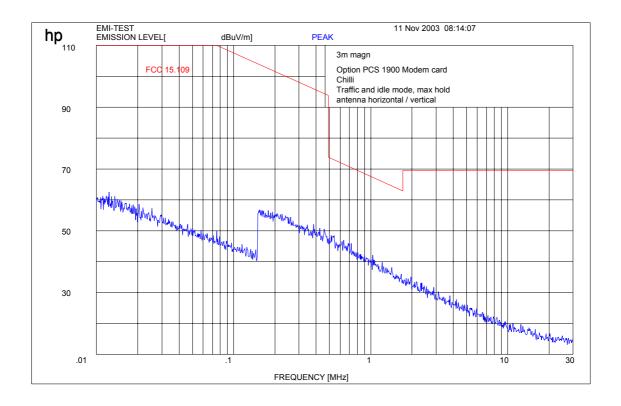
Limit § 15.207

Frequency of Emission (MHz)	Conducted Limit (dBuV)		
	Quasi-peak	Average	
0.15-0.5	66 to 56 *	56 to 46 *	
0.5-5	56	46	
5-30	60	50	

^{*} Decreases with the logarithm of the frequency.

FCC Rule 47

Part 15 Magnetics


EUT: PC card PCS1900 « Wakou »

Manufacturer: Option N.V.

Operating Condition: in Sony laptop, Traffic and idle mode, max hold

Test Specification: Traffic and idle mode, max hold

Comment: pass

no peaks found

ADDITIONAL MEASUREMENTS FOR ANCILLARY EQUIPMENT

AND IDLE MODE PART 15.109

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 20 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber.

The receiving antennas are conform with specifications ANSI C63.2-1987 clause 15 and ANSI C63.4-1992 clause 4.1.5. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received.

The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63-4-1992 clause 4.2.

Antennas are conform with ANSI C63.2-1996 item 15.

9 kHz - 30 MHz: Quasi Peak measurement, 9kHz Bandwidth, passive loop antenna.

30 MHz - 200 MHz: Quasi Peak measurement, 120KHz Bandwidth, biconical antenna

200MHz - 1GHz: Quasi Peak measurement, 120KHz Bandwidth, log periodic antenna

1GHz: Average, RBW 1MHz, VBW 10 Hz, wave-guide horn

Spurious Emissions

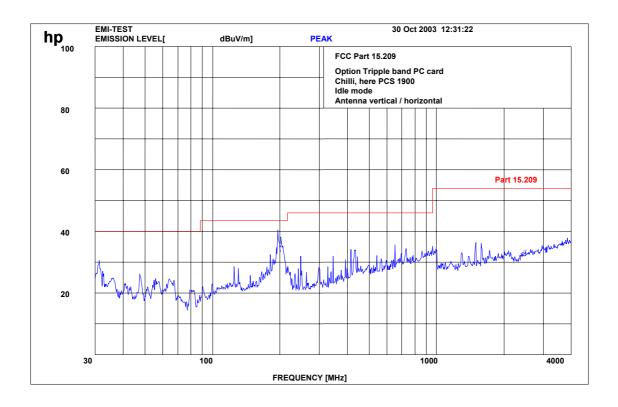
SPURIOUS EMISSIONS LEVEL (μV/m)								
						Idle mode(1900)		
f (MHz)	Detector	Level (μV/m)	f (MHz)	Detector	Level (dBμV/m)	f (MHz)	Detector	Level (μV/m)
						no traceable peak found		
Measurement uncertainty					±3	dB		

f < 1 GHz: RBW/VBW: 100 kHz $f \ge 1 \text{ GHz}: RBW/VBW: 1 \text{ MHz}$

Measurement distance see table

Limits

SUBCLAUSE § 15.109

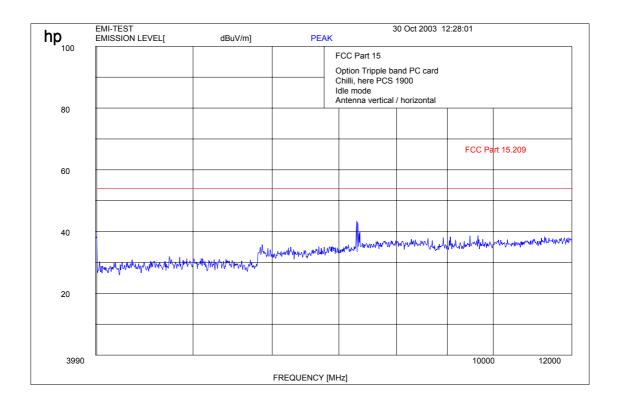

Frequency (MHz)	Field strength (μV/m)	Measurement distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30 / 29.5 dBμV/m	30
30 - 88	100 / 40 dBμV/m	3
88 - 216	150 / 43.5 dBμV/m	3
216 - 960	200 / 46 dBμV/m	3
above 960	500 / 54 dBμV/m	3

SPURIOUS RADIATION idle mode

§ 15.109

up to 4 GHz,

f < 1 GHz: RBW/VBW: 100 kHz $f \ge 1 \text{ GHz}: RBW/VBW 1 \text{ MHz}$



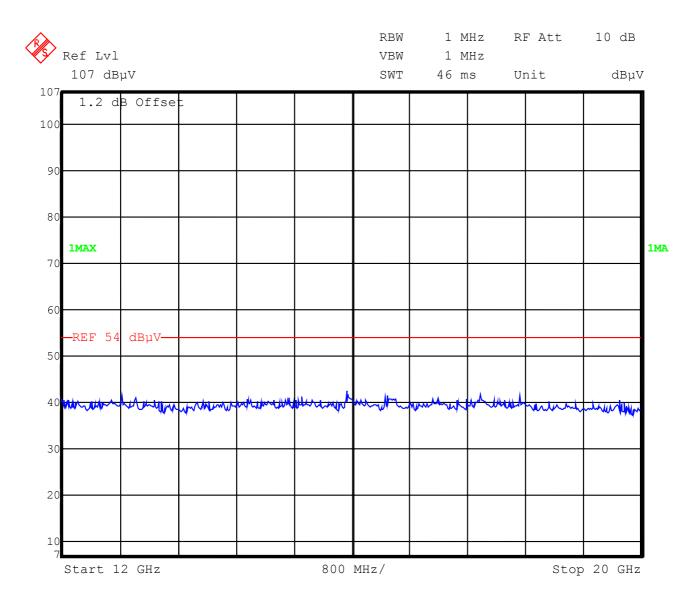
SPURIOUS RADIATION

Idle mode

§ 15.109

up to 12 GHz,

f < 1 GHz: RBW/VBW: 100 kHz $f \ge 1 \text{ GHz}: RBW/VBW 1 \text{ MHz}$



SPURIOUS RADIATION

Idle mode

§ 15.109

up to 20 GHz,

TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

To simplify the identification on each page of the test equipment used, on each page of the test report, each item of test equipment and ancillaries such as cables are identified (numbered) by the Test Laboratory, below.

No	1 1925A00860 230054 22 894 043/010 1 2848A07027 1 2215G00867 1 2224A01012
02Analyzer Display8566 AHewlett-Packare03Oscilloscope7633Tektronix04Radio Communication AnalyzerCMTA 54Rohde & Schwar05System Power Supply6038 AHewlett-Packare06Signal Generator8111 AHewlett-Packare07Signal Generator8662 AHewlett-Packare08Function GeneratorAFGURohde & Schwar09Regulating TransformerMPLErfi10LISNNNLA 8120Schwarzbeck11Relay-MatrixPSURohde & Schwar12Power-Meter436 AHewlett-Packare13Power-Sensor8484 AHewlett-Packare14Power-Sensor8482 AHewlett-Packare15Modulation Meter9008Racal-Dana16Frequency Counter5340 AHewlett-Packare17Anechoic ChamberMWB18Spectrum Analyzer85660 BHewlett-Packare19Analyzer Display85662 AHewlett-Packare20Quasi Peak Adapter85650 AHewlett-Packare	1 1925A00860 230054 22 894 043/010 1 2848A07027 1 2215G00867 1 2224A01012 2 862 480/032 91350
03Oscilloscope7633Tektronix04Radio Communication AnalyzerCMTA 54Rohde & Schwar05System Power Supply6038 AHewlett-Packard06Signal Generator8111 AHewlett-Packard07Signal Generator8662 AHewlett-Packard08Function GeneratorAFGURohde & Schwar09Regulating TransformerMPLErfi10LISNNNLA 8120Schwarzbeck11Relay-MatrixPSURohde & Schwar12Power-Meter436 AHewlett-Packard13Power-Sensor8484 AHewlett-Packard14Power-Sensor8482 AHewlett-Packard15Modulation Meter9008Racal-Dana16Frequency Counter5340 AHewlett-Packard17Anechoic ChamberMWB18Spectrum Analyzer85660 BHewlett-Packard19Analyzer Display85662 AHewlett-Packard20Quasi Peak Adapter85650 AHewlett-Packard	230054 rz 894 043/010 d 2848A07027 d 2215G00867 d 2224A01012 rz 862 480/032 91350
04Radio Communication AnalyzerCMTA 54Rohde & Schwar05System Power Supply 066038 AHewlett-Packard06Signal Generator Signal Generator8111 AHewlett-Packard07Signal Generator O88662 AHewlett-Packard08Function Generator O9AFGU Regulating Transformer NNLA 8120Rohde & Schwar10LISNNNLA 8120Schwarzbeck11Relay-Matrix PSUPSU Rohde & Schwar12Power-Meter 13436 AHewlett-Packard13Power-Sensor 8484 AHewlett-Packard14Power-Sensor 8482 AHewlett-Packard15Modulation Meter9008 9008Racal-Dana16Frequency Counter 175340 AHewlett-Packard17Anechoic ChamberMWB18Spectrum Analyzer85660 BHewlett-Packard19Analyzer Display85662 AHewlett-Packard20Quasi Peak Adapter85650 AHewlett-Packard	894 043/010 1 2848A07027 1 2215G00867 1 2224A01012 1 262 480/032 91350
Analyzer 05 System Power Supply 6038 A Hewlett-Packard 06 Signal Generator 8111 A Hewlett-Packard 07 Signal Generator 8662 A Hewlett-Packard 08 Function Generator AFGU Rohde & Schward 09 Regulating Transformer MPL Erfi 10 LISN NNLA 8120 Schwarzbeck 11 Relay-Matrix PSU Rohde & Schward 12 Power-Meter 436 A Hewlett-Packard 13 Power-Sensor 8484 A Hewlett-Packard 14 Power-Sensor 8482 A Hewlett-Packard 15 Modulation Meter 9008 Racal-Dana 16 Frequency Counter 5340 A Hewlett-Packard 17 Anechoic Chamber MWB 18 Spectrum Analyzer 85660 B Hewlett-Packard 19 Analyzer Display 85662 A Hewlett-Packard 20 Quasi Peak Adapter 85650 A Hewlett-Packard	2848A07027 d 2215G00867 d 2224A01012 rz 862 480/032 91350
06Signal Generator8111 AHewlett-Packard07Signal Generator8662 AHewlett-Packard08Function GeneratorAFGURohde & Schward09Regulating TransformerMPLErfi10LISNNNLA 8120Schwarzbeck11Relay-MatrixPSURohde & Schward12Power-Meter436 AHewlett-Packard13Power-Sensor8484 AHewlett-Packard14Power-Sensor8482 AHewlett-Packard15Modulation Meter9008Racal-Dana16Frequency Counter5340 AHewlett-Packard17Anechoic ChamberMWB18Spectrum Analyzer85660 BHewlett-Packard19Analyzer Display85662 AHewlett-Packard20Quasi Peak Adapter85650 AHewlett-Packard	d 2215G00867 d 2224A01012 rz 862 480/032 91350
07Signal Generator8662 AHewlett-Packard08Function GeneratorAFGURohde & Schward09Regulating TransformerMPLErfi10LISNNNLA 8120Schwarzbeck11Relay-MatrixPSURohde & Schward12Power-Meter436 AHewlett-Packard13Power-Sensor8484 AHewlett-Packard14Power-Sensor8482 AHewlett-Packard15Modulation Meter9008Racal-Dana16Frequency Counter5340 AHewlett-Packard17Anechoic ChamberMWB18Spectrum Analyzer85660 BHewlett-Packard19Analyzer Display85662 AHewlett-Packard20Quasi Peak Adapter85650 AHewlett-Packard	d 2224A01012 rz 862 480/032 91350
08Function GeneratorAFGURohde & Schwar09Regulating TransformerMPLErfi10LISNNNLA 8120Schwarzbeck11Relay-MatrixPSURohde & Schwar12Power-Meter436 AHewlett-Packard13Power-Sensor8484 AHewlett-Packard14Power-Sensor8482 AHewlett-Packard15Modulation Meter9008Racal-Dana16Frequency Counter5340 AHewlett-Packard17Anechoic ChamberMWB18Spectrum Analyzer85660 BHewlett-Packard19Analyzer Display85662 AHewlett-Packard20Quasi Peak Adapter85650 AHewlett-Packard	7Z 862 480/032 91350
09Regulating TransformerMPLErfi10LISNNNLA 8120Schwarzbeck11Relay-MatrixPSURohde & Schwar12Power-Meter436 AHewlett-Packare13Power-Sensor8484 AHewlett-Packare14Power-Sensor8482 AHewlett-Packare15Modulation Meter9008Racal-Dana16Frequency Counter5340 AHewlett-Packare17Anechoic ChamberMWB18Spectrum Analyzer85660 BHewlett-Packare19Analyzer Display85662 AHewlett-Packare20Quasi Peak Adapter85650 AHewlett-Packare	91350
10 LISN NNLA 8120 Schwarzbeck 11 Relay-Matrix PSU Rohde & Schwar 12 Power-Meter 436 A Hewlett-Packare 13 Power-Sensor 8484 A Hewlett-Packare 14 Power-Sensor 8482 A Hewlett-Packare 15 Modulation Meter 9008 Racal-Dana 16 Frequency Counter 5340 A Hewlett-Packare 17 Anechoic Chamber MWB 18 Spectrum Analyzer 85660 B Hewlett-Packare 19 Analyzer Display 85662 A Hewlett-Packare 20 Quasi Peak Adapter 85650 A Hewlett-Packare	
11Relay-MatrixPSURohde & Schwan12Power-Meter436 AHewlett-Packare13Power-Sensor8484 AHewlett-Packare14Power-Sensor8482 AHewlett-Packare15Modulation Meter9008Racal-Dana16Frequency Counter5340 AHewlett-Packare17Anechoic ChamberMWB18Spectrum Analyzer85660 BHewlett-Packare19Analyzer Display85662 AHewlett-Packare20Quasi Peak Adapter85650 AHewlett-Packare	0120221
12 Power-Meter 436 A Hewlett-Packard 13 Power-Sensor 8484 A Hewlett-Packard 14 Power-Sensor 8482 A Hewlett-Packard 15 Modulation Meter 9008 Racal-Dana 16 Frequency Counter 5340 A Hewlett-Packard 17 Anechoic Chamber MWB 18 Spectrum Analyzer 85660 B Hewlett-Packard 19 Analyzer Display 85662 A Hewlett-Packard 20 Quasi Peak Adapter 85650 A Hewlett-Packard	0120331
12Power-Meter436 AHewlett-Packard13Power-Sensor8484 AHewlett-Packard14Power-Sensor8482 AHewlett-Packard15Modulation Meter9008Racal-Dana16Frequency Counter5340 AHewlett-Packard17Anechoic ChamberMWB18Spectrum Analyzer85660 BHewlett-Packard19Analyzer Display85662 AHewlett-Packard20Quasi Peak Adapter85650 AHewlett-Packard	z 893 285/020
14Power-Sensor8482 AHewlett-Packard15Modulation Meter9008Racal-Dana16Frequency Counter5340 AHewlett-Packard17Anechoic ChamberMWB18Spectrum Analyzer85660 BHewlett-Packard19Analyzer Display85662 AHewlett-Packard20Quasi Peak Adapter85650 AHewlett-Packard	d 2101A12378
15 Modulation Meter 9008 Racal-Dana 16 Frequency Counter 5340 A Hewlett-Packard 17 Anechoic Chamber MWB 18 Spectrum Analyzer 85660 B Hewlett-Packard 19 Analyzer Display 85662 A Hewlett-Packard 20 Quasi Peak Adapter 85650 A Hewlett-Packard	d 2237A10156
16Frequency Counter5340 AHewlett-Packard17Anechoic ChamberMWB18Spectrum Analyzer85660 BHewlett-Packard19Analyzer Display85662 AHewlett-Packard20Quasi Peak Adapter85650 AHewlett-Packard	d 2237A00616
17Anechoic ChamberMWB18Spectrum Analyzer85660 BHewlett-Packard19Analyzer Display85662 AHewlett-Packard20Quasi Peak Adapter85650 AHewlett-Packard	2647
17Anechoic ChamberMWB18Spectrum Analyzer85660 BHewlett-Packard19Analyzer Display85662 AHewlett-Packard20Quasi Peak Adapter85650 AHewlett-Packard	d 1532A03899
19 Analyzer Display 85662 A Hewlett-Packard 20 Quasi Peak Adapter 85650 A Hewlett-Packard	87400/002
19 Analyzer Display 85662 A Hewlett-Packard 20 Quasi Peak Adapter 85650 A Hewlett-Packard	d 2747A05306
	d 2816A16541
	d 2811A01131
n	d 2833A00768
22 Biconical Antenna 3104 Emco	3758
23 Log. Per. Antenna 3146 Emco	2130
24 Double Ridged Horn 3115 Emco	3088
25 EMI-Testreceiver ESAI Rohde & Schwar	z 863 180/013
26 EMI-Analyzer-Display ESAI-D Rohde & Schwar	
27 Biconical Antenna HK 116 Rohde & Schwar	z 888 945/013
28 Log. Per. Antenna HL 223 Rohde & Schwar	·z 825 584/002
29 Relay-Switch-Unit RSU Rohde & Schwar	z 375 339/002
30 Highpass HM985955 FSY Microwave	
31 Amplifier P42-GA29 Tron-Tech	
32 Anechoic Chamber Frankonia	B 23602
33 Control Computer PSM 7 Rohde & Schwar	
34 EMI Test Receiver ESMI Rohde & Schwar	B 23602
35 EMI Test Receiver Display Rohde & Schwar	B 23602 rz 834 621/004

TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

To simplify the identification on each page of the test equipment used, on each page of the test report, each item of test equipment and ancillaries such as cables are identified (numbered) by the Test Laboratory, below.

N .T	T / // ***	TD.	3.7. 6 /	0 111
No	Instrument/Ancillary	Type	Manufacturer	Serial No.
36	Control Computer	HD 100	Deisel	100/322/93
37	Relay Matrix	PSN	Rohde & Schwarz	829 065/003
38	Control Unit	GB 016 A2	Rohde & Schwarz	344 122/008
39	Relay Switch Unit	RSU	Rohde & Schwarz	316 790/001
40	Power Supply	6032A	Hewlett Packard	2846A04063
41	Spectrum Monitor	EZM	Rohde & Schwarz	883 720/006
42	Measuring Receiver	ESH 3	Rohde & Schwarz	890 174/002
43	Measuring Receiver	ESVP	Rohde & Schwarz	891 752/005
44	Bicon Ant. 20-300MHz	HK 116	Rohde & Schwarz	833 162/011
45	Logper Ant. 0.3-1 GHz	HL 223	Rohde & Schwarz	832 914/010
46	Amplifier 0.1-4 GHz	AFS4	Miteq Inc.	206461
47	Logper Ant. 1-18 GHz	HL 024 A2	Rohde & Schwarz	342 662/002
48	Polarisation Network	HL 024 Z1	Rohde & Schwarz	341 570/002
49	Double Ridged Horn	3115	EMCO	9107-3696
	Antenna 1-26.5 GHz			
50	Microw. Sys. Amplifier	8317A	Hewlett Packard	3123A00105
	0.5- 26.5 GHz			
51	Audio Analyzer	UPD	Rohde & Schwarz	1030.7500.04
52	Controler	PSM 7	Rohde & Schwarz	883 086/026
53	DC V-Network	ESH3-Z6	Rohde & Schwarz	861 406/005
54	DC V-Network	ESH3-Z6	Rohde & Schwarz	893 689/012
55	AC 2 Phase V-Network	ESH3-Z5	Rohde & Schwarz	861 189/014
56	AC 2 Phase V-Network	ESH3-Z5	Rohde & Schwarz	894 981/019
57	AC-3 Phase V-Network	ESH2-Z5	Rohde & Schwarz	882 394/007
58	Power Supply	6032A	Rohde & Schwarz	2933A05441
59	RF-Test Receiver	ESVP.52	Rohde & Schwarz	881 487/021
60	Spectrum Monitor	EZM	Rohde & Schwarz	883 086/026
61	RF-Test Receiver	ESH3	Rohde & Schwarz	881 515/002
62	Relay Matrix	PSU	Rohde & Schwarz	882 943/029
63	Relay Matrix	PSU	Rohde & Schwarz	828 628/007
64	Spectrum Analyzer	FSIQ 26	Rohde & Schwarz	119.6001.27
65	Spectrum Analyzer	HP 8565E	Hewlett Packard	3473A00773
66	<u> </u>			
67				
68				
ــــــــــــــــــــــــــــــــــــــ	<u> </u>		1	

Test site

Test site

Test site

