3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay:	$\mathbf{1 . 1 9 4} \mathrm{ns}$	(one direction)
Transmission factor:	$\mathbf{0 . 9 8 2}$	(voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at $1900 \mathrm{MHz}:$	$\operatorname{Re}\{Z\}=\mathbf{5 4 . 0} \Omega$
	$\operatorname{Im}\{Z\}=\mathbf{4 . 0} \Omega$
Return Loss at 1900 MHz	$\mathbf{- 2 5 . 4} \mathbf{~ d B}$

4. Measurement Conditions

The measurements were performed in the quarter size flat phantom filled with body simulating tissue of the following electrical parameters at 1900 MHz :

Relative Dielectricity	$\mathbf{5 2 . 2}$	$\pm 5 \%$
Conductivity	$\mathbf{1 . 5 8} \mathbf{~ m h o} / \mathrm{m}$	$\pm 5 \%$

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 4.57 at 1900 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the quarter size flat phantom and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm from dipole center to the solution surface. The included distance spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15 mm was aligned with the dipole. The $7 \times 7 \times 7$ fine cube was chosen for cube integration.
The dipole input power (forward power) was $250 \mathrm{~mW} \pm 3 \%$. The results are normalized to 1 W input power.

5. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 4. The results (see figure supplied) have been normalized to a dipole input power of 1 W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 $\mathrm{SN}: 1507$ and applying the advanced extrapolation are:

```
averaged over 1 cm }\mp@subsup{}{}{3}(1\textrm{g})\mathrm{ of tissue: }\quad\mathbf{41.6 mW/g}\pm16.8%(k=2)
averaged over 10 cm }\mp@subsup{}{}{3}(10\textrm{g})\mathrm{ of tissue: }\quad\mathbf{21.6 mW/g}\pm16.2%(k=2)
```


6. Dipole Impedance and Return Loss

The dipole was positioned at the flat phantom sections according to section 4 and the distance spacer was in place during impedance measurements.

$$
\begin{array}{ll}
\text { Feedpoint impedance at } 1900 \mathrm{MHz}: & \operatorname{Re}\{Z\}=50.9 \Omega \\
& \operatorname{Im}\{Z\}=5.0 \Omega \\
\text { Return Loss at } 1900 \mathrm{MHz} & -\mathbf{2 7 . 2} \mathrm{dB}
\end{array}
$$

7. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

8. Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DCsignals.

Small end caps have been added to the dipole arms in order to improve matching when loaded according to the position as explained in Section 1. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

9. Power Test

After long term use with 40 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

[^0]Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN5d051

Communication System: CW-1900; Frequency: 1900 MHz ;Duty Cycle: 1:1
Medium: HSL 1900 MHz ;
Medium parameters used: $\mathrm{f}=1900 \mathrm{MHz} ; \sigma=1.44 \mathrm{mho} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=39.4 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY4 (High Precision Assessment)
DASY4 Configuration:

- Probe: ET3DV6 - SN1507; ConvF(4.96, 4.96, 4.96); Calibrated: 1/23/2004
- Sensor-Surface: 4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 7/22/2004
- Phantom: Flat Phantom quarter size; Type: QD000P50AA; Serial: SN:1001;
- Measurement SW: DASY4, V4.3 Build 14; Postprocessing SW: SEMCAD, V1.8 Build 123

Pin $=\mathbf{2 5 0} \mathbf{m W} ; \mathbf{d}=10 \mathrm{~mm} /$ Area Scan (81x81x1): Measurement grid: $d x=15 \mathrm{~mm}, d y=15 \mathrm{~mm}$ Maximum value of SAR (interpolated) $=11.1 \mathrm{~mW} / \mathrm{g}$

Pin $=\mathbf{2 5 0} \mathbf{m W} ; \mathbf{d}=10 \mathrm{~mm} /$ Zoom Scan (7x7x7)/Cube 0: Measurement grid: $d x=5 \mathrm{~mm}$, $\mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=90.3 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.0 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=17.3 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=\mathbf{9 . 8 4} \mathbf{m W} / \mathrm{g} ; \operatorname{SAR}(\mathbf{1 0} \mathrm{g})=\mathbf{5 . 1 5} \mathbf{m W} / \mathrm{g}$
Maximum value of SAR (measured) $=11.2 \mathrm{~mW} / \mathrm{g}$

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN5d051

Communication System: CW-1900; Frequency: 1900 MHz ;Duty Cycle: 1:1
Medium: Muscle 1900 MHz ;
Medium parameters used: $\mathrm{f}=1900 \mathrm{MHz} ; \sigma=1.58 \mathrm{mho} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=52.2 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY4 (High Precision Assessment)
DASY4 Configuration:

- Probe: ET3DV6 - SN1507; ConvF(4.57, 4.57, 4.57); Calibrated: 1/23/2004
- Sensor-Surface: 4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 7/22/2004
- Phantom: Flat Phantom quarter size; Type: QD000P50AA; Serial: SN:1001;
- Measurement SW: DASY4, V4.3 Build 14; Postprocessing SW: SEMCAD, V1.8 Build 123

Pin $=\mathbf{2 5 0} \mathbf{m W} ; \mathbf{d}=\mathbf{1 0} \mathbf{m m} /$ Area Scan (81x81x1): Measurement grid: $d x=15 \mathrm{~mm}, \mathrm{dy}=15 \mathrm{~mm}$ Maximum value of SAR (interpolated) $=11.8 \mathrm{~mW} / \mathrm{g}$

Pin $=\mathbf{2 5 0} \mathbf{m W}$; $\mathbf{d}=\mathbf{1 0} \mathbf{~ m m} /$ Zoom Scan ($7 \times 7 \times 7$)/Cube 0: Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}$, $\mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=88.9 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.1 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=18.2 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=10.4 \mathrm{~mW} / \mathrm{g} ; \operatorname{SAR}(\mathbf{1 0} \mathrm{g})=\mathbf{5 . 4 1} \mathrm{mW} / \mathrm{g}$
Maximum value of SAR (measured) $=11.8 \mathrm{~mW} / \mathrm{g}$


```
Calibration Laboratory of
Schmid & Partner
    Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland
```


Client
 IMST

CALIBRATION CERTIFICATE

```
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Object(s) ET3DV6-SN:1579} \\
\hline Calibration procedure(s) & \multicolumn{3}{|l|}{\begin{tabular}{l}
QA CAL-01.v2 \\
Calibration procedure for dosimetric E-field probes
\end{tabular}} \\
\hline Calibration date: & \multicolumn{3}{|l|}{September1,2004} \\
\hline Condition of the calibrated item & \multicolumn{3}{|l|}{In Tolerance (according to the specific calibration document)} \\
\hline \multicolumn{4}{|l|}{This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.} \\
\hline \multicolumn{4}{|l|}{All calibrations have been conducted in the closed laboratory facility: environment temperature \(22+1-2\) degrees Celsius and humidity \(<75 \%\).} \\
\hline \multicolumn{4}{|l|}{Calibration Equipment used (M\&TE critical for calibration)} \\
\hline Model Type & ID\# & Cal Date (Calibrated by, Certificate No.) & Scheduled Calibration \\
\hline Power meter EPM E4419B & GB41293874 & 5-May-04 (METAS, No 251-00388) & May-05 \\
\hline Power sensor E4412A & MY41495277 & 5-May-04 (METAS, No 25100388) & May-05 \\
\hline Reference 20 dB Attenuator & SN: 5086 (20b) & 3-May-04 (METAS, No 25100389) & May-05 \\
\hline Fluke Process Calibrator Type 702 & SN: 6295803 & 8-Sep-03 (Sintrel SCS No. E030020) & Sep-04 \\
\hline Power sensor HP 8481A & MY41092180 & 18-Sep-02 (SPEAG, in house check OoD3) & In house check: Oct 05 \\
\hline RF generator HP 8684C & US3642U01700 & 4-Aug-99 (SPEAG, in house check Aug@2) & In house check: Aug05 \\
\hline \multirow[t]{2}{*}{Network Analyzer HP 8753E} & US37390585 & 18-Oct-01 (SPEAG, in house check Oct03) & In house check: Oct 05 \\
\hline & Name & Function & Signature \\
\hline Calibrated by & Nico Vetterli & Technician &  \\
\hline Approved by: & Katja Pokovic & Laboratory Director &  \\
\hline
\end{tabular}
This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISO/EC 17025 International Standard) for Calibration Laboratory of Schmid \& Partner Engineering AG is completed.
```


Probe ET3DV6

SN:1579

Manufactured:
Last calibrated:
Recalibrated:

May 7, 2001
May 21, 2004
September 1, 2004

Calibrated for DASY Systems
(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6 SN:1579

[^1][^2]
Frequency Response of E-Field

(TEM-Cell:ifi110, Waveguide R22)

Receiving Pattern $(\phi), \theta=0^{\circ}$

Axial Isotropy Error $< \pm 0.2 \mathrm{~dB}$

Dynamic Range $f\left(S A R_{\text {head }}\right)$

(Waveguide R22)

Probe Linearity Error $< \pm 0.2 \mathrm{~dB}$

Conversion Factor Assessment

f[MHz]	Validity $[\mathrm{MHz}]^{\mathrm{B}}$	Tissue	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
835	$785-885$	Head	$41.5 \pm 5 \%$	$0.90 \pm 5 \%$	0.61	1.79	$6.96 \pm 9.7 \%(\mathrm{k}=2)$
900	$850-950$	Head $41.5 \pm 5 \%$	$0.97 \pm 5 \%$	0.57	1.89	$6.64 \pm 9.7 \%(\mathrm{k}=2)$	
1750	$1700-1800$	Head $40.0 \pm 5 \%$	$1.40 \pm 5 \%$	0.47	2.59	$5.37 \pm 9.7 \%(\mathrm{k}=2)$	
1900	$1850-1950$	Head	$40.0 \pm 5 \%$	$1.40 \pm 5 \%$	0.49	2.66	$5.19 \pm 9.7 \%(\mathrm{k}=2)$
2450	$2400-2500$	Head $39.2 \pm 5 \%$	$1.80 \pm 5 \%$	0.90	1.96	$4.64 \pm 9.7 \%(\mathrm{k}=2)$	
835	$785-885$	Body	$55.2 \pm 5 \%$	$0.97 \pm 5 \%$	0.46	2.23	$6.46 \pm 9.7 \%(\mathrm{k}=2)$
900	$850-950$	Body	$55.0 \pm 5 \%$	$1.05 \pm 5 \%$	0.49	2.14	$6.19 \pm 9.7 \%(\mathrm{k}=2)$
1750	$1700-1800$	Body	$53.3 \pm 5 \%$	$1.52 \pm 5 \%$	0.52	2.89	$4.80 \pm 9.7 \%(\mathrm{k}=2)$
1900	$1850-1950$	Body	$53.3 \pm 5 \%$	$1.52 \pm 5 \%$	0.59	2.74	$4.57 \pm 9.7 \%(\mathrm{k}=2)$
2450	$2400-2500$	Body	$52.7 \pm 5 \%$	$1.95 \pm 5 \%$	1.11	1.57	$4.34 \pm 9.7 \%(\mathrm{k}=2)$

[^3]Deviation from Isotropy in HSL
Error $(\theta, \phi), \mathbf{f}=\mathbf{9 0 0} \mathbf{~ M H z}$

Spherical Isotropy Error $< \pm 0.4 \mathrm{~dB}$

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasso 43, 8004 Zurich, Switzerland

Client

IMST

CALIBRATION CERTIFICATE

Object(s)
Calibration procedure(s)

$$
\text { ET3DV6 - SN: } 1669
$$

Calibration procedure(s)
QA CAL-01.v2
Calibration procedure for dosimetric E-field probes

Calibration date:
March 18, 2004
Condition of the callibrated item
In Tolerance (according to the specific calibration document)

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $22+/-2$ degrees Celsius and hurridity $<75 \%$.

Calibration Equipment used (M\&TE critical for calibration)

Model Type	ID \#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Power meter EPM E4419B	GB41293874	2-Apr-03 (METAS, No 252-0250)	Apr-04
Power sensor E4412A	MY41495277	2-Apr-03 (METAS, No 252-0250)	Apr-04
Reference 20 dB Attenuator	SN: 5086 (20b)	3-Apr-03 (METAS, No. 251-0340)	Apr-04
Fluke Process Calibrator Type 702	SN: 6295803	8-Sep-03 (Sintrel SCS No. E-030020)	Sep-04
Power sensor HP 8481A	MY41092180	18-Sep-02 (SPEAG, in house check Oct-03)	In house check Oct 05
RF generator HP 8684C	US3642U01700	4-Aug-99 (SPEAG, in house check Aug-02)	In house check Aug-05
Network Analyzer HP 8753E	US37390585	18-Oct-01 (SPEAG, in house check Oct-03)	In house check Oct 05
	Name	Function	Signature
Calibrated by:	Nico Vetterli	Technician	
Approved by:	Katja Pokovic	Laboratory Director	Won: he

This calibration certificate is issued as an intermediate solution until the accreditation process (based on ISONEC 17025 International Standard) for Calibration Laboratory of Schmid \& Partner Engineering AG is completed.

Probe ET3DV6

SN:1669

Manufactured: \quad February 8, 2002
Last calibrated: March 21, 2003
Recalibrated:
March 18, 2004
Calibrated for DASY Systems
(Note: non-compatible with DASY2 system!)

DASY - Parameters of Probe: ET3DV6 SN:1669

Sensitivity in Free Space		Diode Compressio		
NormX	$1.83 \mu \mathrm{~V} /(\mathrm{V} / \mathrm{m})^{2}$	DCP X	96	mV
NormY	$1.93 \mu \mathrm{~V} /(\mathrm{V} / \mathrm{m})^{2}$	DCP Y	96	mV
NormZ	$1.81 \mu \mathrm{~V} /(\mathrm{V} / \mathrm{m})^{2}$	DCP Z	96	mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)
Plese see Page 7.

Boundary Effect
Head
$900 \mathrm{MHz} \quad$ Typical SAR gradient: 5% per mm

Sensor Cener to Phantom Surface Distance	3.7 mm	4.7 mm	
SAR $_{b e}[\%]$	Without Correction Algorithm	9.7	5.2
SAR $_{b 0}[\%]$	Wth Correction Algorithm	0.1	0.3

Head $\quad 1800 \mathrm{MHz} \quad$ Typical SAR gradient: 10% per mm

Sensor to Surface Distance	3.7 mm	$\mathbf{4 . 7} \mathrm{~mm}$	
SAR $_{\mathrm{se}}[\%]$	Without Correction Algorithm	14.1	9.8
SAR $_{\mathrm{bo}}[\%]$	With Correction Algorithm	0.2	0.2

Sensor Offset

Probe Tip to Sensor Center

Optical Surface Detection
2.7 mm
in tolerance

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathrm{k}=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

[^4]
Frequency Response of E-Field

(TEM-Cell:ifi110, Waveguide R22)

Receiving Pattern (ϕ) , $\theta=0^{\circ}$

Axial Isotropy Error $< \pm 0.2 \mathrm{~dB}$

Dynamic Range $f\left(\right.$ SAR $\left._{\text {head }}\right)$

(Waveguide R22)

Probe Linearity $< \pm 0.2 \mathrm{~dB}$

Conversion Factor Assessment

$f[\mathrm{MHz}]$	Validity $[\mathrm{MHz}]^{8}$	Tissue	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
835	$785-885$	Head	$41.5 \pm 5 \%$	$0.90 \pm 5 \%$	0.54	2.00	$6.67 \pm 9.7 \%(\mathrm{k}=2)$
900	$850-950$	Head	$41.5 \pm 5 \%$	$0.97 \pm 5 \%$	0.61	1.91	$6.47 \pm 9.7 \%(\mathrm{k}=2)$
1750	$1700-1800$	Head	$40.0 \pm 5 \%$	$1.40 \pm 5 \%$	0.48	2.73	$5.38 \pm 9.7 \%(\mathrm{k}=2)$
1900	$1850-1950$	Head	$40.0 \pm 5 \%$	$1.40 \pm 5 \%$	0.51	2.81	$5.19 \pm 9.7 \%(\mathrm{k}=2)$
1950	$1900-2000$	Head	$40.0 \pm 5 \%$	$1.40 \pm 5 \%$	0.53	2.73	$4.88 \pm 9.7 \%(\mathrm{k}=2)$

| 835 | $785-885$ | Body | $55.2 \pm 5 \%$ | $0.97 \pm 5 \%$ | 0.41 | 2.51 | $6.32 \pm 9.7 \%(\mathrm{k}=2)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 900 | $850-950$ | Body | $55.0 \pm 5 \%$ | $1.05 \pm 5 \%$ | 0.48 | 2.23 | $6.13 \pm 9.7 \%(\mathrm{k}=2)$ |
| 1750 | $1700-1800$ | Body | $53.3 \pm 5 \%$ | $1.52 \pm 5 \%$ | 0.56 | 2.85 | $4.66 \pm 9.7 \%(\mathrm{k}=2)$ |
| 1900 | $1850-1950$ | Body | $53.3 \pm 5 \%$ | $1.52 \pm 5 \%$ | 0.61 | 2.80 | $4.54 \pm 9.7 \%(\mathrm{k}=2)$ |
| 1950 | $1900-2000$ | Body | $53.3 \pm 5 \%$ | $1.52 \pm 5 \%$ | 0.67 | 2.46 | $4.35 \pm 9.7 \%(\mathrm{k}=2)$ |

[^5]
Deviation from Isotropy in HSL

Error $(\theta, \phi), \mathbf{f}=900 \mathrm{MHz}$

Spherical Isotropy Error $< \pm 0.4 \mathrm{~dB}$

[^0]: ${ }^{2}$ validation uncertainty

[^1]: The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $\mathbf{k}=\mathbf{2}$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

[^2]: ${ }^{\text {A }}$ numerical linearization parameter: uncertainty not required

[^3]: ${ }^{8}$ The total standard uncertainty is caiculated as root-sum-square of standard uncertainty of the Comersion Factor at calibration frequency and the standard uncertainty for the indicated frequency band.

[^4]: A numarical linoartzation parameter: uncertainty not required

[^5]: ${ }^{3}$ The total standard uncertainty is calculatod as rose-sum-square of standard uncertainty of the Convorsion Factor at calioration frequency and the standard uncortainty for the indicated frequoncy band.

