

Appendix for the Report

Dosimetric Assessment of the Portable Device Option Globetrotter Combo EDGE (FCC ID: NCMGLEW) tested in three host products

According to the FCC Requirements

Calibration Data

October 05, 2004 IMST GmbH Carl-Friedrich-Gauß-Str. 2 D-47475 Kamp-Lintfort

> Customer 7layers AG Borsigstrasse 11 D-40880 Ratingen

The test results only relate to the items tested. This report shall not be reproduced except in full without the written approval of the testing laboratory.

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

IMST

CALIBRATION CERTIFICATE

Object(s)

ET3DV6 - SN:1579

Calibration procedure(s)

QA CAL-01.v2

Calibration procedure for dosimetric E-field probes

Calibration date:

September1, 2004

Condition of the calibrated item

In Tolerance (according to the specific calibration document)

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature 22 +/- 2 degrees Celsius and humidity < 75%.

Calibration Equipment used (M&TE critical for calibration)

Model Type	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM E4419B	GB41293874	5-May-04 (METAS, No 251-00388)	May-05
Power sensor E4412A	MY41495277	5-May-04 (METAS, No 251-00388)	May-05
Reference 20 dB Attenuator	SN: 5086 (20b)	3-May-04 (METAS, No 251-00389)	May-05
Fluke Process Calibrator Type 702	SN: 6295803	8-Sep-03 (Sintrel SCS No. E030020)	Sep-04
Power sensor HP 8481A	MY41092180	18-Sep-02 (SPEAG, in house check Ool03)	In house check: Oct 05
RF generator HP 8684C	US3642U01700	4-Aug-99 (SPEAG, in house check Aug02)	In house check: Aug05
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Oct03)	In house check: Oct 05

Calibrated by:

Name Function
Nico Vetterli Technician

Katja Pokovic

Laboratory Director

Approved by:

folion hays

Date issued:September1, 2004

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/IEC 17025 International Standard) for Calibration Laboratory of Schmid & Partner Engineering AG is completed.

Probe ET3DV6

SN:1579

Manufactured:

Last calibrated:

Recalibrated:

May 7, 2001

May 21, 2004

September 1, 2004

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6 SN:1579

Sensitivity in Free Space

Diode Compression^A

NomX	1.92 μV/(V/m) ²	DCP X	95	mV
NormY	1.76 μV/(V/m) ²	DCP Y	95	mV
NomZ	1.70 μV/(V/m) ²	DCP Z	95	mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 7.

Boundary Effect

Head

900 MHz

Typical SAR gradient: 5 % per mm

Sensor Cente	er to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	9.0	4.7
SAR _{be} [%]	With Correction Algorithm	0.1	0.3

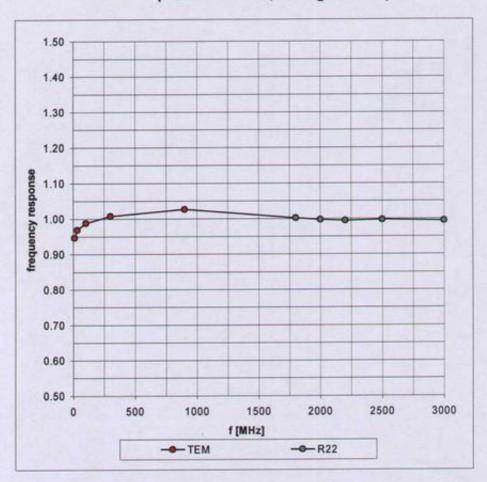
Head

1750 MHz

Typical SAR gradient: 10 % per mm

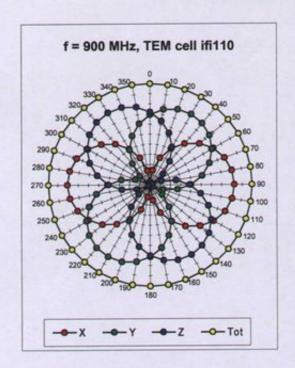
Sensor Cente	er to Phantom Surface Distance	3.7 mm	4.7 mm
SAR _{be} [%]	Without Correction Algorithm	12.5	8.3
SAR _{be} [%]	With Correction Algorithm	0.2	0.0

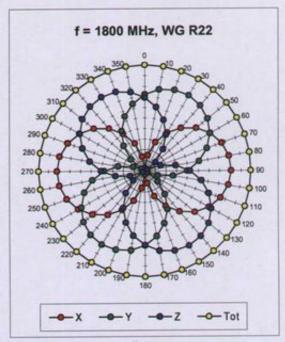
Sensor Offset

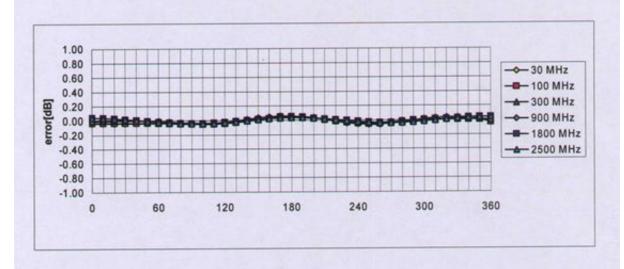

Probe Tip to Sensor Center 2.7 mm
Optical Surface Detection in tolerance

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A numerical linearization parameter: uncertainty not required

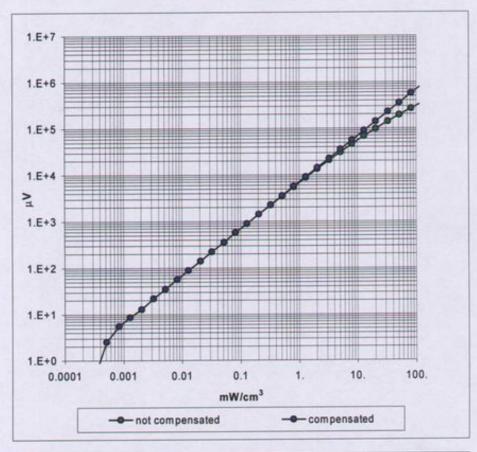

Frequency Response of E-Field

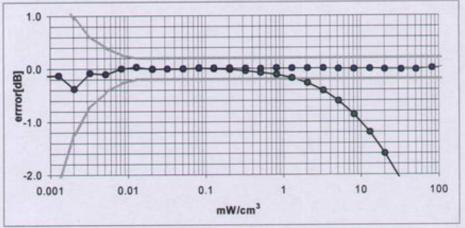

(TEM-Cell:ifi110, Waveguide R22)



ET3DV6 SN:1579

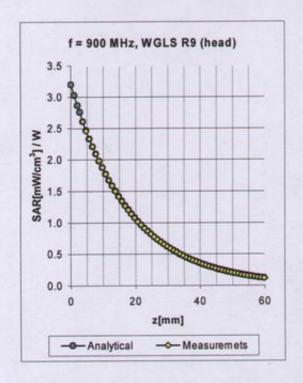
Receiving Pattern (ϕ), θ = 0°

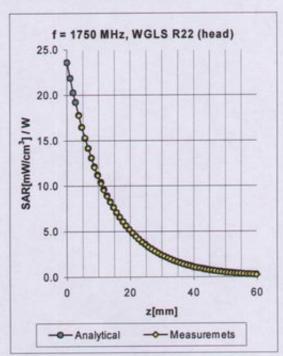




Axial Isotropy Error < ± 0.2 dB

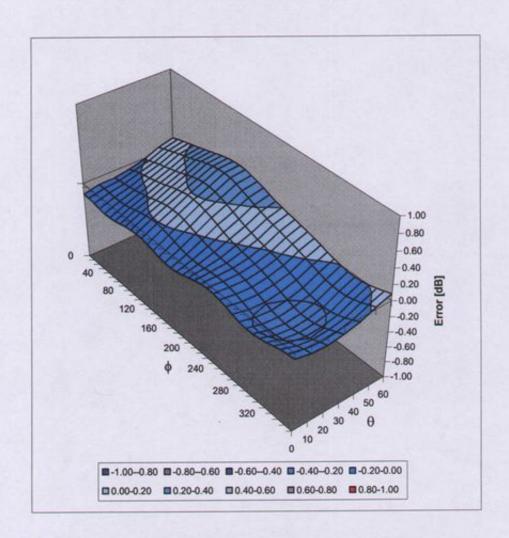
Dynamic Range f(SAR_{head})


(Waveguide R22)



Probe Linearity Error < ± 0.2 dB

Conversion Factor Assessment



f [MHz]	Validity [MHz] ^B	Tissue	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
835	785-885	Head	41.5 ± 5%	0.90 ± 5%	0.61	1.79	6.96 ± 9.7% (k=2)
900	850-950	Head	41.5 ± 5%	0.97 ± 5%	0.57	1.89	6.64 ± 9.7% (k=2)
1750	1700-1800	Head	40.0 ± 5%	1.40 ± 5%	0.47	2.59	5.37 ± 9.7% (k=2)
1900	1850-1950	Head	40.0 ± 5%	1.40 ± 5%	0.49	2.66	5.19 ± 9.7% (k=2)
2450	2400-2500	Head	39.2 ± 5%	1.80 ± 5%	0.90	1.96	4.64 ± 9.7% (k=2)
835	785-885	Body	55.2 ± 5%	0.97 ± 5%	0.46	2.23	6.46 ± 9.7% (k=2)
900	850-950	Body	55.0 ± 5%	1.05 ± 5%	0.49	2.14	6.19 ± 9.7% (k=2)
1750	1700-1800	Body	53.3 ± 5%	1.52 ± 5%	0.52	2.89	4.80 ± 9.7% (k=2)
1900	1850-1950	Body	53.3 ± 5%	1.52 ± 5%	0.59	2.74	4.57 ± 9.7% (k=2)
2450	2400-2500	Body	52.7 ± 5%	1.95 ± 5%	1.11	1.57	4.34 ± 9.7% (k=2)

^B The total standard uncertainty is calculated as root-sum-square of standard uncertainty of the Conversion Factor at calibration frequency and the standard uncertainty for the indicated frequency band.

Deviation from Isotropy in HSL

Error (θ, ϕ) , f = 900 MHz

Spherical Isotropy Error < ± 0.4 dB

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Calibration Certificate

835 MHz System Validation Dipole

Type: D835V2 Serial Number: 437 Place of Calibration: Zurich Date of Calibration: November 13, 2002 Calibration Interval: 24 months

Schmid & Partner Engineering AG hereby certifies, that this device has been calibrated on the date indicated above. The calibration was performed in accordance with specifications and procedures of Schmid & Partner Engineering AG.

Wherever applicable, the standards used in the calibration process are traceable to international standards. In all other cases the standards of the Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland have been applied.

Calibrated by:

Approved by:

D. Vellen

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

DASY

Dipole Validation Kit

Type: D835V2

Serial: 437

Manufactured: December 15, 2000 Calibrated: November 13, 2002

1. Measurement Conditions

The measurements were performed in the flat section of the new generic twin phantom filled with head simulating solution of the following electrical parameters at 835 MHz:

Relative Dielectricity 43.05 $\pm 5\%$ Conductivity 0.90 mho/m $\pm 5\%$

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 6.6 at 835 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15mm from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 20mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was $250 \text{mW} \pm 3$ %. The results are normalized to 1 W input power.

2. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the advanced extrapolation are:

averaged over 1 cm³ (1 g) of tissue: 9.64 mW/g

averaged over 10 cm3 (10 g) of tissue: 6.20 mW/g

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay: 1.438 ns (one direction)

Transmission factor: 0.988 (voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 835 MHz: $Re\{Z\} = 47.9 \Omega$

Im $\{Z\} = -7.6 \Omega$

Return Loss at 835 MHz -21.9 dB

4. Measurement Conditions

The measurements were performed in the flat section of the new generic twin phantom filled with body simulating solution of the following electrical parameters at 835 MHz:

Relative Dielectricity 55.9 ± 5% Conductivity 0.96 mho/m ± 5%

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 6.2 at 835 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15mm from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 20mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was $250 \text{mW} \pm 3\%$. The results are normalized to 1 W input power.

SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 4. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the <u>advanced extrapolation</u> are:

averaged over 1 cm3 (1 g) of tissue: 9.76 mW/g

averaged over 10 cm3 (10 g) of tissue: 6.40 mW/g

6. Dipole Impedance and Return Loss

The dipole was positioned at the flat phantom sections according to section 4 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 835 MHz: $Re\{Z\} = 44.6 \Omega$

Im $\{Z\} = -9.4 \Omega$

Return Loss at 835 MHz -18.9 dB

7. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

8. Design

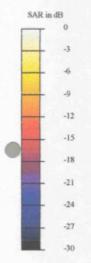
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

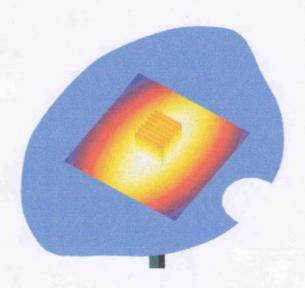
9. Power Test

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Date/Time: 11/13/02 16:06:15

Test Laboratory: SPEAG, Zurich, Switzerland File Name: SN437_SN1507_HSL835_131102.da4


DUT: Dipole 835 MHz Type & Serial Number: D835V2 - SN437 Program: Dipole Calibration; Pin = 250 mW; d = 10 mm


Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: HSL 835 MHz (σ = 0.9 mho/m, ϵ = 43.05, ρ = 1000 kg/m3) Phantom section: FlatSection

DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(6.6, 6.6, 6.6); Calibrated: 1/24/2002
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN410; Calibrated: 7/18/2002
- Phantom: SAM 4.0 TP:1006
- Software: DASY4, V4.0 Build 35

Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm Reference Value = 55.6 V/m Peak SAR = 3.59 mW/g SAR(1 g) = 2.41 mW/g; SAR(10 g) = 1.55 mW/g Power Drift = 0.02 dB

13 Nov 2002 11:23:23
EHI S11 1 U FS 1:47.918 a -7.6328 a 24.972 pF 835,000 000 MHz

PRm
Core
Proposition

CH2 S11 L06 5 dB/REF 0 dB 11-21.896 dB 835,000 000 MHz

PRm
Core

STOP 1 835,000 080 MHz

START 635,000 000 MHz

Date/Time: 11/13/02 19:20:06

Test Laboratory: SPEAG, Zurich, Switzerland File Name: SN437_SN1507_M835_131102.da4

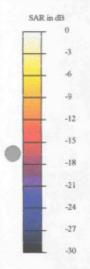
DUT: Dipole 835 MHz Type & Serial Number: D835V2 - SN437 Program: Dipole Calibration; Pin = 250 mW; d = 10 mm

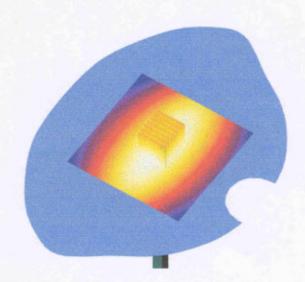
Communication System: CW-835; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: Muscle 835 MHz (σ = 0.96 mho/m, ϵ = 55.87, ρ = 1000 kg/m3) Phantom section: FlatSection

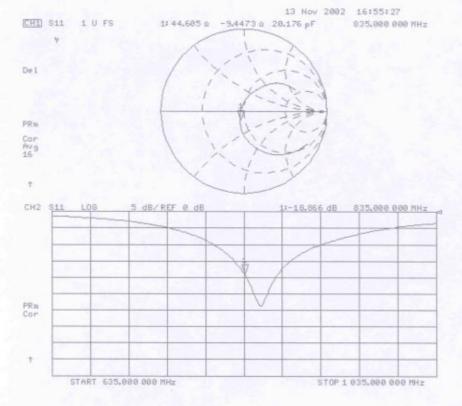
DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(6.2, 6.2, 6.2); Calibrated: 1/24/2002
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN410; Calibrated: 7/18/2002
- Phantom: SAM 4.0 TP:1006
- Software: DASY4, V4.0 Build 35

Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm


Reference Value = 55 V/m


Peak SAR = 3.4 mW/g

SAR(1 g) = 2.44 mW/g; SAR(10 g) = 1.6 mW/g

Power Drift = 0.002 dB

Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

Calibration Certificate

1900 MHz System Validation Dipole

Type:	D1900V2
Serial Number:	535
Place of Calibration:	Zurich
Date of Calibration:	November 14, 2002
Calibration Interval:	24 months

Schmid & Partner Engineering AG hereby certifies, that this device has been calibrated on the date indicated above. The calibration was performed in accordance with specifications and procedures of Schmid & Partner Engineering AG.

Wherever applicable, the standards used in the calibration process are traceable to international standards. In all other cases the standards of the Laboratory for EMF and Microwave Electronics at the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland have been applied.

Calibrated by:

Approved by:

D. Velleto

Reproved by:

Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland, Phone +41 1 245 97 00, Fax +41 1 245 97 79

DASY

Dipole Validation Kit

Type: D1900V2

Serial: 535

Manufactured: March 22, 2001

Calibrated:

November 14, 2002

1. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with head simulating glycol solution of the following electrical parameters at 1900 MHz:

Relative Dielectricity 39.8 $\pm 5\%$ Conductivity 1.45 mho/m $\pm 5\%$

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 5.2 at 1900 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was $250 \text{mW} \pm 3$ %. The results are normalized to 1W input power.

2. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the <u>advanced extrapolation</u> are:

averaged over 1 cm³ (1 g) of tissue: 40.8 mW/g

averaged over 10 cm³ (10 g) of tissue: 20.7 mW/g

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay: 1.2184 ns (one direction)

Transmission factor: 0.995 (voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 1900 MHz: $Re\{Z\} = 50.9 \Omega$

Im $\{Z\} = 3.6 \Omega$

Return Loss at 1900 MHz -28.6 dB

4. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with body simulating glycol solution of the following electrical parameters at 1900 MHz:

Relative Dielectricity 52.2 \pm 5% Conductivity 1.57 mho/m \pm 5%

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 4.9 at 1900 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from dipole center to the solution surface. The included distance holder was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was $250 \text{mW} \pm 3 \%$. The results are normalized to 1 W input power.

5. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 4. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the <u>advanced extrapolation</u> are:

averaged over 1 cm3 (1 g) of tissue: 41.2 mW/g

averaged over 10 cm³ (10 g) of tissue: 21.0 mW/g

6. Dipole Impedance and Return Loss

The dipole was positioned at the flat phantom sections according to section 4 and the distance holder was in place during impedance measurements.

Feedpoint impedance at 1900 MHz: $Re\{Z\} = 46.5 \Omega$

Im $\{Z\} = 3.4 \Omega$

Return Loss at 1900 MHz -26.0 dB

7. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

8. Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

Small end caps have been added to the dipole arms in order to improve matching when loaded according to the position as explained in Section 1. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

Power Test

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Date/Time: 11/14/02 17:19:55

Test Laboratory: SPEAG, Zurich, Switzerland

File Name: SN535caps_SN1507_HSL1900_141102.da4

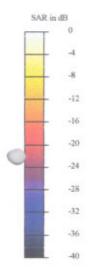
DUT: Dipole 1900 MHz Type & Serial Number: D1900V2 - SN535 Program: Dipole Calibration; Pin = 250 mW; d = 10 mm

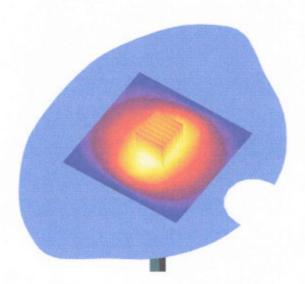
Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL 1900 MHz (σ = 1.45 mho/m, ϵ = 39.75, ρ = 1000 kg/m3) Phantom section: FlatSection

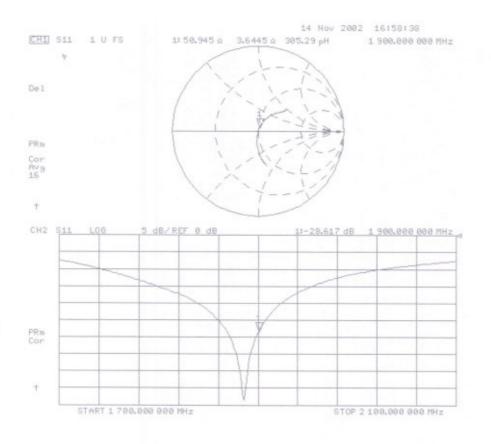
DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(5.2, 5.2, 5.2); Calibrated: 1/24/2002
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN410; Calibrated: 7/18/2002
- Phantom: SAM 4.0 TP:1006
- Software: DASY4, V4.0 Build 35

Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm


Reference Value = 94 V/m


Peak SAR = 18.5 mW/g

SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.18 mW/g

Power Drift = -0.01 dB

Date/Time: 11/14/02 18:52:22

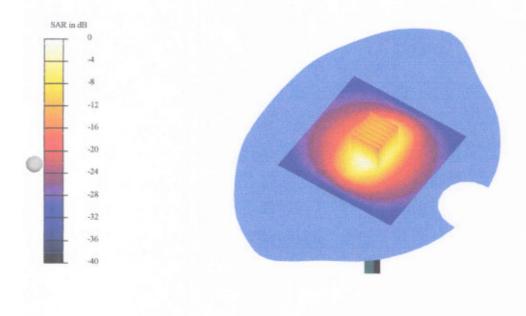
Test Laboratory: SPEAG, Zurich, Switzerland File Name: SN535_SN1507_M1900_141102.da4

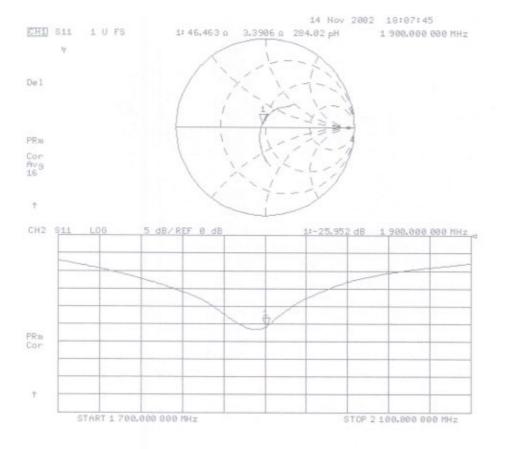
Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: Muscle 1900 MHz (σ = 1.57 mho/m, ϵ = 52.15, ρ = 1000 kg/m3) Phantom section: FlatSection

DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(4.9, 4.9, 4.9); Calibrated: 1/24/2002
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN410; Calibrated: 7/18/2002
- Phantom: SAM 4.0 TP:1006 - Software: DASY4, V4.0 Build 35

Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm


Reference Value = 90.7 V/m

Peak SAR = 18.8 mW/g

SAR(1 g) = 10.3 mW/g; SAR(10 g) = 5.26 mW/g

Power Drift = -0.03 dB

