

Inter**Lab**

FCC Measurement/Technical Report on

ExpressCard to PCMCIA adaptor GlobeTrotter Ex Converter GE0003

Report Reference: MDE_Opti_0721_FCCa

Test Laboratory:

7 layers AG Borsigstrasse 11 40880 Ratingen Germany

email: info@7Layers.de

Note

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the testing laboratory.

Table of Contents

0 Su	ımmary	3
0.1 0.2	Technical Report Summary Measurement Summary	3 4
1 Ad	lministrative Data	5
1.1 1.2 1.3 1.4	Testing Laboratory Project Data Applicant Data Manufacturer Data	5 5 5 5
2 Pr	oduct labelling	6
2.1 2.2	FCC ID label Location of the label on the EUT	6
3 Te	st object Data	7
3.1 3.2 3.3 3.4 3.5	General EUT Description EUT Main components Ancillary Equipment EUT Setups Operating Modes	7 8 8 8 8
4 Te	st Results	9
4.1 4.2	Conducted emissions (AC power line) Spurious radiated emissions	9 11
5 Te	st Equipment	14
6 Ph	oto Report	17
7 Se	tup Drawings	20
8 An	nnex measurement plots	21
8.1 8.2	AC Mains conducted Radiated Emissions	21 22

0 Summary

0.1 Technical Report Summary

Type of Authorization

Certification for an Unintentional Radiator (Class B digital device)

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 (10-1-06 Edition) and 15 (10-1-06 Edition). The following subparts are applicable to the results in this test report.

Part 2, Subpart J - Equipment Authorization Procedures, Certification

Part 15, Subpart A - General

§ 15.31 Measurement standards

§ 15.33 Frequency range of radiated measurements

Part 15, Subpart B – Unintentional Radiators

§ 15.101 Equipment authorization of unintentional radiators

§ 15.107 Conducted limits

§ 15.109 Radiated emission limits

Note:

None.

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 0.2 Measurement Summary.

0.2 Measurement Summary

FCC Part 15, Subpart B

§ 15.107

§ 15.109

Conducted Emissions (AC power line)

The measurement was performed according to ANSI C63.4 **OP-Mode**

Setup Port

op-mode 1 Setup_01 2003

Final Result passed

AC Port (power line)

FCC Part 15, Subpart B Spurious Radiated Emissions

The measurement was performed according to ANSI C63.4

2003 **OP-Mode Final Result** Setup Port op-mode 1 Setup_01 Enclosure passed

n/a: not applicable not performed n/p:

layers

7 layers AG, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

Responsible for Accreditation Scope: Ta Sulce Responsible for Test Repo

1 Administrative Data

1.1 Testing Laboratory

Company Name:	7 Layers AG
Address	Borsigstr. 11 40880 Ratingen Germany
This facility has been fully described in a under the registration number 96716.	report submitted to the FCC and accepted
The test facility is also accredited by the - Deutscher Akkreditierungs Rat	following accreditation organisation: DAR-Registration no. DAT-P-192/99-01
Responsible for Accreditation Scope:	DiplIng. Bernhard Retka DiplIng. Robert Machulec DiplIng. Thomas Hoell
Report Template Version:	2007-07-16
1.2 Project Data	
Responsible for testing and report:	DiplIng. Andreas Petz
Date of Test(s): Date of Report:	2007-09-03 to 2007-09-04 2007-09-05
1.3 Applicant Data	
Company Name:	Option International NV SA
Address:	Gaston Geenslaan 14 3001 Leuven
Contact Person:	Belgium Mr. Lodeweyckx
1.4 Manufacturer Data	
Company Name:	please see applicant data
Address:	
Contact Person:	

2 Product labelling

2.1 FCC ID label

At the time of the report there was no FCC label available.

2.2 Location of the label on the EUT

see above

3 Test object Data

3.1 General EUT Description

Equipment under Test ExpressCard to PCMCIA adaptor **Type Designation:** GlobeTrotter Ex Converter

Kind of Device: Computer Accessory

(optional)

Voltage Type: DC (PCMCIA)

Voltage level: 5.0 V

General product description:

The device adapts ExpressCard for the usage in PCMCIA/PCCard slots in computers and is intended to be used in combination with GSM/UMTS data cards.

The EUT provides the following ports:

Ports

Enclosure
AC port of Laptop
PCMCIA port
ExpressCard port

The main components of the EUT are listed and described in Chapter 3.2

3.2 EUT Main components

Type, S/N, Short Descriptions etc. used in this Test Report

Short Description	Equipment under Test	Type Designation	Serial No.	HW Status	SW Status	Date of Receipt
EUT A (Code: 37310a01)	ExpressCard to PCMCIA adaptor	GlobeTrotter Ex Converter	CT4478L005	4.1	-	2007-09-03
EUT A (Code: 37230s14)	GSM/UMTS ExpressCard	Option GE0301	EE4473E070	4.0	2.6.1	2007-03-20

NOTE: The short description is used to simplify the identification of the EUT in this test report.

3.3 Ancillary Equipment

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

Short Description	Equipment under Test	Type Designation	HW Status	SW Status	Serial no.	FCC ID
AE1	Laptop Fujitsu Siemens	c1410 WB2	-	-	YK5T053232	-
AE2	AC Adapter	ADP-80NB A	-	-	CP293661-01	-
AE3	Printer Epson	Stylus C84 (B251A)	-	-	FBPT048906	-
AE4	TFT LG	Flatron L1740BQ	-	-	509WANF1W6 07	-
AE5	Keyboard	CHERRY RS 6000 USB ON	-	-	G 0000273 2P28	-
AE6	Mouse Logitech	M-BB48	-	-	LZC90505478	-

3.4 EUT Setups

This chapter describes the combination of EUTs and ancillary equipment used for testing.

Setup No.	Combination of EUTs	Description
Setup_01	EUT A + EUT B + AE1 + AE2 + AE3 + AE4 + AE5 + AE6	setup for conducted and radiated measurements

3.5 Operating Modes

This chapter describes the operating modes of the EUTs used for testing.

Op. Mode	Description of Operating Modes	Remarks
op-mode 1	inserted and powered by laptop while	The EUT A is powered and a GSM data call is
	data card (EUT B) is connected	established via EUT B.

Test report Reference: MDE_Opti_0721_FCCa Page 8 of 22

4 Test Results

4.1 Conducted emissions (AC power line)

Standard FCC Part 15, 10-1-06

Subpart B

The test was performed according to: ANSI C 63.4, 2003

4.1.1 Test Description

The test set-up was made in accordance to the general provisions of ANSI C 63.4-2003. The Equipment Under Test (EUT) was setup in a shielded room to perform the conducted emissions measurements in a typical installation configuration. The EUT was powered from $50\mu\text{H}$ || 50 Ohm Line Impedance Stabilization Network (LISN). The LISN's unused connections were terminated with 50 Ohm loads.

The measurement procedure consists of two steps. It is implemented into the EMI test software ES-K1 from R&S.

Step 1: Preliminary scan

Intention of this step is, to determine the conducted EMI-profile of the EUT.

EMI receiver settings:

- Detector: Peak - Maxhold

- Frequency range: 150 kHz - 30 MHz

Frequency steps: 5 kHzIF-Bandwidth: 9 kHz

- Measuring time / Frequency step: 20 ms

- Measurement on phase + neutral lines of the power cords

On basis of this preliminary scan the highest amplitudes and the corresponding frequencies relative to the limit are identified. Emissions above the limit and emissions which are in the 10 dB range below the limit are considered.

Step 2: Final measurement

Intention of this step is, to determine the highest emissions with the settings defined in the test specification for the frequencies identified in step 1.

EMI receiver settings:

Detector: Quasi-PeakIF - Bandwidth: 9 kHz

- Measuring time: 1 s / frequency

At each frequency determined in step 1, four measurements are performed in the following combinations:

- 1) Neutral lead reference ground (PE grounded)
- 2) Phase lead reference ground (PE grounded)
- 3) Neutral lead reference ground (PE floating)
- 4) Phase lead reference ground (PE floating)

The highest value is reported.

4.1.2 Test Requirements / Limits

FCC Part 15, Subpart B, §15.107

Frequency Range (MHz) QP Limit (dBμV) AV Limit (dBμV) 0.15 – 0.5 66 to 56 56 to 46 0.5 – 5 56 46 5 – 30 60 50

Used conversion factor: Limit (dB μ V) = 20 log (Limit (μ V)/1 μ V).

4.1.3 Test Protocol

Temperature: 23 °C Air Pressure: 1022 hPa Humidity: 42 %

Op. Mode	Setup	Port
op-mode 1	Setup_01	AC Port (power line)

Power line	Frequency MHz	Measured value dBµV	Delta to limit dBµV	Remarks
L,N	-	-	-	-

Remark: Please see annex for the measurement plot.

An empty table means that no final measurement was performed because no relevant frequencies (peaks) were found during the preliminary scan.

4.1.4 Test result: Conducted emissions (AC power line)

FCC Part 15, Subpart B	Op. Mode	Result
	op-mode 1	passed

Test report Reference: MDE_Opti_0721_FCCa Page 10 of 22

4.2 Spurious radiated emissions

Standard FCC Part 15, 10-1-06

Subpart B

The test was performed according to: ANSI C 63.4, 2003

4.2.1 Test Description

Measurement below 1 GHz:

The test set-up was made in accordance to the general provisions of ANSI C 63.4-2003. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}$ in the semi-anechoic chamber. The test was performed at the distance of 3 m between the EUT and the receiving antenna.

The radiated emissions measurements were made in a typical installation configuration. The measurement procedure is implemented into the EMI test software ES-K1 from R&S.

Step 1: Preliminary scan (test to identify the highest amplitudes relative to the limit) Intention of this step is, to determine the radiated EMI-profile of the EUT.

Settings for step 1:

- Detector: Peak-Maxhold

- Frequency range: 30 - 1000 MHz

Frequency steps: 60 kHzIF-Bandwidth: 120 kHz

Measuring time / Frequency step: 100 µs
Turntable angle range: -180° to 180°

- Turntable step size: 90°

Height variation range: 1 – 3 m
Height variation step size: 2 m
Polarisation: Horizontal + Vertical

On basis of this preliminary scan the highest amplitudes and the corresponding frequencies relative to the limit are identified. Emissions above the limit and emissions which are in the 10 dB range below the limit are considered.

Step 2:

A further measurement will be performed on the frequencies determined in step 1. Intention of this step is, to find out the approximate turntable angle and antenna height for each frequency.

Settings for step 2:

- Detector: Peak - Maxhold

- Measured frequencies: in step 1 determined frequencies

IF – Bandwidth: 120 kHzMeasuring time: 100 ms

- Turntable angle range: -180° to 180°

- Turntable step size: 45°

Height variation range: 1 – 4 m
Height variation step size: 0.5 m
Polarisation: horizontal + vertical

After this step the EMI test system has determined the following values for each frequency (of step 1):

- Frequency
- Azimuth value (of turntable)
- Antenna height

The last two values have now the following accuracy:

- Azimuth value (of turntable): 45°
- Antenna height: 0.5 m

Step 3: final measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will be slowly varied by +/- 22.5° around this value. During this action the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position the antenna height is also slowly varied by +/- 25 cm around the antenna height determined. During this action the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHzMeasuring time: 100ms
- Turntable angle range: -22.5° to + 22.5° around the determined value
- Height variation range: -0.25m to + 0.25m around the determined value

Step 4: Final measurement (with QP detector)

With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4:

- Detector: Quasi-Peak(< 1GHz)
- Measured frequencies: in step 3 determined frequencies
- IF Bandwidth: 120 kHz - Measuring time: 1 s

Measurement above 1 GHz:

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

The measurement distance was reduced to 1 m. The results were extrapolated by the extrapolation factor of 20 dB/decade (inverse linear-distance for field strength measurements, inverse-linear-distance-squared for the power density measurements). Due to the fact that in this frequency range a double ridged wave guided horn antenna (up to 18 GHz) and a horn antenna (18–25 GHz) are used, the steps 2-4 as described before, are omitted. Step 1 was performed at one height of the receiving antenna only. Detector: Peak, Average (simultaneously)

RBW = VBW = 1 MHz; above 7 GHz 100 kHz

4.2.2 Test Requirements / Limits

FCC Part 15, Subpart B, §15.109, Radiated Emission Limits Frequency Range (MHz): Class B Limit (dBµV/m)

Frequency Range (MHz)

30 – 88

88 – 216

216 – 960

above 960

Class B Limit (dBµV/m)

40.0

43.5

46.0

54.0

§15.35(b)

..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit (dB μ V/m) = 20 log (Limit (μ V/m)/1 μ V/m)

4.2.3 Test Protocol

Temperature: 23 °C
Air Pressure: 1022 hPa
Humidity: 42 %

Op. ModeSetupPortop-mode 1Setup_01Enclosure

Polari- sation	Frequency MHz	Cor	rected va dBµV/m		Limit dBµV/ m	Limit dBµV/ m	Limit dBµV/ m	Delta to limit dB	Delta to limit dB
		QP	Peak	AV	QP	Peak	AV	QP/Peak	AV
Vertical + horizontal	40.140000	19.10	-	-	40.0	-	-	20.9	-
Vertical + horizontal	40.620000	16.60	-	-	40.0	-	-	23.4	-
Vertical + horizontal	53.160000	22.20	-	-	40.0	-	-	17.8	-
Vertical + horizontal	116.160000	24.60	-	-	43.5	-	-	18.9	-
Vertical + horizontal	161.820000	32.10	-	-	43.5	-	-	11.4	-
Vertical + horizontal	166.500000	36.20	-	-	43.5	-	-	7.3	-
Vertical + horizontal	174.420000	37.70	-	-	43.5	-	-	5.8	-
Vertical + horizontal	199.080000	33.10	-	ı	43.5	-	-	10.4	-
Vertical + horizontal	207.600000	30.80	-	-	43.5	-	-	12.7	-
Vertical + horizontal	666.420000	34.40	-	-	46.0	-	-	11.6	-

Remark: Please see annex for the measurement plot. The measurement was performed up to 1GHz.

4.2.4 Test result: Spurious radiated emissions

FCC Part 15, Subpart B	Op. Mode	Result
	op-mode 1	passed

5 Test Equipment

EUT Digital Signalling System

Equipment	Туре	Serial No.	Manufacturer
Digital Radio	CMD 55	831050/020	Rohde & Schwarz
Communication Tester			
Signalling Unit for	PTW60	100004	Rohde & Schwarz
Bluetooth Spurious			
Emissions			
Universal Radio	CMU 200	102366	Rohde & Schwarz
Communication Tester			
Universal Radio	CMU 200	837983/052	Rohde & Schwarz
Communication Tester			
Bluetooth Signalling	CBT (1153.9000.35)	100302	Rohde & Schwarz
Unit	,		

EMI Test System

Equipment	Туре	Serial No.	Manufacturer
Comparison Noise	CNE III	99/016	York
Emitter			
EMI Analyzer	ESI 26	830482/004	Rohde & Schwarz
Signal Generator	SMR 20	846834/008	Rohde & Schwarz

EMI Radiated Auxiliary Equipment

Equipment	Туре	Serial No.	Manufacturer
Antenna mast 4m	MA 240	240/492	HD GmbH H. Deisel
Biconical dipole	VUBA 9117	9117108	Schwarzbeck
Broadband Amplifier	JS4-18002600-32	849785	Miteq
18MHz-26GHz			
Broadband Amplifier	JS4-00101800-35	896037	Miteq
30MHz-18GHz			
Broadband Amplifier	JS4-00102600-42	619368	Miteq
45MHz-27GHz			
Cable "ESI to EMI	EcoFlex10	W18.01-2 + W38.01-2	Kabel Kusch
Antenna"			
Cable "ESI to Horn	UFB311A + UFB293C	W18.02-2 + W38.02-2	Rosenberger-Microcoax
Antenna"			
Double-ridged horn	HF 906	357357/002	Rohde & Schwarz
Double-ridged horn	HF 906	357357/001	Rohde & Schwarz
High Pass Filter	5HC3500/12750-1.2-KK	200035008	Trilithic
High Pass Filter	5HC2700/12750-1.5-KK	9942012	Trilithic
High Pass Filter	4HC1600/12750-1.5-KK	9942011	Trilithic
KUEP pre amplifier	Kuep 00304000	001	7layers
Logper. Antenna	HL 562 Ultralog	830547/003	Rohde & Schwarz
Loop Antenna	HFH2-Z2	829324/006	Rohde & Schwarz
Pyramidal Horn Antenna	Model 3160-09	9910-1184	EMCO
26.5 GHz			

Test report Reference: MDE_Opti_0721_FCCa

EMI Conducted Auxiliary Equipment

Equipment	Туре	Serial No.	Manufacturer
Cable "LISN to ESI"	RG214	W18.03+W48.03	Huber+Suhner
Two-Line V-Network	ESH 3-Z5	828304/029	Rohde & Schwarz
Two-Line V-Network	ESH 3-Z5	829996/002	Rohde & Schwarz

Auxiliary Test Equipment

Equipment	Туре	Serial No.	Manufacturer
Broadband Resist.	1506A / 93459	LM390	Weinschel
Power Divider N			
Broadband Resist.	1515 / 93459	LN673	Weinschel
Power Divider SMA			
Digital Multimeter 01	Voltcraft M-3860M	IJ096055	Conrad
Digital Multimeter 02	Voltcraft M-3860M	IJ095955	Conrad
Digital Oscilloscope	TDS 784C	B021311	Tektronix
Fibre optic link Satellite	FO RS232 Link	181-018	Pontis
Fibre optic link	FO RS232 Link	182-018	Pontis
Transceiver			
I/Q Modulation	AMIQ-B1	832085/018	Rohde & Schwarz
Generator			
Notch Filter ultra stable	WRCA800/960-6E	24	Wainwright
Spectrum Analyzer 9	FSP3	838164/004	Rohde & Schwarz
kHz to 3 GHz			
Temperature Chamber	VT 4002	58566002150010	Vötsch
Temperature Chamber	KWP 120/70	59226012190010	Weiss
ThermoHygro	Opus10 THI (8152.00)	7482	Lufft Mess- und
Datalogger 03			Regeltechnik GmbH

Anechoic Chamber

Equipment	Туре	Serial No.	Manufacturer
Air Compressor (pneumatic)			Atlas Copco
Controller	CO 2000	CO2000/328/12470406 /L	Innco innovative constructions GmbH
EMC Camera	CE-CAM/1		CE-SYS
EMC Camera for observation of EUT	CCD-400E	0005033	Mitsubishi
Filter ISDN	B84312-C110-E1		Siemens&Matsushita
Filter telephone systems / modem	B84312-C40-B1		Siemens&Matsushita
Filter Universal 1A	B84312-C30-H3		Siemens&Matsushita
Fully/Semi AE Chamber	10.58x6.38x6		Frankonia
Turntable	DS 420S	420/573/99	HD GmbH, H. Deisel
Valve Control Unit (pneum.)	VE 615P	615/348/99	HD GmbH, H. Deisel

Test report Reference: MDE_Opti_0721_FCCa

7 layers Bluetooth Full RF Test Solution

Bluetooth RF Conformance Test System TS8960

Equipment	Туре	Serial No.	Manufacturer
10 MHz Reference	MFS	5489/001	Efratom
Power Meter 832025/059	NRVD	832025/059	Rohde & Schwarz
Power Sensor A 832279/013	NRV-Z1	832279/013	Rohde & Schwarz
Power Sensor B 832279/015	NRV-Z1	832279/015	Rohde & Schwarz
Power Supply	E3632A	MY40003776	Agilent
Power Supply	PS-2403D	-	Conrad
RF Step Attenuator 833695/001	RSP	833695/001	Rohde & Schwarz
Rubidium Frequency Normal	MFS	002	Efratom
Signal Analyzer FSIQ26 832695/007	FSIQ26	832695/007	Rohde & Schwarz
Signal Generator 833680/003	SMP 03	833680/003	Rohde & Schwarz
Signal Generator A 834344/002	SMIQ03B	834344/002	Rohde & Schwarz
Signal Generator B 832870/017	SMIQ03B	832870/017	Rohde & Schwarz
Signal Switching and Conditioning Unit	SSCU	338826/005	Rohde & Schwarz
Signalling Unit PTW60 838312/014	PTW60 for TS8960	838312/014	Rohde & Schwarz
System Controller 829323/008	PSM12	829323/008	Rohde & Schwarz

6 Photo Report

Photo 1: Test setup for conducted measurements

Photo 2: Test setup for radiated measurements

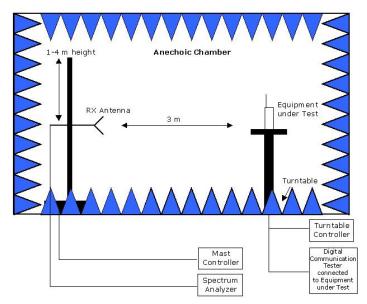
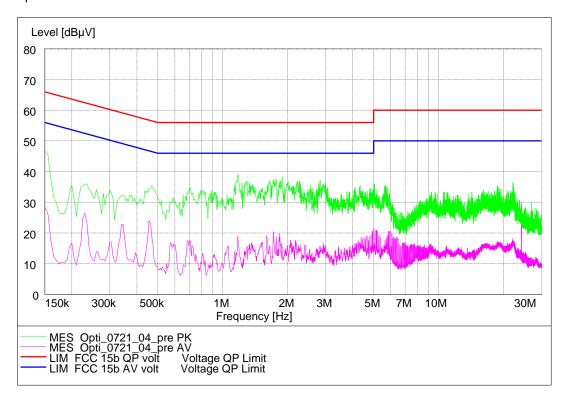


Photo 3: EUT (front side)

7 Setup Drawings

Remark: Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.

Drawing 1: Setup in the Anechoic chamber. For measurements below 1 GHz the ground was replaced by a conducting ground plane.

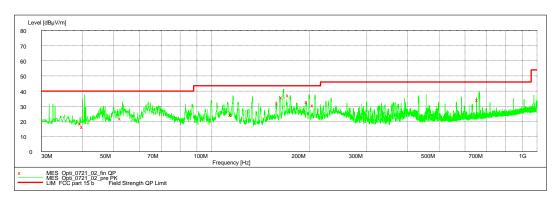


8 Annex measurement plots

8.1 AC Mains conducted

Op. Mode

op-mode 1



8.2 Radiated Emissions

Op. Mode

op-mode 1

