
SARWIN II
SUITE OF APPLICATIONS

PRELIMINARY
USERS MANUAL

MARCH 22, 1999

IDT

Powering What’s Next

Confidential Page 2 06/21/01

Chapter 1 Introduction .. 3

1.1 Driver Application Programming Interface ... 3

1.2 Driver Parameters .. 4
1.2.1 IDT77252 Revision 01... 4
1.2.2 IDT77252 Revision 02... 4
1.2.3 IDT77222 Revision 02... 4

1.3 Software Installation... 5

1.4 Driver Installation .. 5
1.4.1 Driver Installation – Windows 95.. 6
1.4.2 Driver Installation – Windows NT 4.0 .. 7

Chapter 2 SARWINII Suite of Applications .. 12

2.1 Abrsar_reg.exe – Internal Register Access of the ABRSAR.. 12
2.1.1 Abrsar_reg – Register Access .. 13
Abrsar_reg – PHY Access .. 14
2.1.3 Abrsar_reg – Utility Bus Access.. 15
2.1.4 Abrsar_reg – PCI Configuration Access.. 15

2.2 Abrsar_sram.exe – SRAM access application .. 17
2.2.1 Abrsar_sram – SRAM Access ... 18
2.2.2 Abrsar_sram – Transmit Connection Table Access... 18
Abrsar_sram – Receive Connection Table Access ... 19
2.2.3 Abrsar_sram – Static Schedule Table(SST) Access .. 20
2.2.4 Abrsar_sram – Receive FIFO Access .. 20

2.3 Drvtest.exe - Demonstrate Driver Functionality .. 22
2.3.1 Drvtest – Open Connection.. 24
2.3.2 Drvtest – Fetch Connection ... 25
2.3.3 Drvtest – Query Connection .. 26
2.3.4 Drvtest – Send Data ... 27
2.3.5 Drvtest – Receive Data .. 28
2.3.6 Drvtest – Get PCI Configuration ... 30
2.3.7 Drvtest – Get Device Information.. 31

2.4 Cellgen.exe – Generate Cell Traffic ... 32

2.5 Cellrecv.exe - Receive Cell Traffic ... 33

2.6 ATMMON.exe ATM Connection Monitor... 34

APPENDIX A IDT77252ioctl.h .. 35

Confidential Page 3 06/21/01

Chapter 1 Introduction

The purpose of this manual is to introduce the Windows 95/NT drivers and SARWIN II suite of
applications for the IDT77252/IDT77222 ABR SAR.. Figure 1.0 shows where the driver and applications fit into
the overall system environment.

 Application API

Figure 1.0

At the application level; applications can be developed that will act as traffic generators, diagnostics,
timing analysis, statistical analysis, class of service selection and custom applications to deal with a particular
application. An application that runs on 95 will work on NT and the other way around. The driver presents the
same interface in either Windows environment.

1.1 Driver Application Programming Interface
The driver provides the following device i/o control calls to the application interface
• Open Connection
• Close Connection
• Read IDT77252/IDT77222 Internal Register
• Write IDT77252/IDT77222 Internal Register
• Read Utility Bus
• Write Utility Bus
• Read SRAM
• Write SRAM
• Retrieve List of Open Connections
• Query Connection Parameters
• Write Data to Connection
• Read Data from Connection
• Set Connection Mode
• Read PCI Configuration Space

 Application 1
(ie SARWIN II)

Application 2
(ie DRVTEST)

Application 3
(ie ATMMON)

Operating System – Windows 95/NT

IDT77252 Driver

IDT77252 - NIC

Confidential Page 4 06/21/01

• Write PCI Configuration Space
• Get Device Type, Revision and NIC SRAM size

1.2 Driver Parameters
This ABRSAR driver supports both the IDT77252 and IDT 77222 devices. When the driver starts it

dynamically determines the device type and configures the internal data structures correctly. It also checks the
revision level and determines if it is revision one or two. The number of simultaneous connections, the number of
connections and the number and size of the rate tables are effected by the device type and revision. The following
sections give the parameters for each configuration.

1.2.1 IDT77252 Revision 01
• Number of Connections 1024
• VPI Range 0-1
• VCI Range 0-511
• Number of Simultaneous Connections: 16
• Number of Rate tables 16

1.2.2 IDT77252 Revision 02
• Number of Connections 1024
• VPI Range 0-1
• VCI Range 0-511
• Number of Simultaneous Connections: 128
• Number of Rate tables 16

1.2.3 IDT77222 Revision 02
• Number of Connections 512
• VPI Range 0
• VCI Range 0-511
• Number of Simultaneous Connections: 128
• Number of Rate tables 4

NOTE:

Revision 01 = Revision A
Revision 02 = Revision B

Confidential Page 5 06/21/01

1.3 Software Installation
The applications and driver are contained in a single self-extracting ‘ZIP’ file. Create a folder called

‘sarwin’ on your hard drive. Put the file called ‘sarwin.exe’ in this folder. Double click sarwin.exe. This will
extract all of the SARWINII files.

1. Abrsar_reg.exe
2. Abrsar_sram.exe
3. Atmmon.exe
4. Cellgen.exe
5. Cellrecv.exe
6. Drvtest.exe
7. Idt77252.sys
8. Idt77252.vxd
9. Mfc42.dll
10. Monitor.exe
11. Msvcrt.dll
12. Vxdload.exe

The SARWINII suite of applications is:

1 Abrsar_reg.exe
2 Abrsar_sram.exe
3 Atmmon.exe
4 Cellgen.exe
5 Cellrecv.exe
6 Drvtest.exe

The device drivers for the IDT77252/IDT77222 NIC are:

1 Idt77252.sys – Windows NT 4.0 driver.
2 Idt77252.vxd – Windows 95 driver.

The device driver loaders are:

1 Monitor.exe – Windows NT 4.0.
2 Vxdload.exe – Windows 95.

The remaining two files are required dll’s for the SARWINII suite of applications. If theses two dll’s are
not already in your Windows\system(Windows 95) or Winnt\system32(Windows NT) directory, then copy
them to either Windows\system(Windows 95) or Winnt\system32(Windows NT).

1.4 Driver Installation
This driver is configured to be loaded and unloaded manually. This means the driver will be loaded after

the operating system (either Windows 95 or Windows NT 4.0) has booted. The procedure for loading and
unloading is slightly different between Windows 95 and Windows NT. Before installing the driver it is necessary
to install the NIC. To do this, first turn off your PC and verify that there is a free PCI slot. If there is, insert the
NIC into the free PCI slot and reboot your PC. You may run the NIC in loop back mode by looping the receive to
the transmit. If the NIC has a fiber transceiver, then just run a cable from receive to transmit. If the transceiver is
twisted pair then you will need a special loop back cable.

Confidential Page 6 06/21/01

1.4.1 Driver Installation – Windows 95
On Windows 95 the plug and play mechanism should find the new card and inform you with a dialog box

saying it found a new PCI card. Continue and indicate that you will install the driver later. Later versions of
Windows 95 will show a window with ‘NEXT’ and ‘Cancel’ buttons. In this case the correct thing is to hit
‘NEXT’ and then in the next window click the ‘Finish’ button. To verify that the plug and play mechanism has
registered the newly installed NIC; reboot your PC and this time there should be no message stating that a new
PCI card was found. Use the program Vxdload.exe to load the driver. To invoke Vxdload go to directory sarwin
and double click on the Vxdload.exe icon. This will bring up the dialog shown below.

Use the browse button or type in the directory path to the folder that contains the driver. If you created a
sarwin directory and put the driver in it, then the VxD Name should look as shown below.

Click the load button to load the driver. If the driver loaded successfully, then the message below will be
displayed.

Click OK and dismiss the message box. You are now ready to run the SARWINII suite of applications. If
you are using a loop back cable you will be able to send and receive cells. The driver may be stopped and
unloaded by bringing up VxDload.exe, selecting C:\sarwin\IDT77252.vxd and clicking the Unload button. NOTE:
You can not stop the driver if there are any of the SARWINII suite of applications open. It is necessary to stop all
activity with the NIC and close the applications prior to stopping the driver.

Confidential Page 7 06/21/01

1.4.2 Driver Installation – Windows NT 4.0

After inserting the NIC and rebooting and installing the software as outlined in section 1.3 you are ready
to register the driver. Go into the directory C:\sarwin. Double click the Monitor.exe icon. This will bring up the
window shown below.

You do not need Driver::Works installed to register the driver. Click Cancel and the screen shown below
will be displayed.

Select the File menu item and then select Open Driver as shown below.

Confidential Page 8 06/21/01

This selection will display the file selection dialog box shown below. The path to the driver should be
entered in the edit box for File Name. If you created the sarwin directory then the entry as shown below will be
correct.

Click open and the driver will be registered and the screen should look as shown below.

Confidential Page 9 06/21/01

This shows A new Entry in the service data base has been created for the driver. You may follow the
directions and select File | Start to start the driver now. The preferred method is to just exit monitor.exe by closing
the window, without starting the driver. You can now use the standard NT facilities for starting and stopping the
driver. To do this, open the control panel as shown below.

Confidential Page 10 06/21/01

Double click the Devices icon. This will bring up the following dialog box.

It may be necessary to scroll down so the idt77252 device is visible. Select it by clicking on the line. To
load and start the driver, click the Start button. Once the driver is started you may unload and stop it by again
bringing up the Devices dialog box, selecting idt77252 and clicking Stop. NOTE: You can not stop the driver if

Confidential Page 11 06/21/01

there are any of the SARWINII suite of applications open. It is necessary to stop all activity with the NIC and
close the applications prior to stopping the driver.

Confidential Page 12 06/21/01

Chapter 2 SARWINII Suite of Applications

The SARWINII suite of applications allow the user to access all of the internal registers, PCI
configuration space, and associated SRAM. The SARWINII suite of applications are:

1. Abrsar_reg.exe
2. Abrsar_sram.exe
3. Drvtest.exe
4. Cellgen.exe
5. Cellrecv.exe
6. Atmmon.exe

2.1 Abrsar_reg.exe – Internal Register Access of the ABRSAR

Abrsar_reg.exe allows the user to read and write the registers of the IDT77252/IDT77222 ABRSAR. To
launch this application go to the \sarwin directory and double click the abrsar_reg.exe icon. This will bring up the
screen shown below. This application can be launched with or without the driver running. If the driver is not
running then it goes into demo mode and generates random numbers for the register contents.

NOTE: If the driver is running then it is recommended that you do NOT write to any of the internal
registers. When the driver starts it initializes the ABRSAR and all of the internal registers. Many of these registers
point to memory in the host machine that has been allocated out of the system non-paged memory pool. Changing
any of these values could crash your PC. Clicking on any of the buttons along the left hand side of the window
will bring up dialog boxes that will allow access to the associated item. As an example, lets look at the

Confidential Page 13 06/21/01

configuration register of the ABRSAR. Click the Reg button at the left-hand edge. The following dialog box will
be displayed.

2.1.1 Abrsar_reg – Register Access
Select the configuration register by clicking the line that starts with 0x14. Click OK. The configuration

dialog box will be displayed.

Confidential Page 14 06/21/01

With the driver running; the configuration shown above will be set for the 77252 ABRSAR. It is
necessary to click the read button to get the register contents displayed. To access the other register the user should
repeat the above procedure, selecting different registers. To look at all of the internal registers on one screen the
user may select the 0xFF – All Registers entry in the 77252 Registers dialog box. This will display the following
dialog box.

Click the Read button repeatedly and you should see the Timer and Now register changing. If you don’t
see this behavior then either the driver is not running or there is a problem.

2.1.2 Abrsar_reg – PHY Access

To access the PHY the user should click the Phy button along the left-hand edge of the window. This will
bring up the dialog box shown below.

The PHY on the NicStAR is device 0b01. If the user selects 0b00 then there will be a message displayed
stated that no device exists. The Address range is 0-255.

Confidential Page 15 06/21/01

2.1.3 Abrsar_reg – Utility Bus Access

To display all of the address space on the utility bus the user should click the Util button and the
following dialog box will be displayed

Again the user should select 0b01 and then click read. This will display the entire address space. If the
user checks Auto Update then the utility bus will be read approximately once a second and the screen updated.
This will continue until the user clears the Auto Update check box or closes the dialog box..

2.1.4 Abrsar_reg – PCI Configuration Access

To display the PCI configuration space the user should click the Phy button on the left hand side of the
window. This will display the dialog box below.

Confidential Page 16 06/21/01

The shaded fields are read only. The rest can be written. NOTE: Even though these registers can be
written, the user should exercise great care when changing any of the values. Addresses should NOT be changed.
Reference the PCI specification for an in depth description of the fields.

Confidential Page 17 06/21/01

2.2 Abrsar_sram.exe – SRAM access application

Abrsar_sram.exe allows the user to access the SRAM associated with the NicStAR. To launch this
application; go to the \sarwin directory and double click the abrsar_sram.exe icon. This will bring up the screen
shown below. This application can be launched with or without the driver running. If the driver is not running then
abrsar_sram.exe goes into demo mode and generates random numbers for the SRAM content.

NOTE: If the driver is running then it is recommended that you do NOT write to the SRAM. When the
driver starts it initializes the ABRSAR and all of the associated SRAM. Most of the SRAM is allocated for use
when the driver starts. Changing SRAM could cause the driver to do unexpected operations and could possibly
crash your system. Clicking on any of the buttons along the left-hand side of the window will bring up dialog
boxes that will allow access to the associated item. The buttons are:

• SRAM Read and write SRAM at a specified address.
• TxCn Access the Transmit Connection Table.
• RxCn Access the Receive Connection table.
• SST Access the Static Schedule Table
• FIFO Access the Receive FIFO
• Other In the final release there will be an Launcher associated with this button

The Other button is not useful in this release.

Confidential Page 18 06/21/01

2.2.1 Abrsar_sram – SRAM Access
To display SRAM unformatted (raw hex memory dump) the user should click the SRAM button on the

left-hand side of the window. The dialog box below will be displayed.

The user should click read to read the SRAM. The Preset Locations at the bottom of the dialog box can
be used to select and jump to the selected item. The Transmit Connection Table always starts at Address zero(0) in
the NicStAR. The addresses are 32 bit word addresses.

The rest of the buttons also access SRAM, however they format the display in the context of the function
the SRAM space is allocated for.

2.2.2 Abrsar_sram – Transmit Connection Table Access

Selecting the TxCn button and reading connection index 0 will read the data from SRAM locations 0-7.
The display would look as shown below.

Confidential Page 19 06/21/01

The values will be zeros until a connection is opened for the specified VPI/VCI. NOTE: Again – even
though we give you the ability to write to the transmit connection table, it is almost guaranteed to create problems.
The mapping of VPI-VCI to transmit connection table SRAM address depends on the configuration register
settings. In that the driver sets this at initialization time, the following mapping will be true for this driver.

For The IDT77252:
SRAM Word Addr. = VPI*512*8 + VCI*8

Where: VPI can be 0 or 1 and VCI is 0-511
For The IDT77222:

SRAM Word Addr. = VCI*8
Where: VPI can only be zero and VCI is 0-511

Abrsar_sram – Receive Connection Table Access

To examine the receive connection table entry for a particular VPI/VCI the user should click the RxCn
button and enter the desired VPI/VCI and then click Read. The dialog box will look like this.

Confidential Page 20 06/21/01

The mapping of VPI-VCI to transmit connection table SRAM address depends on the configuration
register settings. In that the driver sets this at initialization time, the following mapping will be true for this driver.

For The IDT77252:
SRAM Word Addr. = VPI*512*4 + VCI*4 + 8192

Where: VPI can be 0 or 1 and VCI is 0-511
For The IDT77222:

SRAM Word Addr. = VCI*4 + 4096
Where: VPI can only be zero and VCI is 0-511

How to open a connection with one of the SAWINII apps will be shown later in the document;.

2.2.3 Abrsar_sram – Static Schedule Table(SST) Access

The static schedule table is created and maintained by the driver. To examine the static schedule table the
user should click the SST button on the left-hand side of the window. This will display the dialog box
below

The detailed description of the management of the SST is beyond the scope of this user manual. Refer to
the IDT77252/222 User Manual.

2.2.4 Abrsar_sram – Receive FIFO Access

To access the contents of the receive FIFO the user should click the FIFO button on the left-hand side of
the window. This will display the following dialog box.

Confidential Page 21 06/21/01

The user needs to click the Read button to read the contents of the receive FIFO. The scroll bar may be
used to scoll through the contents. The receive FIFO is written to as cells are received by the hardware. The
receive FIFO is set at 4k words in length by the driver. As cells come in the Tail pointer is updated and will wrap
when it reaches 4k. As 4k is not divisible by 13 (The size of in incoming cell in words), the cells will appear to
scroll through the cell windows.

The Other button will be activated in a later release.

Confidential Page 22 06/21/01

2.3 Drvtest.exe - Demonstrate Driver Functionality

Drvtest.exe is an application that allows the user to interact with the NicStAR via the driver. It was
initially developed to test the driver and is being released to give the user a simple interface to try some of the
various driver API’s.

The driver provides the following device i/o control calls to the application interface

• Open Connection
• Close Connection
• Read IDT77252/IDT77222 Internal Register
• Write IDT77252/IDT77222 Internal Register
• Read Utility Bus
• Write Utility Bus
• Read SRAM
• Write SRAM
• Retrieve List of Open Connections
• Query Connection Parameters
• Write Data to Connection
• Read Data from Connection
• Read PCI Configuration Space
• Write PCI Configuration Space
• Get Device Type, Revision and NIC SRAM size

Abrsar_reg.exe and Abrsar_sram.exe exercise the following API’s

• Read IDT77252/IDT77222 Internal Register
• Write IDT77252/IDT77222 Internal Register
• Read Utility Bus
• Write Utility Bus
• Read SRAM
• Write SRAM
• Read PCI Configuration Space
• Write PCI Configuration Space

Drvtest.exe exercises the following API’s

• Open Connection
• Close Connection
• Retrieve List of Open Connections
• Query Connection Parameters
• Write Data to Connection
• Read Data from Connection
• Read PCI Configuration Space
• Get Device Type, Revision and NIC SRAM size

To launch Drvtest.exe go to the \sarwin directory and double click the Drvtest.exe icon. The window
shown below will be displayed.

Confidential Page 23 06/21/01

Click on the Driver I/O Control menu item and see the drop menu shown below.

Confidential Page 24 06/21/01

2.3.1 Drvtest – Open Connection

Selecting the Open Connection menu item will present the following dialog box.

The above box is set to open an AAL5, CBR connection for VPI 0 and VCI 100. The Driver Conn. Mode
is set to Normal. To open the connection click OK.

IMPORTANT:

The driver is a standard Windows driver (VXD for Win95, SYS for WinNT). We have exposed a lot of
the low level hardware resources so that the user may gain access and control over the ABRSAR. In doing
so there are combinations of things that applications can do that will create system problems. The Driver
Conn. Mode is one such instant. When multiple connections are open, all of those connections must be
opened in the Normal mode. The only time you may select TX Multiple or TX Forever is when there is
one and only one connection open.

What are the differences between the modes?

Normal – When a connection is opened in Normal mode, as the name would imply this is the mode that
would normally be used to send and receive cells(data). It means that when an application makes a system
call to the driver with a buffer of data to transmit the driver sends that buffer once and completes the
operation, returning to the application. On read the driver will fill the buffer with data, if any is available
and return the data and a count of the number of bytes read. In this mode due to the overhead in windows
attaining full line rate (155Mbits/Sec) is not possible.

TX Multiple – This will change the behavior of the driver when it receives a system call to send a buffer
of data. Instead of just sending the buffer of data once and returning it caches the data buffer and enqueues
it to be sent, returning at this time to the application. Back at the driver level as soon as the data has been
sent the driver re-enqueues the buffer to be sent again. This is repeated until the application level makes a
system call to close the connection. After the app has issued that first send data system call it or any
other app must not make another call to send data. The app may make a system call to query the

Confidential Page 25 06/21/01

connection status, which will return cell transmission statistics along with other information. The advantage
here is that you do not have the overhead of a Windows system call for each buffer of data transmitted.
This mode still does not get to full line rate (about 90% - on a fast machine).

TX Forever – This mode is like the TX Multiple and has all the same limitations to the application. It
differs in that it uses a feature of the IDT77252/222 that causes the ABRSAR to send the same buffer of
data over and over again with no software intervention. The buffer length must be a multiple of 48 bytes. In
that the transmission of data is totally controlled by the hardware, the transmission rate will reach line rate.

NOTE: Maximum buffer size in TX Multiple or TX Forever is 4072 bytes.

The peak cell rate(PCR) can range from 10 – 351415 cells per second. In Drvtest or the driver there are
no guardrails to keep a user from over booking the bandwidth. That is to say you could open 4 connections with a
PCR 0f 100000 cells per second each. If you did that, the results would be unpredictable. This behavior is due to
the algorithm in the driver and not due to the parts allocation of bandwidth.

2.3.2 Drvtest – Fetch Connection

Selecting the Fetch Connection menu item will present the following dialog box.

If the user had opened a connection in the above section and clicked the Fetch List button here, then the
above screen should show that a connection is open on VPI/VCI 0x00/0x64 with a service type of CBR and AAL
type of AAL5. To dismiss the dialog box click Close.

Confidential Page 26 06/21/01

2.3.3 Drvtest – Query Connection

Selecting the Query Connection menu item will present the following dialog box.

When the user enters the connection VPI-VCI and clicks Query, the above data will be displayed. This
may be used on a connection that is in any Driver Conn. Mode. Clicking Query repeatedly will update the
information each time. The only fields the user should edit are the VPI-VCI. Click Close to dismiss the dialog box.

Confidential Page 27 06/21/01

2.3.4 Drvtest – Send Data

Selecting the Send Data menu item will present the following dialog box.

Before invoking this function the user must have opened a connection on the same VPI-VCI as is
selected here. Sending data on a closed connection will result in an error return to the system call to send data. The
following message box will be displayed.

The user may choose either an incrementing data pattern or specify a 4-byte data pattern. The buffer
length may be from 1 – 32k. To send the buffer click OK. This will also close the dialog box. If the transmit is
looped back to the receive then the user may select Receive Data and read the data just sent (see next section).

Confidential Page 28 06/21/01

2.3.5 Drvtest – Receive Data

Selecting the Receive Data menu item will present the following dialog box.

The user should enter the VPI-VCI that is to be read from. Throughout Drvtest the VPI-VCI defaults to
VPI 0, and VCI 100. There is nothing special about this value, it was just convenient. Enter the amount of bytes to
read in the Buffer Length field. When you open a connection the driver allocates resources to buffer incoming data
on that connection. As data is received it is buffered and if no application reads this data and new data continues to
arrive it will eventually wrap and overwrite the oldest data received. When the application makes a system call to
receive data on a connection, the driver will return the number of bytes in the buffer for that connection up to the
number of bytes requested. In other words, if there is more data in the driver’s buffer than requested the driver
returns the number of byte requested. If there is less data in the driver’s buffer than requested, then the driver
returns the number of bytes in the buffer. If the user had send 48 bytes of incrementing data in the previous
section, with the settings in the Receive Data dialog box above, and clicks The Read From Connections button the
dialog box would look as shown below.

Confidential Page 29 06/21/01

The 48 bytes of data that was sent earlier is returned by the driver and displayed in the data window. Even
though we asked for 200 bytes, there were only 48 to return. The incrementing data pattern shows we are dealing
with a little endian machine. Clicking the Read From Connection button again will try to read another 200 bytes.
Since we have sent no more data, the screen will not change. If we had asked for less bytes than was in the
driver’s receive buffer, then repeatedly clicking the Read From Connection button would continue to extract data
from the driver’s buffer until it was empty.

Confidential Page 30 06/21/01

2.3.6 Drvtest – Get PCI Configuration

Selecting the Get PCI Configuration menu item will present the following dialog box.

This same function is available in Abrsar_reg.exe. Abrsar_reg allows you to read and write, while Get
PCI Configuration will only let you read.

Confidential Page 31 06/21/01

2.3.7 Drvtest – Get Device Information

Selecting the Get Device Information menu item will present the following dialog box.

This returns information about the NicStAR card. There are two possible device types: IDT77252 and
IDT77222. Revision will be one(1) or two(2). Memory size depends on how much memory is on the card.
Typically it will be 0x00020000 if the device type is 77252 and 0x00004000 if the device type is 77222.

Confidential Page 32 06/21/01

2.4 Cellgen.exe – Generate Cell Traffic

Cellgen.exe will send cell traffic over an open connection. To launch Cellgen.exe go to the \sarwin
directory and double click the Cellgen.exe icon. The dialog box shown below will be displayed.

The user should enter the VPI-VCI of an open connection (again the default is 0-100). The user may
specify the PDU length in cells (48 bytes) by editing the PDU Length (Num. Of Cells) field. In the above example
we have it set to 100 cells (4800 bytes). This field may range from one (1) cell to 680 cells. If the user clicks
Transmit the Transmitted Cell Count should jump to 100. Click it again and it should be 200. Click the Transmit
Forever check box. Now click the Transmit button. The cell count should be incrementing. If the connection is a
CBR connection at 10000 cells per second (PCR = 10000), the cell rate should be showing approximately 10000.
Due to the asynchronous nature of cellgen’s timer this value will typically range from 9900 to 10100. NOTE: do
not close this application with the Transmit Forever check box checked. Clear the check box and then close
cellgen.exe.

As an experiment: set Transmit Forever and then click Transmit. Now bring up Drvtest.exe and do Query
Connection on the VPI-VCI that you are transmitting on. Click the query button repeatedly and you will see the
transmit and receive statistics incrementing. You can bring up multiple instances of Cellgen.exe to transmit on
more than one connection (Don’t get carried away).

Confidential Page 33 06/21/01

2.5 Cellrecv.exe - Receive Cell Traffic

Cellrecv.exe will receive cell traffic over an open connection. To launch Cellrecv.exe go to the \sarwin
directory and double click the Cellrecv.exe icon. The dialog box shown below will be displayed.

The user should enter the VPI-VCI of an open connection (again the default is 0-100). The user may
specify the PDU length in cells (48 bytes) by editing the PDU Length (Num. Of Cells) field. In the above example
we have it set to 100 cells (4800 bytes). This field may range from one (1) cell to 680 cells. Start a transmit session
with Cellgen.exe. If the user clicks Receive the Received Cell Count should jump to 100. Click it again and it
should be 200. Click the Receive Forever check box. Now click the Receive button. The cell count should be
incrementing. If the connection is a CBR connection at 10000 cells per second (PCR = 10000), the cell rate should
be showing approximately 10000. Due to the asynchronous nature of cellrecv’s timer this value will typically
range from 9900 to 10100. NOTE: do not close this application with the Receive Forever check box checked.
Clear the check box and then close cellrecv.exe.

Confidential Page 34 06/21/01

2.6 ATMMON.exe ATM Connection Monitor

ATMMON.exe is an application that can monitor the traffic on a user specified connection. To launch
ATMMON.exe go to the \sarwin directory and double click the ATMMON.exe icon. The dialog box below will be
displayed.

 The user should start Cellgen.exe and start a transfer forever session on VPI-VCI 0-100. Click Start
Monitor. The transmit and receive numbers should reflect the current rates on this connection. If this connection is
opened as an AAL5 connection, then you may see that the rate shown by the monitor is slightly higher than the
rate shown in Cellgen’s cell rate box. Cellgen is calculating the rate based on the number of payload cells, which is
100 for each PDU. At the driver level because it is AAL5 the actual number of cells in the PDU will be 101. The
last cell has no data byte in it, just the 8 byte overhead for AAL5.

Confidential Page 35 06/21/01

APPENDIX A IDT77252ioctl.h

// idt77252ioctl.h
//
// Define control codes for idt77252 driver
//

#ifndef __idt77252ioctl__h_
#define __idt77252ioctl__h_
#ifndef BASE_TYPES_INC
#include "base_types.h"
#endif

#define idt77252_IOCTL_WRTREG CTL_CODE(FILE_DEVICE_UNKNOWN, 0x800, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define idt77252_IOCTL_RDREG CTL_CODE(FILE_DEVICE_UNKNOWN, 0x801, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define idt77252_IOCTL_PARAM CTL_CODE(FILE_DEVICE_UNKNOWN, 0x802, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define idt77252_IOCTL_WRTUTIL CTL_CODE(FILE_DEVICE_UNKNOWN, 0x803, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define idt77252_IOCTL_RDUTIL CTL_CODE(FILE_DEVICE_UNKNOWN, 0x804, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define idt77252_IOCTL_OPEN_CONN CTL_CODE(FILE_DEVICE_UNKNOWN, 0x805, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define idt77252_IOCTL_CLOSE_CONN CTL_CODE(FILE_DEVICE_UNKNOWN, 0x806, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define idt77252_IOCTL_FETCH_CONN CTL_CODE(FILE_DEVICE_UNKNOWN, 0x807, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define idt77252_IOCTL_COUNT_CONN CTL_CODE(FILE_DEVICE_UNKNOWN, 0x808, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define idt77252_IOCTL_QUERY_CONN CTL_CODE(FILE_DEVICE_UNKNOWN, 0x3, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define idt77252_IOCTL_SEND CTL_CODE(FILE_DEVICE_UNKNOWN, 0x80A, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define idt77252_IOCTL_RECEIVE CTL_CODE(FILE_DEVICE_UNKNOWN, 0x80B, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define idt77252_IOCTL_SET_CONN CTL_CODE(FILE_DEVICE_UNKNOWN, 0x80C, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define idt77252_IOCTL_GET_PCI CTL_CODE(FILE_DEVICE_UNKNOWN, 0x80D, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define idt77252_IOCTL_SET_PCI CTL_CODE(FILE_DEVICE_UNKNOWN, 0x80E, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define idt77252_IOCTL_GET_INFO CTL_CODE(FILE_DEVICE_UNKNOWN, 0x80F, METHOD_BUFFERED, FILE_ANY_ACCESS)
//
// Write and read reg (WRTREG and RDREG) Parameters sent:
// buf + 0 register number
// buf + 4 data sent/received
//
// Write and read utility bus has the following buffer meanings:
// buf + 0 Bus device number -- 0x0 to 0x3
// buf + 4 Utility bus address 0 - 255
// buf + 8 Data sent or received to/from utility bus.
//
//
// when calling DeviceIoControl with an IO control code
// of idt77252_IOCTL_PARM
// the IO input buffer is interpreted as follows:
// buf + 0 Opereration code
// buf + 4 Sub code field
// buf + 8 Size of Data Array
// buf + c Start of data array
//
// Operation code(buf+0) for accessing 77222/252 nicstar sram
#define PARAM_READ_SRAM 0x01 // sub code field has SRAM address - data returned data array
#define PARAM_WRITE_SRAM 0x02 // sub code field has SRAM address

// - data array has data

#define TX_NORMAL 0 // application sends data each time
#define TX_MULTIPLE 1 // Application sends once - driver send buffer over and over
#define TX_FOREVER 2 // Application sends once - driver sets hardware tx_forever bit

#ifdef __cplusplus
extern "C" {
#endif

#pragma pack(1)

typedef struct _t_IoctlBuf IoctlBuf, *PIoctlBuf;
struct _t_IoctlBuf

{
unsigned long ioctlCode;
unsigned long ioctlSubCode;

Confidential Page 36 06/21/01

unsigned long ioctlDataSize;
unsigned long ioctlData;
};

typedef struct t_open_conn_param t_open_conn_param;
struct t_open_conn_param {

// values -> driver
unsigned short vpi, vci;
unsigned char service_class;
unsigned char aal_type;
unsigned long pcr, mcr, icr, scr, acr, frtt;
unsigned short nrm, crm, mbs, bt;
unsigned char rif, rdf, cdf, adtf;
unsigned char acr_clmp, use_lose_it;
unsigned long tbe, age_cnt;
unsigned long max_idle_cnt,max_token_cnt,pcr_token;
unsigned char locked;
unsigned long owner;
int mode;

};

typedef struct t_set_conn_param t_set_conn_param;
struct t_set_conn_param {

// values -> driver
unsigned short vpi, vci;
int mode;
DWORD count;

};

typedef struct t_txconn_rec {
WORD vpi, vci;
BYTE enable_abr, enable_vbr;
// ABR Fields
WORD init_er;
WORD lmcr;
WORD lacr;
WORD air_table, rdf_table, cdf_table;
WORD norm_age_count;
BYTE use_lose_it, acr_clamp;
WORD crm;
// cbr
DWORD rate;
unsigned long max_idle_cnt,max_token_cnt,pcr_token;

} t_txconn_rec;

typedef struct t_close_conn_param t_close_conn_param;
struct t_close_conn_param {

// values -> driver
unsigned short vpi, vci;

};

typedef struct t_query_conn_param t_query_conn_param;
struct t_query_conn_param {

// values -> driver
unsigned short vpi, vci;
// values <- driver
unsigned char service_class;
unsigned char aal_type;
unsigned long pcr, mcr, icr, scr, acr, frtt;
unsigned short nrm, crm, mbs, bt;
unsigned char rif, rdf, cdf, adtf;
unsigned char acr_clamp, use_lose_it;
unsigned long tbe, age_cnt;
unsigned long max_idle_cnt,max_token_cnt,pcr_token;
unsigned char locked;
unsigned long owner;
int mode;
// some stuff actually related to status
unsigned long bytes_sent, cells_sent, pdu_sent;
unsigned long bytes_received, cells_received, pdu_received;
unsigned long cells_dropped, pdu_errors, crc_errors;

Confidential Page 37 06/21/01

// parameters for driver bookkeeping
t_txconn_rec drvr_param;

};

typedef struct t_count_conn_param t_count_conn_param;
struct t_count_conn_param {

// values <- driver
unsigned long count;

};

typedef struct t_vpi_list {
// an array of vpi vci pairs of size count
unsigned short vpi, vci;
unsigned char service_class;
unsigned char aal_type;

} VPI_LIST;

typedef struct t_fetch_conn_param t_fetch_conn_param;
struct t_fetch_conn_param {

// values -> driver
unsigned long count;
// values <- driver
VPI_LIST list[1];

};

typedef struct t_send_conn_param t_send_conn_param;
struct t_send_conn_param {

// values -> driver
unsigned short vpi, vci;
unsigned long length;
unsigned char buffer[1]; // an array of data elements of size length

};

typedef struct t_receive_conn_param t_receive_conn_param;
struct t_receive_conn_param {

// values -> driver
unsigned short vpi, vci;
// values <-> driver
unsigned long length;
// values <- driver
unsigned char buffer[1]; // an array of data elements of size length

};

typedef struct t_pci_config t_pci_config;
struct t_pci_config {
 unsigned short VendorID;
 unsigned short DeviceID;
 unsigned short Command;
 unsigned short Status;
 unsigned char RevisionID;
 unsigned char ProgIf;
 unsigned char SubClass;
 unsigned char BaseClass;
 unsigned char CacheLineSize;
 unsigned char LatencyTimer;
 unsigned char HeaderType;
 unsigned char BIST;
 unsigned long BaseAddresses[6];
 unsigned long CardBusCISPtr;
 unsigned short SubsystemVendorID;
 unsigned short SubsystemID;
 unsigned long ROMBaseAddress;
 unsigned char Cap_Ptr;
 unsigned char Reserved1;
 unsigned short Reserved2A;
 unsigned long Reserved3;
 unsigned char InterruptLine;
 unsigned char InterruptPin;
 unsigned char MinimumGrant;
 unsigned char MaximumLatency;
 unsigned char TrdyTimeout;

Confidential Page 38 06/21/01

unsigned char RetryTimeout;
unsigned short Reserved4;
unsigned char Cap_ID;
unsigned char Next_Item;
unsigned short PMC;
unsigned short PMCSR;
unsigned short Reserved5;

};

typedef struct t_get_info t_get_info;
struct t_get_info {

unsigned long mem_size; // in 32 bit words
unsigned char device_type; // 0 = 77252, 1 = 77222
unsigned char revision;
unsigned char param1;
unsigned char param2;
unsigned long param3;
unsigned long param4;

};

#ifdef __cplusplus
};
#endif

#pragma pack()

#endif

