

Radio Satelite Communication
Untertiirkheimer Straße 6-10 D-66117 Saarbriicke

Untertürkheimer Straße 6-10 . D-66117 Saarbrücken Telefon: +49 (0)681 598-9100 Telefax: -9075

RSC11 issue test report consist of 52 Pages

Page 1 (52)

Accredited Testing Laboratory

DAR-Registration number: TTI-P-G 166/98-00

Test report no.: 2-2608-A/01 FCC Part 24 GSM1900

Table of Contents

- 1 General information
- 1.1 Notes
- 1.2 Testing laboratory
- 1.3 Details of applicant
- 1.4 Application details
- 1.5 Test item
- 1.6 Test standards
- 2 Technical test
- 2.1 Summary of test results
- 2.2 Test report
- 1 General information
- 1.1 Notes

The test results of this test report relate exclusively to the test item specified in 1.5. The CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalisations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of the CETECOM ICT Services GmbH.

1.2 Testing laboratory

CETECOM ICT Services GmbH Untertürkheimer Straße 6 - 10 66117 Saarbrücken

Germany

Telefone : + 49 681 598 - 9100 Telefax : + 49 681 598 - 9075 E-mail : Michael.Berg@ict.cetecom.de

Internet: www.cetecom.de
Accredited testing laboratory

DAR-registration number : TTI-P-G 166/98-00

Test report nr.:2-2608-A/01 Issue date:27.07.2001 Page 3 (53)

1.3 **Details of applicant**

Name : Option International nv sa : Kolonel Begaultlaan 45 Street

: 3012 Leuven City **Country**: Belgium

Telephone: +32-16-317.411 **Telefax** : +32-16-207.164 **Contact** : **Kjell Cools** Telephone: +32-16-311.605

1.4 **Application details**

Date of receipt of application : 23.07.2001 Date of receipt of test item : 23.07.2001

Date of test : 23.07. - 26.07.2001

1.5 Test item

Type of equipment GSM 1900 Mobile Phone transmitting unit for Compaq PDA

Type designation Wireless Pack Manufacturer applicant

Street

City

Country

Serial number

Additional informations::

Frequency 1850 - 1910 MHz

Type of modulation 300KF2D Number of channels 300

integral antenna and socket Antenna Power supply 3.6 VDC accu Li-Polymer

Output power 28.4 dBm Peak / ERP: 26.3 dBm (Burst); EIRP: 28.3 dBm (Burst)

Type of equipment Temperature range : -10° C - $+55^{\circ}$ C

FCC - ID NCMOCF1

Hardware V1.1

Software 04.06/07.25.2001 12:09:31

1.6 **Test standards:** FCC Part 24

2 Technical test

2.1 Summary of test results

All radiated measurements were performed vertical, horizontal measurements were about 6 to 10 dB lower over the whole spectrum range.

No deviations from the technical specification(s) were ascertained in the course of the tests performed.

FINAL VERDICT: PASS

Technical responsibility for area of testing:

09.08.01 RSC 8411 Berg M.

Date Section Name Signature

Technical responsibility for area of testing:

09.08.01 RSC8414 Ames A. Omls

Date Section Name Signature

2.2 Testreport

TEST REPORT

Testreport no.: 2-2608-A/01

TEST REPORT REFERENCE

LIST OF MEASUREMENTS

PARAMETER TO BE MEASURED Paragraph	PAGE
POWER OUTPUT SUBCLAUSE § 24.232	7
FREQUENCY STABILITY SUBCLAUSE § 24.235	9
EMISSIONS LIMITS \$24.238	11
CONDUCTED SPURIOUS EMISSIONS	27
OCCUPIED BANDWIDTH \$2.989	36
CONDUCTED EMISSIONS § 15.107/207	40
TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS	41
TEST SITE	43
PHOTOGRAPHS OF THE FOLUPMENT	46

POWER OUTPUT

SUBCLAUSE § 24.232

Summery:

This paragraph contains both average , peak output powers and EIRP measurements for the mobile station.

In all cases, the peak output power is wthin the required mask (this mask is specified in the JTC standarts, TIA PN3389 Vol. 1 Chap 7, and is no FCC requirement).

Method of Measurements:

The mobile was set up for the max. output power with pseudo random data modulation.

The power was measured with R&S Spectrum Analyzer FSIQ 26 (peak and average)

This measurements were done at 3 frequencies, 1850,2 MHz, 1880,0 MHz and 1909,8 MHz (bottom, middle and top of operational frequency range)

Limits:

Power Step	Nominal Peak Output Power	Tolerance (dB)
	(dBm)	
0	+30	± 2

Power Measurements:

Conducted:

Frequency (MHz)	Power Step	Peak Output Power (dBm)	Average Output Power (dBm)
1850.2	0	28.4	19.4
1880.0	0	28.3	19.3
1909.8	0	28.2	19.2
Measuremen	t uncertainty	±0.:	5 dB

EIRP Measurements

Description: This is the test for the maximum radiated power from the phone.

Rule Part 24.232(b) specifies that "Mobile/portable stations are limited to 2 watts e.i.r.p. peak power..." and 24.232(c) specifies that "Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage."

Method of Measurement:

- 1. In an anechoic antenna test chamber, a half-wave dipole antenna for the frequency band of interest is placed at the reference center of the chamber. An RF Signal source for the frequency band of interest is connected to the dipole with a cable that has been constructed to not interfere with the radiation pattern of the antenna. A known (measured) power (Pin) is applied to the input of the dipole, and the power received (Pr) at the chamber's probe antenna is recorded.
- 2. A "reference path loss" is established as Pin + 2.1 Pr.
- 3. The EUT is substituted for the dipole at the reference center of the chamber. The EUT is put into CW test mode and a scan is performed to obtain the radiation pattern.
- 4. From the radiation pattern, the coordinates where the maximum antenna gain occurs is identified.
- 5. The EUT is then put into pulse mode at its maximum power level (Power Step 0).
- 6. "Gated mode" power measurements are performed with the receiving antenna placed at the coordinates determined in Step 3 to determine the output power as defined in FCC Rule 24.232 (b) and (c). The "reference path loss" from Step 1 is added to this result.
- 7. This value is EIRP since the measurement is calibrated using a half-wave dipole antenna of known gain (2.1 dBi) and known input power (Pin).
- 8. ERP can be calculated from EIRP by subtracting the gain of the dipole, ERP = EIRP -2.1dBi.

Limits:

Power Step	Burst Average EIRP (dBm)
0	<33

Power Measurements:

Radiated:

Frequency	Power Step	BURST AVERAGE (dBm)			ON AVERAGE Bm)
(MHz)		EIRP	ERP	EIRP	ERP
1850.2	0	28.4	26.3	19.4	17.3
1880.0	0	28.3	26.2	19.3	17.2
1909.8	0	28.2	26.1	19.2	17.1
Measurement unc	Measurement uncertainty		±0).5 dB	

FREQUENCY STABILITY

SUBCLAUSE § 24.235

Method of Measurement:

In order to measure the carrier frequency under the condition of AFC lock, it is necessary to make measurements with the mobile station in a "call mode". This is accomplished with the use of a R&S CMU200 RADIOCOMMUNICATION TESTER..

- 1. Measure the carrier frequency at room temperature.
- 2. Subject the mobile station to overnight soak at -10 C.
- 3. With the mobile station, powered via 3.6 Volts, connected to the CMU200 and in a simulated call on channel 661 (center channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.
- 4. Repeat the above measurements at 10 C increments from -10 C to +55 C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.
- 5. Remeasure carrier frequency at room temperature with nominal 3.6 Volts. Vary supply voltage from minimum 3.2 Volts to maximum 3.6 Volts, in 0.05 Volt increments remeasuring carrier frequency at each voltage. Pause at 3.4

Volts for 1 1/2 hours unpowered, to allow any self heating to stabilize, before continuing.

- 6. Subject the mobile station to overnight soak at +55 C.
- 7. With the mobile station, powered via 3.6 Volts, connected to the CMU200 and in a simulated call on channel 661 (center channel), measure the carrier frequency. These measurements should be made within 2 minutes of powering up the mobile station, to prevent significant self warming.
- 8. Repeat the above measurements at 10 C increments from +55 C to -10 C. Allow at least 1 1/2 hours at each temperature, unpowered, before making measurements.
- 9. At all temperature levels hold the temperature to +/- 0.5 C during the measurement procedure.

Measurement Limit:

According to the JTC standard the frequency stability of the carrier shall be accurate to within 0.1 ppm of the received frequency from the base station. This accuracy is sufficient to meet Sec. 24.235, Frequency Stability. The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. As this transceiver is considered "Hand carried, battery powered equipment...," Section 2.1055(d)(2) applies. This requires that the lower voltage for frequency stability testing be specified by the manufacturer. This transceiver is specified to operate with an input voltage of between 3.2 Vdc and 3.6 Vdc, with a nominal voltage of 3.6 Vdc (Li-Ploymer accu). Operation above or below these voltage limits is prohibited by transceiver software in order to prevent improper operation as well as to protect components from overstress. These voltages represent a tolerance of +0% and -11.2%. For the purposes of measuring frequency stability these voltage limits are to be used.

AFC FREQ ERROR vs. VOLTAGE

Voltage (V)	Frequency Error (Hz)	Frequency Error (ppm)
3.20	-38	-0.020
3.25	-43	-0.023
3.30	-41	-0.022
3.35	-39	-0.020
3.40	-33	-0.018
3.45	-28	-0.015
3.50	-21	-0.011
3.55	-18	-0.010
3.60	-17	-0.010

AFC FREQ ERROR vs. TEMPERATURE

TEMPERATURE	Frequency Error	Frequency Error
(°C)	(Hz)	(ppm)
-10	-61	-0.033
±0.0	-46	-0.024
+10	-38	-0.020
+20	-17	-0.009
+30	-28	-0.015
+40	-45	-0.024
+50	-65	-0.036
+55	-85	-0.045

EMISSIONS LIMITS

§24.238

Measurement Procedure:

The following steps outline the procedure used to measure the radiated emissions from the mobile station. The site is constructed in accordance with ANSI C63.4 – 1992 requirements and is recognised by the FCC to be in compliance for a 3 and a10 meter site. The spectrum was scanned from 30 MHz to the 10th harmonic of the highest frequency generated within the equipment, which is the transmitted carrier that can be as high as 1910 MHz. This was rounded up to 20 GHz. The resolution bandwidth is set as outlined in Part 24.238. The spectrum was scanned with the mobile station transmitting at carrier frequencies that pertain to low, mid and high channels of the USPCS band.

The final open field emission test procedure is as follows:

- a) The test item was placed on a 0. 8 meter high non-conductive stand at a 3 meter test distance from the receive antenna.
- b) The antenna output was terminated in a 50 ohm load.
- c) A double ridged waveguide antenna was placed on an adjustable height antenna mast 3 meters from the test item for emission measurements.
- d) Detected emissions were maximized at each frequency by rotating the test item and adjusting the receive antenna height and polarization. The maximum meter reading was recorded. The radiated emission measurements of the harmonics of the transmit frequency through the 10th harmonic were measured with peak detector and I MHz bandwidth. If the harmonic could not be detected above the noise floor, the ambient level was recorded. The equivalent power into a dipole antenna was calculated from the field intensity levels measured at 3 meters using the equation shown below:

Pg = $E^2 4\pi d^2 / 120\pi = E^2 d^2 / 30$ where: P = power in watts

g = arithmetic gain of transmitting antenna over isotropic radiator.

E = maximum field strength in volts/meter

d = measurement distance in meter

Using a dipole gain of 1.67 or 2.2 dB and a test distance of 3 meters, this equation reduces to:

P(dBm) = E(dBuV/m) - 97.2dB

Measurement Limit:

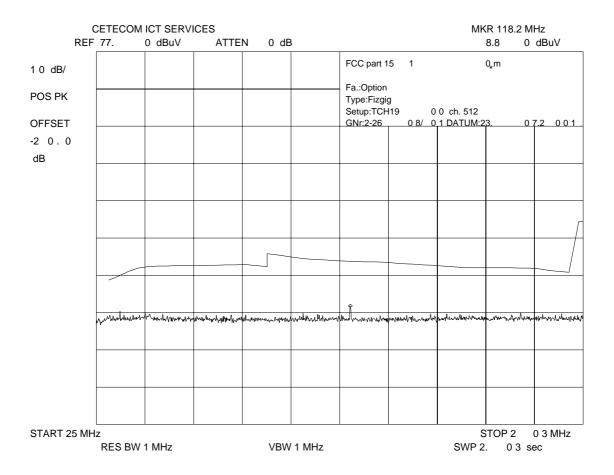
Sec. 24.238 Emission Limits.

(a) On any frequency outside a licensee's frequency block (e.g. A, D, B, etc.) within the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

Measurement Results: REFERENCE NUMBER(S) OF TEST EQUIPMENT USED (for reference numbers see test equipment listing) 64

Radiated emissions measurements were made only at the upper, center, and lower carrier frequencies of the USPCS band (1850.2 MHz, 1879.8 MHz and 1909.8 MHz). It was decided that measurements at these three carrier frequencies would be sufficient to demonstrate compliance with emissions limits because it was seen that all the significant spurs occur well outside the band and no radiation was seen from a carrier in one block of the USPCS band into any of the other blocks. The equipment must still, however, meet emissions requirements with the carrier at all frequencies over which it is capable of operating and it is the manufacturer's responsibility to verify this.

RESULTS OF OPEN FIELD RADIATED TEST FOR FCC-24:

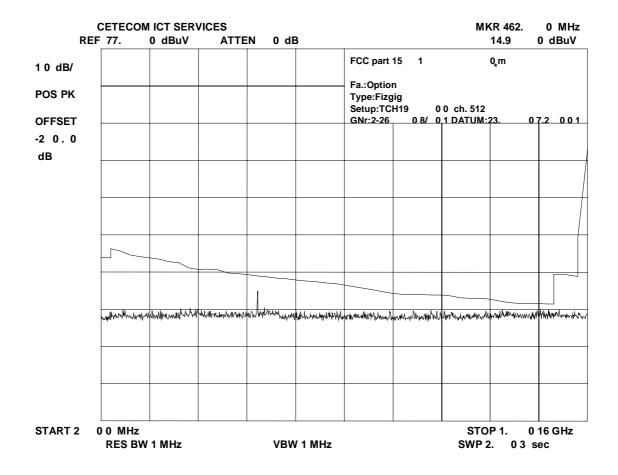

The final open field radiated levels are presented on the next pages.

As can be seen from this data, the emissions from the test item were within the specification limit.

Channel 512: 30 – 200 MHz

P(dBm) = E(dBuV/m) - 97.2dB

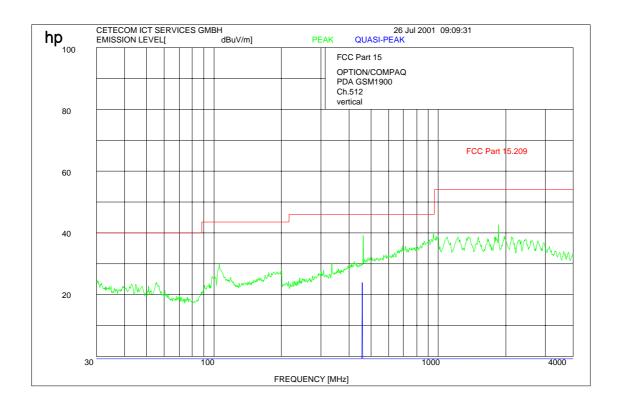
Spurious emission limit $-13dBm = 84.2 dB\mu V$


Carrier is notched with a Band Reject Filter

Channel 512: 200 - 1000 MHz

P(dBm) = E(dBuV/m) - 97.2dB

Spurious emission limit $-13dBm = 84,2 dB\mu V$

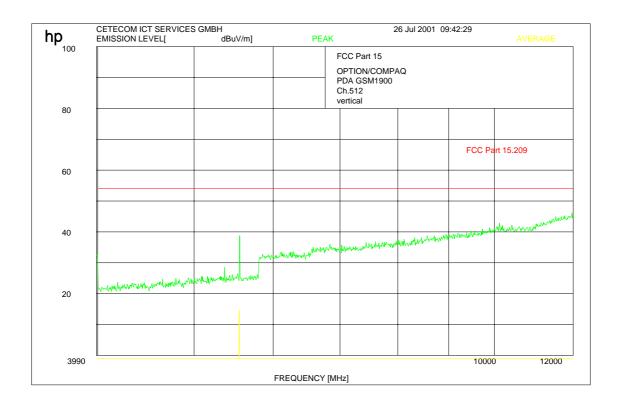


Channel 512: 30 – 4000 MHz

P(dBm) = E(dBuV/m) - 97.2dB

Spurious emission limit $-13dBm = 84,2 dB\mu V$

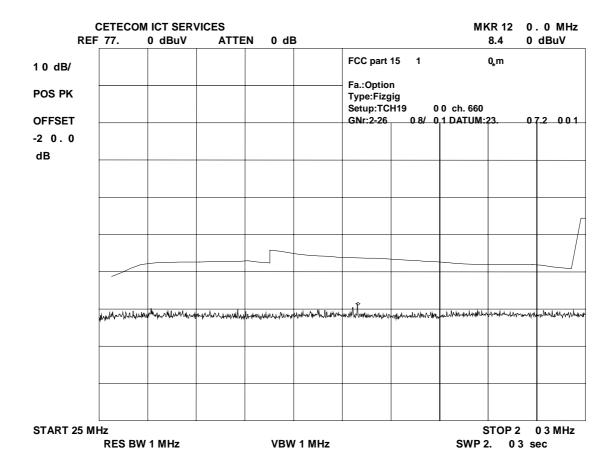
Carrier is notched with a Band Reject Filter.


The peak at 479.5 MHz is at 41.4 dBµV/m Peak and 25.0 dBµV/m QuasiPeak at 3m distance.

Channel 512: 4000 - 12000 MHz

P(dBm) = E(dBuV/m) - 97.2dB

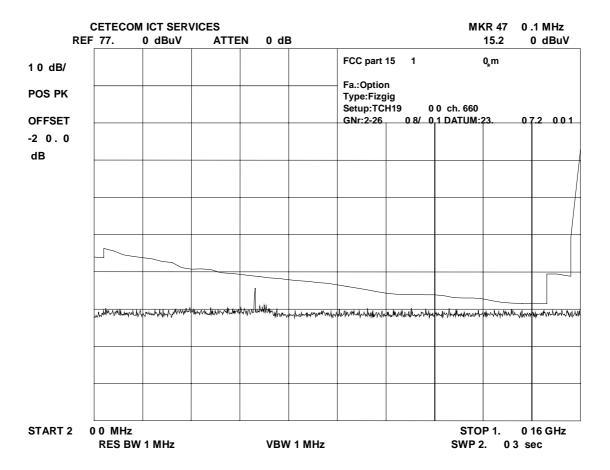
Spurious emission limit $-13dBm = 84,2 dB\mu V$



Carrier at 5550 MHz is 42.5 dBµV/m Peak and 18.9 dBµV/m Average at 3m distance.

Channel 660 : 30 - 200 \text{ MHz} P(dBm) = E(dBuV/m) - 97.2dB

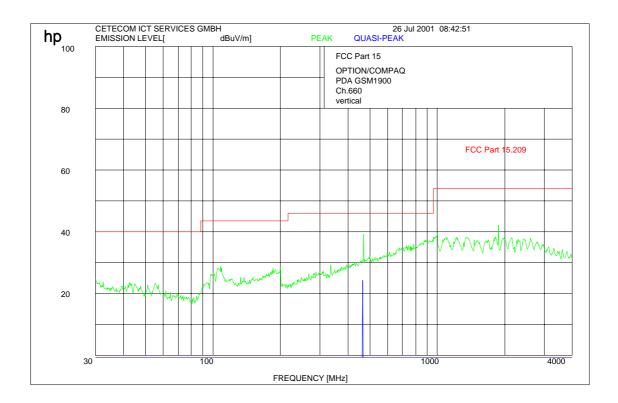
Spurious emission limit $-13dBm = 84,2 dB\mu V$


Carrier is notched with a Band Reject Filter.

Channel 660: 200 – 1000 MHz

P(dBm) = E(dBuV/m) - 97.2dB

Spurious emission limit $-13dBm = 84,2 dB\mu V$

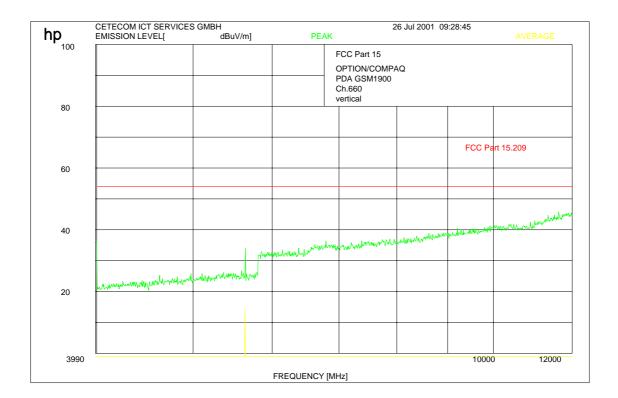

Carrier is notched with a Band Reject Filter.

Channel 660: 30 – 4000 MHz

P(dBm) = E(dBuV/m) - 97.2dB

Spurious emission limit $-13dBm = 84,2 dB\mu V$

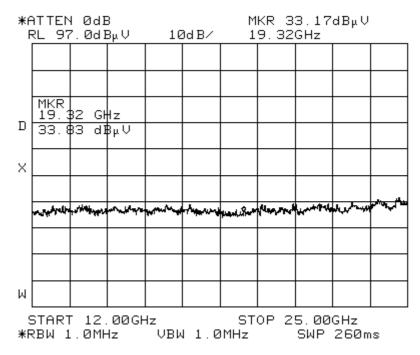
Carrier is notched with a Band Reject Filter.


The peak at 479.5 MHz is at 41.9 dBµV/m Peak and 26.4 dBµV/m QuasiPeak at 3m distance.

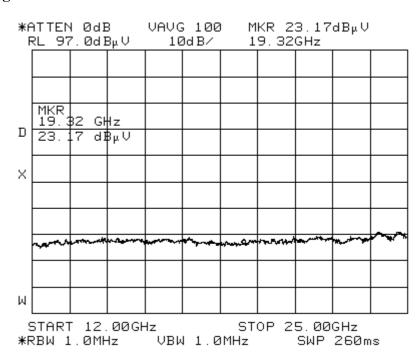
Channel 660: 4000 - 12000 MHz

P(dBm) = E(dBuV/m) - 97.2dB

Spurious emission limit $-13dBm = 84,2 dB\mu V$

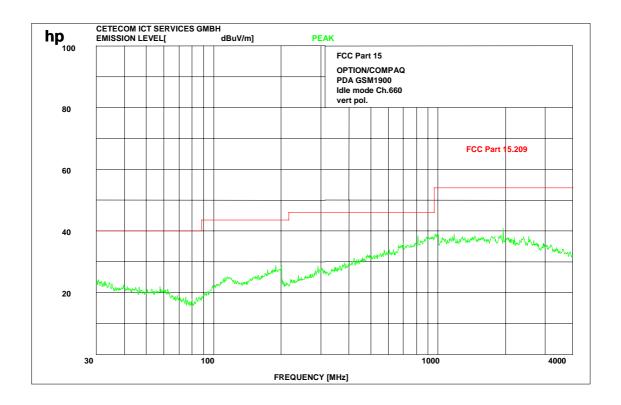

Carrier is notched with a Band Reject Filter.

The peak at 5642.3 MHz is at 36.9 dBµV/m Peak and 15.3 dBµV/m Average at 3m distance.

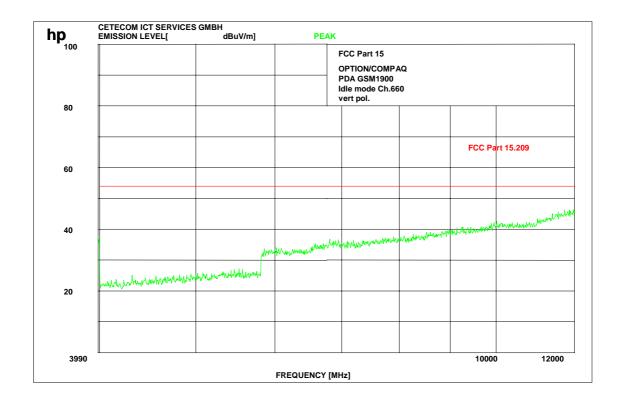


Channel 510, 660, 810 (this is valid for all 3 channels) Peak

Spurious emission limit $-13dBm = 84,2 dB\mu V$

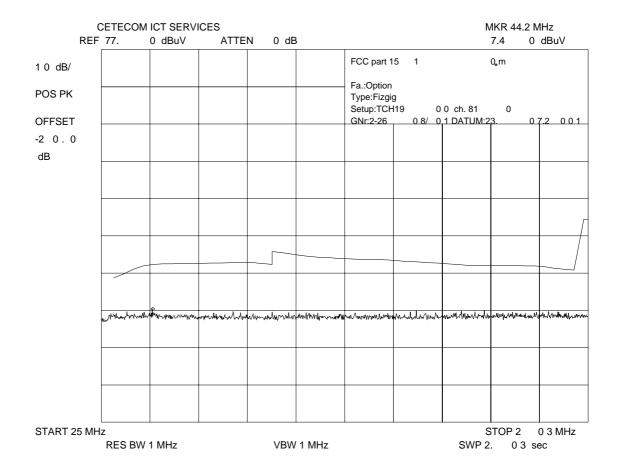


Average



Channel 660 (this is valid for all 3 channels and up to 20 GHz) Idle-Mode

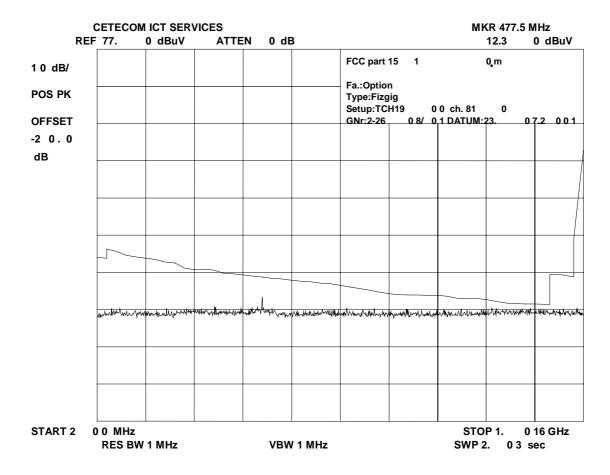
Channel 660 (this is valid for all 3 channels and up to 20 GHz) Idle-Mode $\,$



 $Channel\ 810:30-200\ MHz$

P(dBm) = E(dBuV/m) - 97.2dB

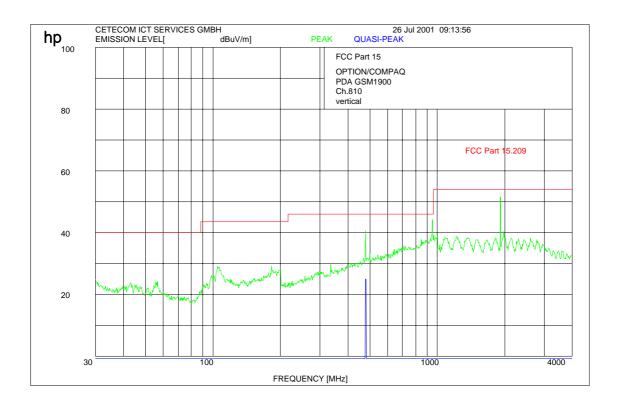
Spurious emission limit $-13dBm = 84,2 dB\mu V$


Carrier is notched with a Band Reject Filter.

Channel 810: 200 - 1000 MHz

P(dBm) = E(dBuV/m) - 97.2dB

Spurious emission limit $-13dBm = 84,2 dB\mu V$

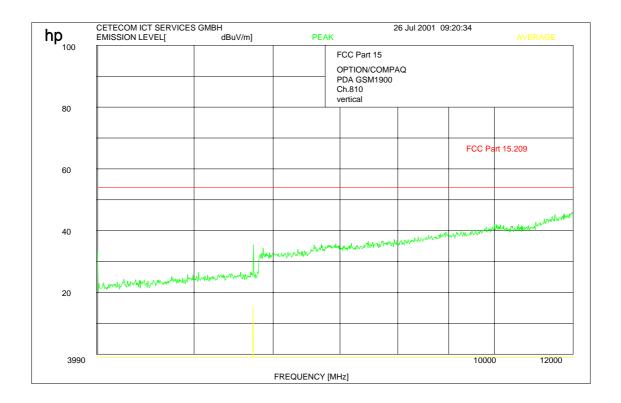

Carrier is notched with a Band Reject Filter.

Channel 810: 30 - 4000 MHz

P(dBm) = E(dBuV/m) - 97.2dB

Spurious emission limit $-13dBm = 84,2 dB\mu V$

Carrier is notched with a Band Reject Filter.


The peak at 479.5 MHz is at 41.2 dB μ V/m Peak and 26.8 dB μ V/m QuasiPeak at 3m distance.

Channel 810: 4000 - 12000 MHz

P(dBm) = E(dBuV/m) - 97.2dB

Spurious emission limit $-13dBm = 84,2 dB\mu V$

Carrier is notched with a Band Reject Filter.

The peak at 5730 MHz is at 37.6 dB μ V/m Peak and 16.2 dB μ V/m Average at 3m distance.

Conducted Spurious Emissions

Measurement Procedure:

The following steps outline the procedure used to measure the conducted emissions from the mobile station.

- 1. Determine frequency range for measurements: From CFR 2.1057 the spectrum should be investigated from the lowest radio frequency generated in the equipment up to at least the 10th harmonic of the carrier frequency. For the mobile station equipment tested, this equates to a frequency range of 13 MHz to 19.1 GHz, data taken from 10 MHz to 20 GHz.
- 2. Determine mobile station transmit frequencies: below outlines the band edge frequencies pertinent to conducted emissions testing.

USPCS Transmitter

Channel Frequency

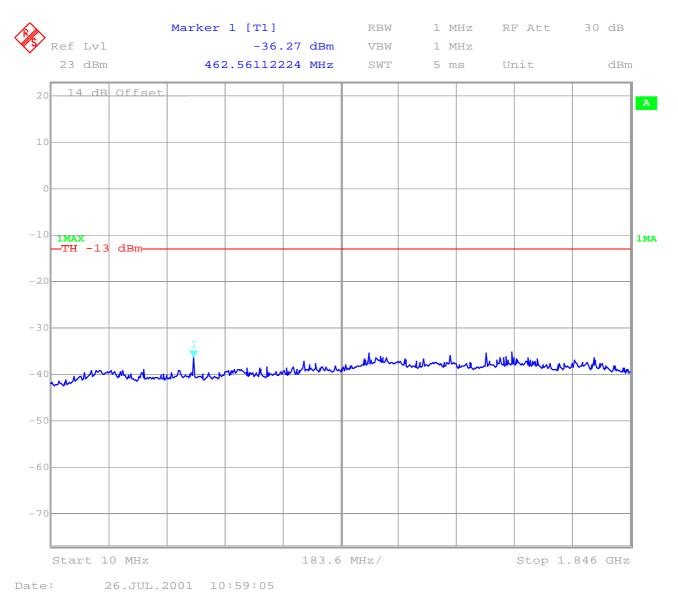
512 1850.2 MHz

661 1880.0 MHz

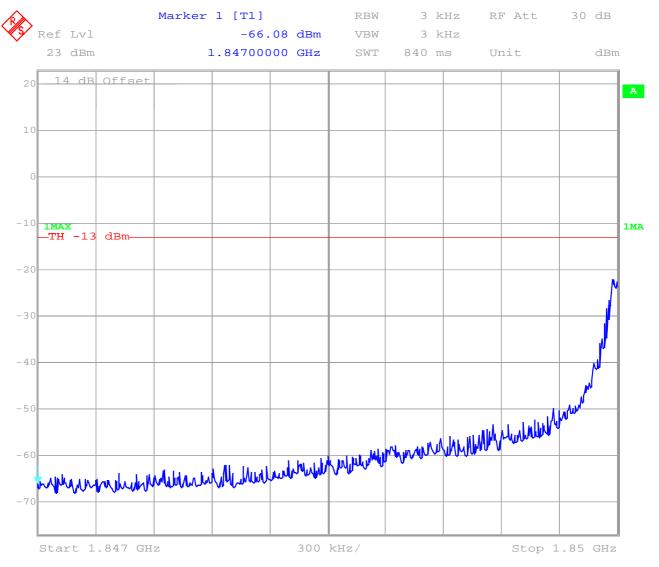
810 1909.8 MHz

Measurement Limit:

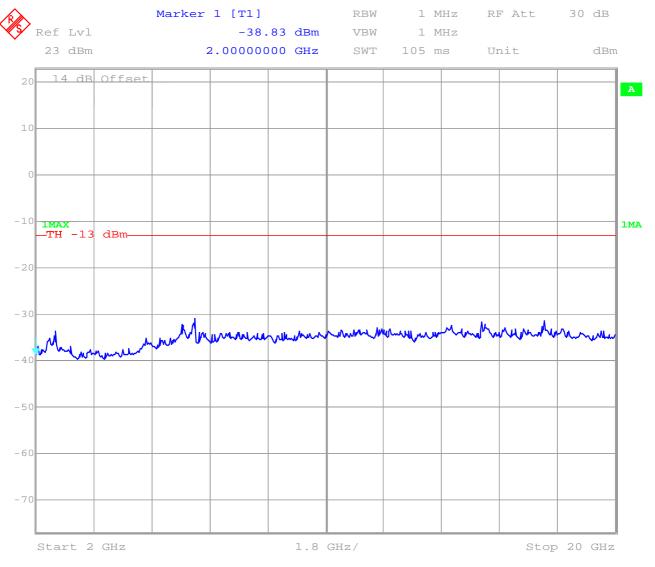
Sec. 24.238 Emission Limits.


(a) On any frequency outside frequency band of the USPCS spectrum, the power of any emission shall be attenuated below the transmitter power (P, in Watts) by at least 43+10Log(P) dB. For all power levels +30 dBm to 0

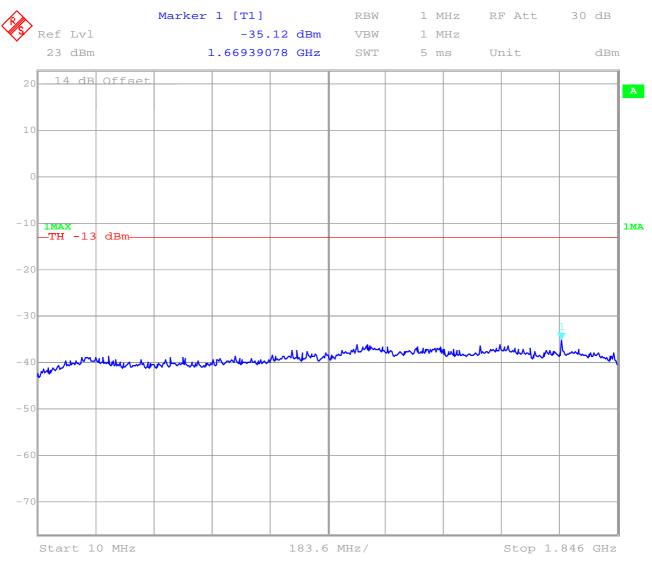
dBm, this becomes a constant specification limit of -13 dBm.


Measurements:

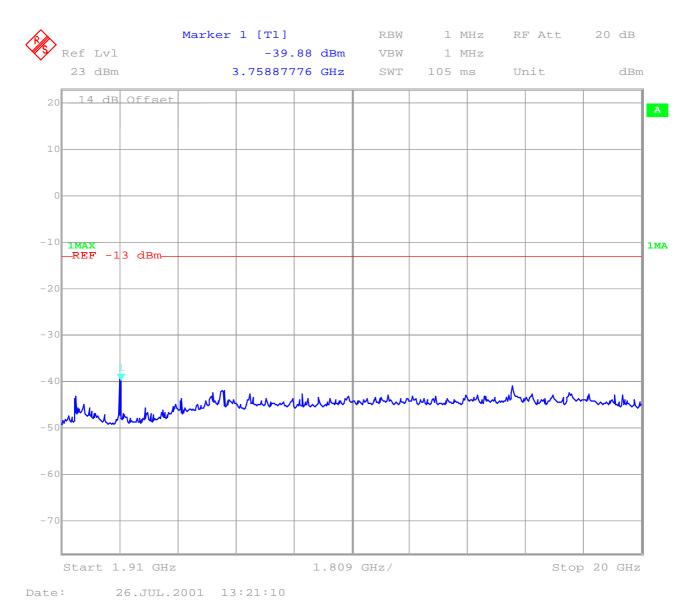
Channel: 512


Channel 512

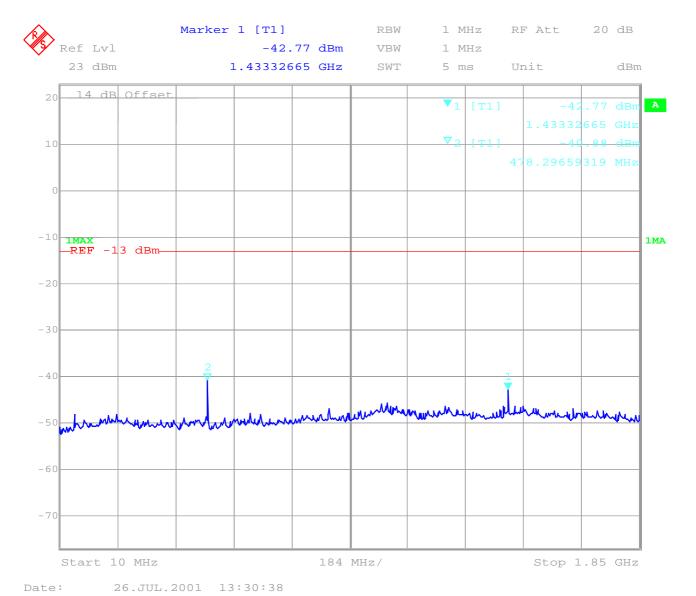
Date: 26.JUL.2001 11:02:08


Channel 512

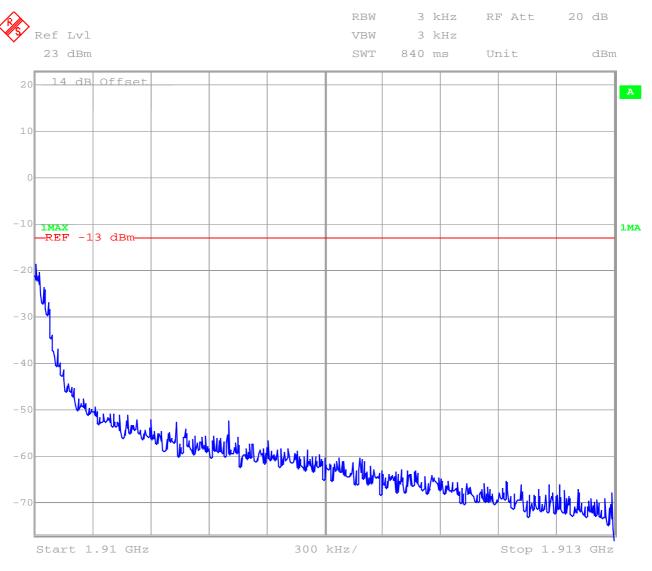
Date: 26.JUL.2001 11:03:01


Channel 660

Date: 26.JUL.2001 13:16:11



Channel 660



Channel 810

Channel 810

Date: 26.JUL.2001 13:32:11

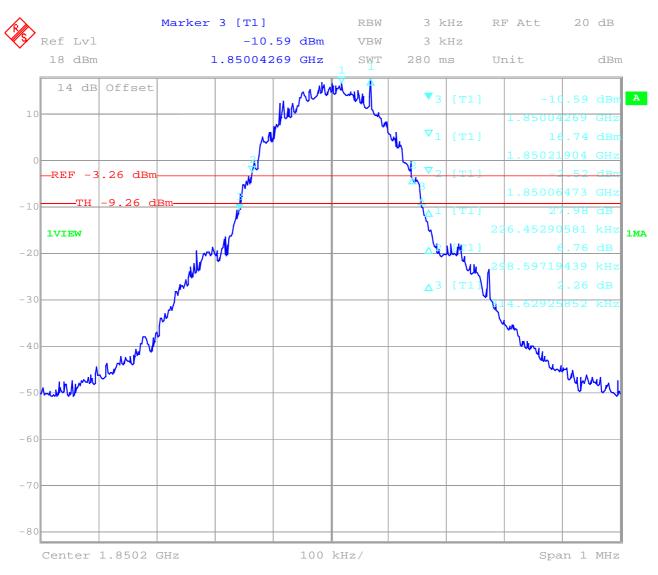
Channel 810

Date: 26.JUL.2001 13:32:50

OCCUPIED BANDWIDTH

§2.989

Occupied Bandwidth Results

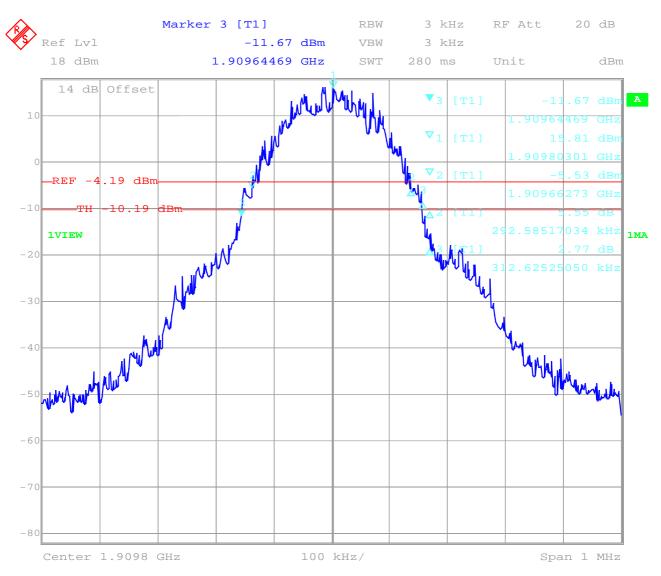

Similar to conducted emissions, occupied bandwidth measurements are only provided for selected frequencies in order to reduce the amount of submitted data. Data were taken at the extreme and mid frequencies of the USPCS frequency band. Table 8.2 below lists the measured 99% power and -26dBC occupied bandwidths. Spectrum analyzer plots are included on the following pages.

Frequency	99% Occupied Bandwidth	-26 dBc Bandwidth
1850.2 MHz	298.6 kHz	314.6
1880.0 MHz	286.6 kHz	308.6
1909.2 MHz	292.6 kHz	312.6

Part 24.238 (a) requires a measurement bandwidth of at least 1% of the occupied bandwidth. For ca. 290 kHz, this equates to a resolution bandwidth of at least 2.96 kHz. For this testing, a resolution bandwidth 3.0 kHz was used.

Channel 512 99% Occupied Bandwidth + 26 dB BW

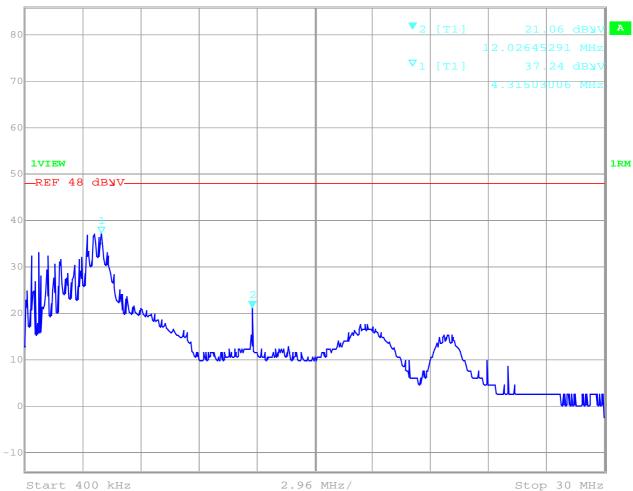
Date: 26.JUL.2001 13:51:33


Channel 660 99% Occupied Bandwidth + 26 dB BW

Date: 26.JUL.2001 13:54:42

Channel 810 99% Occupied Bandwidth + 26 dB BW

Date: 26.JUL.2001 13:57:10



CONDUCTED EMISSIONS

§ 15.107/207

Measured with AC/DC power adapter

Ref		Marker 2 [T1	1	RBW	3 kHz	RF Att	20 dB
Nef Ref	Lvl	21	.06 db y V	VBW	3 kHz		
86	dbyv	12.0264	5291 MHz	SWT	8.4 s	Unit	dB⊿V

Date: 26.JUL.2001 14:04:42

Frequency (MHz)	Level QP (dBµV)	Limit (dBµV)	Exceeding (dB)	Phase	PE
4.315	37.24	47.96	-10.76	N	FLO
12.026	21.06	47.96	-26.90	N	FLO

Technical specification: 15.107 / 15.207 (Revised as of October 1, 1991)

Limit

0.45 to 30 MHz	250 μV / 47.96 dBμV

TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

To simplify the identification on each page of the test equipment used, on each page of the test report, each item of test equipment and ancillaries such as cables are identified (numbered) by the Test Laboratory, below.

No	Instrument/Ancillary	Type	Manufacturer	Serial No.
01	Spectrum Analyzer	8566 A	Hewlett-Packard	1925A00257
02	Analyzer Display	8566 A	Hewlett-Packard	1925A00860
03	Oscilloscope	7633	Tektronix	230054
04	Radio Analyzer	CMTA 54	Rohde & Schwarz	894 043/010
05	System Power Supply	6038 A	Hewlett-Packard	2848A07027
06	Signal Generator	8111 A	Hewlett-Packard	2215G00867
07	Signal Generator	8662 A	Hewlett-Packard	2224A01012
08	Funktionsgenerator	AFGU	Rohde & Schwarz	862 480/032
09	Regeltrenntrafo	MPL	Erfi	91350
10	Netznachbildung	NNLA 8120	Schwarzbeck	8120331
11	Relais-Matrix	PSU	Rohde & Schwarz	893 285/020
12	Power-Meter	436 A	Hewlett-Packard	2101A12378
13	Power-Sensor	8484 A	Hewlett-Packard	2237A10156
14	Power-Sensor	8482 A	Hewlett-Packard	2237A00616
15	Modulationsmeter	9008	Racal-Dana	2647
16	Frequenzzähler	5340 A	Hewlett-Packard	1532A03899
17	Absorber Schirmkabine		MWB	87400/002
18	Spectrum Analyzer	85660 B	Hewlett-Packard	2747A05306
19	Analyzer Display	85662 A	Hewlett-Packard	2816A16541
20	Quasi Peak Adapter	85650 A	Hewlett-Packard	2811A01131
21	RF-Preselector	85685 A	Hewlett-Packard	2833A00768
22	Biconical Antenne	3104	Emco	3758
23	Log. Per. Antenne	3146	Emco	2130
24	Double Ridge Horn	3115	Emco	3088
25	EMI-Testreceiver	ESAI	Rohde & Schwarz	863 180/013
26	EMI-Analyzer-Display	ESAI-D	Rohde & Schwarz	862 771/008
27	Biconical Antenne	HK 116	Rohde & Schwarz	888 945/013
28	Log. Per. Antenne	HL 223	Rohde & Schwarz	825 584/002
29	Relais-Switch-Unit	RSU	Rohde & Schwarz	375 339/002
30	Highpass	HM985955	FSY Microwave	001
31	Amplifier	P42-GA29	Tron-Tech	В 23602
32	Absorber Schirmkabine		Frankonia	
33	Steuerrechner	PSM 7	Rohde & Schwarz	834 621/004
34	EMI Test Reciever	ESMI	Rohde & Schwarz	827 063/010
35	EMI Test Receiver	Display	Rohde & Schwarz	829 808/010

TEST EQUIPMENT AND ANCILLARIES USED FOR TESTS

To simplify the identification on each page of the test equipment used, on each page of the test report, each item of test equipment and ancillaries such as cables are identified (numbered) by the Test Laboratory, below.

No	Instrument/Ancillary	Type	Manufacturer	Serial No.
36	Controler	HD 100	Deisel	100/322/93
37	Relais Matrix	PSN	Rohde & Schwarz	829 065/003
38	Control Unit	GB 016 A2	Rohde & Schwarz	344 122/008
39	Relais Switch Unit	RSU	Rohde & Schwarz	316 790/001
40	Power Supply	6032A	Hewlett Packard	2846A04063
41	Spektrum Monitor	EZM	Rohde & Schwarz	883 720/006
42	Meßempfänger	ESH 3	Rohde & Schwarz	890 174/002
43	Meßempfänger	ESVP	Rohde & Schwarz	891 752/005
44	Biconi Ant. 20-300MHz	HK 116	Rohde & Schwarz	833 162/011
45	Logper Ant. 0.3-1 GHz	HL 223	Rohde & Schwarz	832 914/010
46	Amplifier 0.1-4 GHz	AFS4	Miteq Inc.	206461
47	Logper Ant. 1-18 GHz	HL 024 A2	Rohde & Schwarz	342 662/002
48	Polarisationsnetzwerk	HL 024 Z1	Rohde & Schwarz	341 570/002
49	Double Ridge G Horn Antenne 1-26.5 GHz	3115	EMCO	9107-3696
50	Microw. Sys. Amplifier 0.5- 26.5 GHz	8317A	Hewlett Packard	3123A00105
51	Audio Analyzer	UPD	Rohde & Schwarz	1030.7500.04
52	Steuerrechner	PSM 7	Rohde & Schwarz	883 086/026
53	DC V-Netzwerk	ESH3-Z6	Rohde & Schwarz	861 406/005
54	DC V-Netzwerk	ESH3-Z6	Rohde & Schwarz	893 689/012
55	AC 2 Phasen V-	ESH3-Z5	Rohde & Schwarz	861 189/014
	Netzwerk			
56	AC 2 Phasen V- Netzwerk	ESH3-Z5	Rohde & Schwarz	894 981/019
57	AC-3 Phasen V- Netzwerk	ESH2-Z5	Rohde & Schwarz	882 394/007
58	Stromversorgung	6032A	Rohde & Schwarz	2933A05441
59	HF-Test Empfänger	ESVP.52	Rohde & Schwarz	881 487/021
60	Spectrum Monitor	EZM	Rohde & Schwarz	883 086/026
61	HF-Test Empfänger	ESH3	Rohde & Schwarz	881 515/002
62	Relais Matrix	PSU	Rohde & Schwarz	882 943/029
63	Relais Matrix	PSU	Rohde & Schwarz	828 628/007
64	Spectrum Analyzer	FSIQ 26	Rohde & Schwarz	119.6001.27
65	Spectrum Analyzer	HP 8565E	Hewlett Packard	3473A00773
66				
67				
68				