

Inter**Lab**

FCC Measurement/Technical Report on

GSM/UMTS PCMCIA Card GlobeTrotter Express HSUPA E GE0301

Report Reference: MDE_Opti_0702_FCCs

Test Laboratory:

7 layers AG Borsigstrasse 11 40880 Ratingen Germany

email: info@7Layers.de

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the testing laboratory.

7 layers AG Borsigstrasse 11 40880 Ratingen, Germany Phone: +49 (0) 2102 749 0 Fax: +49 (0) 2102 749 350 www.7Layers.com Aufsichtsratsvorsitzender • Chairman of the Supervisory Board: Markus Becker Vorstand • Board: Dr. Hans-Jürgen Meckelburg René Schildknecht

Registergericht • registered in: Düsseldorf, HRB 44096 USt-IdNr • VAT Nr: DE 203159652

Table of Contents

) Su	mmary	3
0.1 0.2	Technical Report Summary Measurement Summary	3 4
L Ad	ministrative Data	5
1.1 1.2 1.3 1.4	Testing Laboratory Project Data Applicant Data Manufacturer Data	5 5 5 5
2 Te	stobject Data	6
2.1 2.2 2.3 2.4 2.5	General EUT Description EUT Main components Ancillary Equipment EUT Setups Operating Modes	6 7 7 7 8
3 Te	st Results	9
3.1	RF Power Output	9
4 Te	11	
5 Ph	oto Report	14
5 Se	tup Drawings	16

0 Summary

0.1 Technical Report Summary

Type of Authorization

Certification for a GSM cellular radiotelephone device

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 0 to 19 and Parts 20 to 69 (10-1-06 Edition). The following subparts are applicable to the results in this test report.

Part 2

Subpart J - Equipment Authorization Procedures, Certification

§ 2.1046 Measurement required: RF power output

§ 2.1049 Measurement required: Occupied bandwidth

§ 2.1051 Measurement required: Spurious emissions at antenna terminals

§ 2.1053 Measurement required: Field strength of spurious radiation

§ 2.1055 Measurement required: Frequency stability

§ 2.1057 Frequency spectrum to be investigated

Part 24

Subpart E - Broadband PCS

§ 24.232 Power and antenna height limits

§ 24.235 Frequency stability

§ 24.236 Field strength limits

§ 24.238 Emission limitations for Broadband PCS equipment

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 0.2 Measurement Summary.

Test report Reference: MDE_Opti_0702_FCCs

0.2 Measurement Summary

RF Power Out			
		cording to FCC §2.1046	10-1-06
OP-Mode	Setup	Port	Final Result
op-mode 1	Setup_b01	enclosure	passed
op-mode 2	Setup_b01	enclosure	passed
op-mode 3	Setup_b01	enclosure	passed
op-mode 4	Setup_b01	enclosure	passed
op-mode 5	Setup_b01	enclosure	passed
op-mode 6	Setup_b01	enclosure	passed
op-mode 7	Setup_a01	enclosure	passed
op-mode 8	Setup_a01	enclosure	passed
op-mode 9	Setup_a01	enclosure	passed
op-mode 10	Setup_a01	enclosure	passed
op-mode 11	Setup_a01	enclosure	passed
op-mode 12	Setup_a01	enclosure	passed
OP-Mode	Setup	Port	Final Result N/A
	sions at antenna te		
The measureme OP-Mode	ent was performed acc Setup	cording to FCC §2.1051 Port	10-1-06 Final Result N/A
Field strength	of spurious radiation	on	
The measureme OP-Mode	ent was performed ac Setup	cording to FCC §2.1053 Port	10-1-06 Final Result N/P
	Occupied Bandwidt		
		cording to FCC §2.1049	10-1-06
OP-Mode	Setup	Port	Final Result N/P
Band edge cor			10.1.00
The measureme OP-Mode	ent was performed ac Setup	cording to FCC §24.238 Port	10-1-06 Final Result

N/P: not performed

The tests were selected by the customer. As a signalling unit a CMU200 by R&S was provided by the customer and used for carrying out the tests. The settings of the CMU200 were provided by the customer, too. The HSUPA software on the CMU200 is a beta version by R&S, version 4x50.

Responsible for Accreditation Scope:

7 layers AG, Borsigstr. 11 40880 R.Resgensiblermany Phone +46r (Test Reports 0

a. Cel

1 Administrative Data

1.1 Testing Laboratory

7 Layers AG Company Name: Address Borsigstr. 11 40880 Ratingen Germany This facility has been fully described in a report submitted to the FCC and accepted under the registration number 96716. The test facility is also accredited by the following accreditation organisation: - Deutscher Akkreditierungs Rat DAR-Registration no. DAT-P-192/99-01 Responsible for Accreditation Scope: Dipl.-Ing. Bernhard Retka Dipl.-Ing. Robert Machulec Dipl.-Ing. Thomas Hoell Report Template Version: 2006-12-18 1.2 Project Data Responsible for testing and report: Dipl.-Ing. Andreas Petz Receipt of EUT: See chapter 2.2 Date of Test(s): 2007-06-27 to 2007-07-02 Date of Report: 2007-07-02 1.3 Applicant Data Company Name: Option NV Gaston Geenslaan 14 Address: 3001 Leuven Belgium Contact Person: Mr. Lodeweyckx 1.4 Manufacturer Data Company Name: please see applicant data Address: Contact Person:

2 Testobject Data

2.1 General EUT Description

Equipment under Test: GSM/UMTS PCMCIA Card

Type Designation: GlobeTrotter Express HSUPA E, GE0301 Kind of Device: GSM 850/900/1800/1900 + UTRA FDD I/II/V

(optional) including HSDPA + HSUPA

Voltage Type:DCNominal Voltage:3.5 VMaximum Voltage:3.5 VMinimum Voltage:3.15 V

General product description:

The Equipment under Test (EUT) is a data card that supports GSM/EDGE 850/900/1800/1900 and FDD I, II and V with HSDPA and HSUPA. The manufacturer declared that nominal voltage is equal to high voltage.

In PCS1900 mode the EUT operates in blocks A through F from 1850.2 MHz (lowest channel = 512) to 1909.8 MHz (highest channel = 810).

In FDD II mode the EUT operates in channel blocks A through F from 1852.4 MHz (lowest channel = 9262) to 1907.6 MHz (highest channel = 9538).

The EUT provides the following ports:

Ports

antenna connector enclosure

The main components of the EUT are listed and described in Chapter 2.2

2.2 EUT Main components

Type, S/N, Short Descriptions etc. used in this Test Report

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status	Date of Receipt
EUT A	GlobeTrotter	GE0301	EE4473100N	4.0	2.6.1	2007-05-02
(Code:	Express					
37230J14)	HSUPA E					
Remark: EUT	is equipped with	an integral ant	enna (gain= 2.1	0 dBi) and a	permanent ante	nna connector
EUT B	GlobeTrotter	GE0301	EE4473E070	4.0	2.6.1	2007-07-02
(Code:	Express					
37230s14)	HSUPA E					
Remark: EUT	Remark: EUT is equipped with an integral antenna (gain= 2.10 dBi) and a permanent antenna connector					

NOTE: The short description is used to simplify the identification of the EUT in this test report.

2.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

_	Short Description	Equipment under Test	Type Designation	HW Status	SW Status	Serial no.	FCC ID
	AE1	Test Cradle	BONZAI V1.0	_	_	_	_

2.4 EUT Setups

This chapter describes the combination of EUT's and ancillary equipment used for testing.

Setup No.	Combination of EUTs	Description
setup_a01	EUT A + AE1	PC card in the test cradle
setup_b01	EUT B + AE1	PC card in the test cradle

2.5 Operating Modes

This chapter describes the operating modes of the EUT's used for testing.

Op. Mode	Description of Operating Modes	Remarks
	PCS data call	
op-mode 1	Call established on Traffic Channel (TCH) 512, Carrier Frequency 1850.2 MHz	512 is the lowest channel PCS data call
op-mode 2	Call established on Traffic Channel (TCH) 661, Carrier Frequency 1880 MHz	661 is a mid channel PCS data call
op-mode 3	Call established on Traffic Channel (TCH) 810, Carrier Frequency 1909.8 MHz	810 is the highest channel PCS data call
	EDGE data call	
op-mode 4	Call established on Traffic Channel (TCH) 512, Carrier Frequency 1850.2 MHz	512 is the lowest channel EDGE data call
op-mode 5	Call established on Traffic Channel (TCH) 661, Carrier Frequency 1880 MHz	661 is a mid channel EDGE data call
op-mode 6	Call established on Traffic Channel (TCH) 810, Carrier Frequency 1909.8 MHz	810 is the highest channel EDGE data call
	FDD II data call CS mode	
op-mode 7	Call established on Traffic Channel (TCH) 9262, Carrier Frequency 1852.4 MHz	9262 is the lowest channel FDD II data call
op-mode 8	Call established on Traffic Channel (TCH) 9400, Carrier Frequency 1880 MHz	9400 is a mid channel FDD II data call
op-mode 9	Call established on Traffic Channel (TCH) 9538, Carrier Frequency 1907.6 MHz	9538 is the highest channel FDD II data call
	FDD II data call HSUPA	
op-mode 10	Call established on Traffic Channel (TCH) 9262, Carrier Frequency 1852.4 MHz	9262 is the lowest channel FDD II data call HSUPA
op-mode 11	Call established on Traffic Channel (TCH) 9400, Carrier Frequency 1880 MHz	9400 is a mid channel FDD II data call HSUPA
op-mode 12	Call established on Traffic Channel (TCH) 9538, Carrier Frequency 1907.6 MHz	9538 is the highest channel FDD II data call HSUPA

The following parameter sets were provided by the customer:

Parameter set	Mode	Loopback Mode	Rel99 RMC	HSDPA FRC	HSUPA Test	Number of E-DPDCH Channels
For FDD V						
data call CS mode	Rel99	Test Mode 1	12.2kbps RMC	-	-	=
For FDD V						
data call HSUPA mode	Rel6 HSUPA	Test Mode 1	12.2kbps RMC	H-Set1	HSUPA Loopback	1

Parameter	Max UL Data					
set	Rate (kb/s)	βc/βd	βhs	βed	CM	Power Class 3 limit
For FDD V						
data call CS mode	-	8/15	-	-	-	24 (+1.7/-3.7 dB)
For FDD V						
data call HSUPA mode	197.6	2/15	4/15	56/75	3	22 (+3.7/-3.7 dB)

3 Test Results

3.1 RF Power Output

Standard FCC Part 24, 10-1-06

Subpart E

The test was performed according to: FCC §2.1046, 10-1-06

3.1.1 Test Description

- 1) The mobile station was placed inside the fully anechoic chamber on a positioning system. The mobile station was coupled via air link to a Digital Communication Tester (R&S CMU200 Digital Communication Tester/base station simulator) which was located outside the chamber for signalling. The measurement distance between the measurement antenna and the mobile station was 1m.
- 2) A call was established on a Traffic Channel (TCH) between the mobile station and the base station simulator.
- 3) A pre-calibration procedure is used so that the readings from the spectrum analyser are corrected and represent the equivalent radiated power (related to a half wave dipole) ERP.
- 4) All measurements were performed with a spectrum analyser and the appropriate calibrated antennas.
- 5) Important Analyser Settings:
 - Detector: Peak MaxholdFrequency span: 15 MHz
 - RBW: 5 MHz
 - VBW: 5 MHz
 - Measuring time: coupled
- 6) The measurement was performed in steps:
 - The mobile station was rotated in order to find the position of maximum radiated output power. This was performed for both polarisations of the measurement antenna (Vertical + Horizontal)
 - At the position of maximum radiated output power the ERP is measured. The measurement time was chosen long enough to allow the trace to stabilize.
 - The corrected value (EIRP) is recorded in the test report.
 - The steps described above were repeated for the different opoerating modes.

3.1.2 Test Requirements / Limits

§2.1046 Measurements Required: RF Power Output

(a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in § 2.1033(c)(8). The electrical

characteristics of the output terminals when this test is made shall be stated.

§24.232 Power and antenna height limits

- (c) Mobile/portable stations are limited to 2 watts EIRP peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.
- (d) Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage. The measurement results shall be properly adjusted for any instrument limitations, such as detector response times, limited resolution bandwidth capability when compared to the emission bandwidth, sensitivity etc., so as to obtain a true peak measurement for the emission in question over the full bandwidth of the channel.

3.1.3 Test Protocol

Temperature: 27 °C
Air Pressure: 1012 hPa
Humidity: 27 %

Op. ModeSetupPortsee table belowsee table belowenclosure

operating mode	max. output power EIRP/dBm	setup
1	31.19	setup b01
2	31.84	setup b01
3	32.1	setup b01
4	31.33	setup b01
5	32.15	setup b01
6	32.24	setup b01
7	28.11	setup a01
8	28.10	setup a01
9	27.84	setup a01
10	30.17	setup a01
11	31.4	setup a01
12	29.96	setup a01

Remark: none

3.1.4 Test result: RF Power Output

FCC Part 24, Subpart E

Op. Mode	Result
op-mode 1	passed
op-mode 2	passed
op-mode 3	passed
op-mode 4	passed
op-mode 5	passed
op-mode 6	passed
op-mode 7	passed
op-mode 8	passed
op-mode 9	passed
op-mode 10	passed
op-mode 11	passed
op-mode 12	passed

4 Test Equipment

EUT Digital Signalling System

Equipment	Туре	Serial No.	Manufacturer
Digital Radio	CMD 55	831050/020	Rohde & Schwarz
Communication Tester			
Signalling Unit for	PTW60	100004	Rohde & Schwarz
Bluetooth Spurious			
Emissions			
Universal Radio	CMU 200	103785	Rohde & Schwarz
Communication Tester			
Universal Radio	CMU 200	102366	Rohde & Schwarz
Communication Tester			

EMI Test System

Equipment	Туре	Serial No.	Manufacturer
Comparison Noise	CNE III	99/016	York
Emitter			
EMI Analyzer	ESI 26	830482/004	Rohde & Schwarz
Signal Generator	SMR 20	846834/008	Rohde & Schwarz

EMI Radiated Auxiliary Equipment

Equipment	Туре	Serial No.	Manufacturer
Antenna mast 4m	MA 240	240/492	HD GmbH H. Deisel
Biconical dipole	VUBA 9117	9117108	Schwarzbeck
Broadband Amplifier 18MHz-26GHz	JS4-18002600-32	849785	Miteq
Broadband Amplifier 30MHz-18GHz	JS4-00101800-35	896037	Miteq
Broadband Amplifier 45MHz-27GHz	JS4-00102600-42	619368	Miteq
Cable "ESI to EMI Antenna"	EcoFlex10	W18.01-2 + W38.01-2	Kabel Kusch
Cable "ESI to Horn Antenna"	UFB311A + UFB293C	W18.02-2 + W38.02-2	Rosenberger-Microcoax
Double-ridged horn	HF 906	357357/002	Rohde & Schwarz
Double-ridged horn	HF 906	357357/001	Rohde & Schwarz
High Pass Filter	5HC3500/12750-1.2-KK	200035008	Trilithic
High Pass Filter	5HC2700/12750-1.5-KK	9942012	Trilithic
High Pass Filter	4HC1600/12750-1.5-KK	9942011	Trilithic
KUEP pre amplifier	Kuep 00304000	001	7layers
Logper. Antenna	HL 562 Ultralog	830547/003	Rohde & Schwarz
Loop Antenna	HFH2-Z2	829324/006	Rohde & Schwarz
Pyramidal Horn Antenna 26.5 GHz	Model 3160-09	9910-1184	EMCO

Test report Reference: MDE_Opti_0702_FCCs

EMI Conducted Auxiliary Equipment

Equipment	Туре	Serial No.	Manufacturer
Cable "LISN to ESI"	RG214	W18.03+W48.03	Huber+Suhner
Two-Line V-Network	ESH 3-Z5	828304/029	Rohde & Schwarz
Two-Line V-Network	ESH 3-Z5	829996/002	Rohde & Schwarz

Auxiliary Test Equipment

Equipment	Туре	Serial No.	Manufacturer
Broadband Resist.	1506A / 93459	LM390	Weinschel
Power Divider N			
Broadband Resist.	1515 / 93459	LN673	Weinschel
Power Divider SMA			
Digital Multimeter 01	Voltcraft M-3860M	IJ096055	Conrad
Digital Multimeter 02	Voltcraft M-3860M	IJ095955	Conrad
Digital Oscilloscope	TDS 784C	B021311	Tektronix
Fibre optic link Satellite	FO RS232 Link	181-018	Pontis
Fibre optic link	FO RS232 Link	182-018	Pontis
Transceiver			
I/Q Modulation	AMIQ-B1	832085/018	Rohde & Schwarz
Generator			
Notch Filter ultra stable	WRCA800/960-6E	24	Wainwright
Spectrum Analyzer 9	FSP3	838164/004	Rohde & Schwarz
kHz to 3 GHz			
Temperature Chamber	VT 4002	58566002150010	Vötsch
Temperature Chamber	KWP 120/70	59226012190010	Weiss
ThermoHygro	Opus10 THI (8152.00)	7482	Lufft Mess- und
Datalogger 03			Regeltechnik GmbH

Anechoic Chamber

Equipment	Туре	Serial No.	Manufacturer
Air Compressor (pneumatic)			Atlas Copco
Controller	CO 2000	CO2000/328/12470406 /L	Innco innovative constructions GmbH
EMC Camera	CE-CAM/1		CE-SYS
EMC Camera for observation of EUT	CCD-400E	0005033	Mitsubishi
Filter ISDN	B84312-C110-E1		Siemens&Matsushita
Filter telephone systems / modem	B84312-C40-B1		Siemens&Matsushita
Filter Universal 1A	B84312-C30-H3		Siemens&Matsushita
Fully/Semi AE Chamber	10.58x6.38x6		Frankonia
Turntable	DS 420S	420/573/99	HD GmbH, H. Deisel
Valve Control Unit (pneum.)	VE 615P	615/348/99	HD GmbH, H. Deisel

7 layers Bluetooth™ Full RF Test Solution

Bluetooth RF Conformance Test System TS8960

Equipment	Туре	Serial No.	Manufacturer
10 MHz Reference	MFS	5489/001	Efratom
Power Meter 832025/059	NRVD	832025/059	Rohde & Schwarz
Power Sensor A 832279/013	NRV-Z1	832279/013	Rohde & Schwarz
Power Sensor B 832279/015	NRV-Z1	832279/015	Rohde & Schwarz
Power Supply	E3632A	MY40003776	Agilent
Power Supply	PS-2403D	-	Conrad
RF Step Attenuator 833695/001	RSP	833695/001	Rohde & Schwarz
Rubidium Frequency Normal	MFS	002	Efratom
Signal Analyzer FSIQ26 832695/007	FSIQ26	832695/007	Rohde & Schwarz
Signal Generator 833680/003	SMP 03	833680/003	Rohde & Schwarz
Signal Generator A 834344/002	SMIQ03B	834344/002	Rohde & Schwarz
Signal Generator B 832870/017	SMIQ03B	832870/017	Rohde & Schwarz
Signal Switching and Conditioning Unit	SSCU	338826/005	Rohde & Schwarz
Signalling Unit PTW60 838312/014	PTW60 for TS8960	838312/014	Rohde & Schwarz
System Controller 829323/008	PSM12	829323/008	Rohde & Schwarz

5 Photo Report

Photo 1: EUT (top side)

Photo 2: EUT (bottom side)

Photo 3: EUT (view to antenna connector)

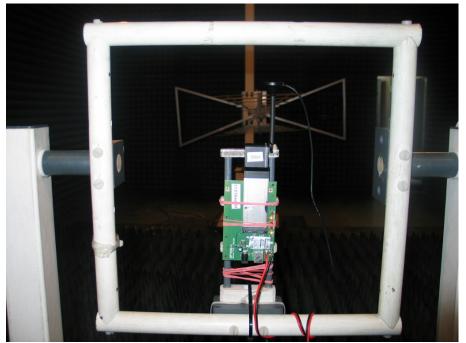
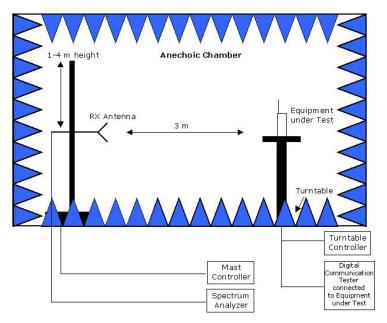



Photo 4: Test setup in the anechoic chamber

6 Setup Drawings

Remark: Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Principle setup for radiated measurements.