

APPLICANT: WAVE WIRELESS NETWORKING

FCC ID: NCBSL9102A

TABLE OF CONTENTS FOR A DIRECT SEQUENCE SPREAD SPECTRUM

TEST REPORT CONTAINING:

PAGE	1.....	LETTER OF EXPLANATION
PAGE	2-4.....	LIST OF TEST EQUIPMENT
PAGE	5.....	TEST PROCEDURES
PAGE	6.....	PRODUCT DESCRIPTION
PAGE	7.....	POWERLINE CONDUCTED INTERFERENCE
PAGE	8.....	POWERLINE CONDUCTED PLOTS
PAGE	9.....	OCCUPIED BANDWIDTH AND POWER OUTPUT
PAGE	10.....	6 dB BANDWIDTH PLOT
PAGE	11.....	METHOD OF MEASURING RF CONDUCTED AND SPURIOUS EMISSIONS AT ANTENNA TERMINALS DATA
PAGE	12.....	RADIATION INTERFERENCE TEST DATA
PAGE	13.....	CLASS B RADIATED EMISSIONS
PAGE	14.....	METHOD OF MEASURING RADIATED SPURIOUS EMISS.
PAGE	15.....	RADIATED SPURIOUS EMISSIONS INTO ADJACENT RESTRICTED BANDS
PAGE	16-17.....	BANDEdge PLOTS
PAGE	18.....	POWER SPECTRAL DENSITY
PAGE	19.....	POWER SPECTRAL DENSITY PLOT

EXHIBIT ATTACHMENTS:

EXHIBIT 1.....	REQUEST FOR CONFIDENTIALITY LETTER
EXHIBIT 2.....	FCC ID LABEL SAMPLE
EXHIBIT 3.....	SKETCH OF FCC ID LABEL LOCATION
EXHIBIT 4.....	EXTERNAL PHOTOGRAPHS
EXHIBIT 5.....	INTERNAL PHOTOGRAPHS
EXHIBIT 6.....	GEMTEK PHOTOGRAPHS
EXHIBIT 7.....	BLOCK DIAGRAM
EXHIBIT 8.....	SCHEMATIC
EXHIBIT 8.....	USERS MANUAL
EXHIBIT 10.....	OPERATION DESCRIPTION
EXHIBIT 111.....	TEST SETUP PHOTOGRAPHS

APPLICANT: WAVE WIRELESS NETWORKING

FCC ID: NCBSL9102A

REPORT #: W\WAVE_NCB\356UT3\356UT3TestReport.doc

TABLE OF CONTENTS LIST

8/8/2003

Federal Communications Commission
Authorization and Evaluation Division
7435 Oakland Mills Road
Columbia, MD 21046

SUBJECT: WAVE WIRELESS NETWORKING

FCC ID: NCBSL9102A


To Whom It May Concern:

The attached application is for a direct sequence spread spectrum assembly, made up of the Bridge/Radio mini PCI card (FCC ID: MXF-M900821), a custom case, power supply, a lightning arrestor, and a parabolic antenna.

This system uses the same components except for the mini PCI as the NCBSL9102. It uses only one type of antenna, a parabolic grill type that has a gain of 24dBi.

WAVE WIRELESS NETWORKING purchases standard antennas from the manufacturer. The antenna is intended to be used outside. The NCBSL9102A radio uses a unique connector (reverse TNC).

Sincerely,

Mario R. de Aranzeta C.E.T.

MRD/sh
Encl.

APPLICANT: WAVE WIRELESS NETWORKING
FCC ID: NCBSL9102A
REPORT #: W\WAVE_NCB\356UT3\356UT3TestReport.doc
Page 1 of 19

EMC Equipment List

	DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
X	3-Meter OATS	TEI	N/A	N/A	Listed 12/22/99	12/22/02
	3/10-Meter OATS	TEI	N/A	N/A	Listed 3/26/01	3/26/04
	Receiver, Beige Tower Spectrum Analyzer (Tan)	HP	8566B Opt 462	3138A07786 3144A20661	CAL 8/31/01	8/31/03
	RF Preselector (Tan)	HP	85685A	3221A01400	CAL 8/31/01	8/31/03
	Quasi-Peak Adapter (Tan)	HP	85650A	3303A01690	CAL 8/31/01	8/31/03
X	Receiver, Blue Tower Spectrum Analyzer (Blue)	HP	8568B	2928A04729 2848A18049	CHAR 10/22/01	10/22/03
X	RF Preselector (Blue)	HP	85685A	2926A00983	CHAR 10/22/01	10/22/03
X	Quasi-Peak Adapter (Blue)	HP	85650A	2811A01279	CHAR 10/22/01	10/22/03
X	Biconnical Antenna	Electro-Metrics	BIA-25	1171	CAL 4/26/01	4/26/03
	Biconnical Antenna	Eaton	94455-1	1096	CAL 10/1/01	10/1/03
	Biconnical Antenna	Eaton	94455-1	1057	CHAR 3/15/00	3/15/02
	BiconiLog Antenna	EMCO	3143	9409-1043		
X	Log-Periodic Antenna	Electro-Metrics	LPA-25	1122	CAL 10/2/01	10/2/03
	Log-Periodic Antenna	Electro-Metrics	EM-6950	632	CHAR 10/15/01	10/15/03
	Log-Periodic Antenna	Electro-Metrics	LPA-30	409	CHAR 10/16/01	10/16/03
	Dipole Antenna Kit	Electro-Metrics	TDA-30/1-4	152	CAL 3/21/01	3/21/04
	Dipole Antenna Kit	Electro-Metrics	TDA-30/1-4	153	CHAR 11/24/00	11/24/03
	Double-Ridged Horn Antenna	Electro-Metrics	RGA -180	2319	CAL 12/19/01	12/19/03
	Horn Antenna	Electro-Metrics	EM-6961	6246	CAL 3/21/01	3/21/03
	Horn Antenna	ATM	19-443-6R	None	No Cal Required	
	Passive Loop Antenna	EMC Test Systems	EMCO 6512	9706-1211	CHAR 7/10/01	7/10/03
	Line Impedance Stabilization . . .	Electro-Metrics	ANS-25/2	2604	CAL 10/9/01	10/9/03

APPLICANT: WAVE WIRELESS NETWORKING

FCC ID: NCB9102A

REPORT #: W\WAVE_NCB\356UT3\356UT3TestReport.doc

	DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
	Line Impedance Stabilization . . .	Electro-Metrics	EM-7820	2682	CAL 3/16/01	3/16/03
	Termaline Wattmeter	Bird Electronic Corporation	611	16405	CAL 5/25/99	5/25/01
	Termaline Wattmeter	Bird Electronic Corporation	6104	1926	CAL 12/12/01	12/12/03
	Oscilloscope	Tektronix	2230	300572	CHAR 2/1/01	2/1/03
	Temperature Chamber	Tenney Engineering	TTRC	11717-7	CHAR 1/22/02	1/22/04
	AC Voltmeter	HP	400FL	2213A14499	CAL 10/9/01	10/9/03
	AC Voltmeter	HP	400FL	2213A14261	CHAR 10/15/01	10/15/03
	AC Voltmeter	HP	400FL	2213A14728	CHAR 10/15/01	10/15/03
X	Digital Multimeter	Fluke	77	35053830	CHAR 1/8/02	1/8/04
	Digital Multimeter	Fluke	77	43850817	CHAR 1/8/02	1/8/04
	Digital Multimeter	HP	E2377A	2927J05849	CHAR 1/8/02	1/8/04
	Multimeter	Fluke	FLUKE-77-3	79510405	CAL 9/26/01	9/26/03
	Peak Power Meter	HP	8900C	2131A00545	CHAR 1/26/01	1/26/03
	Digital Thermometer	Fluke	2166A	42032	CAL 1/16/02	1/16/04
	Thermometer	Traulsen	SK-128		CHAR 1/22/02	1/22/04
X	Temp/Humidity gauge	EXTech	44577F	E000901	CHAR 1/22/02	1/22/04
	Frequency Counter	HP	5352B	2632A00165	CAL 11/28/01	11/28/03
	Power Sensor	Agilent Technologies	84811A	2551A02705	CAL 1/26/01	1/26/03
	Service Monitor	IFR	FM/AM 500A	5182	CAL 11/22/00	11/22/02
	Comm. Serv. Monitor	IFR	FM/AM 1200S	6593	CAL 5/12/02	5/12/04
	Signal Generator	HP	8640B	2308A21464	CAL 11/15/01	11/15/03
	Modulation Analyzer	HP	8901A	3435A06868	CAL 9/5/01	9/5/03
	Near Field Probe	HP	HP11940A	2650A02748	CHAR 2/1/01	2/1/03

APPLICANT: WAVE WIRELESS NETWORKING

FCC ID: NCB9102A

REPORT #: W\WAVE_NCB\356UT3\356UT3TestReport.doc

DEVICE	MFGR	MODEL	SERNO	CAL/CHAR DATE	DUE DATE or STATUS
BandReject Filter	Lorch Microwave	5BR4-2400/60-N	Z1	CHAR 3/2/01	3/2/03
BandReject Filter	Lorch Microwave	6BR6-2442/300-N	Z1	CHAR 3/2/01	3/2/03
BandReject Filter	Lorch Microwave	5BR4-10525/900-S	Z1	CHAR 3/2/01	3/2/03
High Pas Filter	Microlab	HA-10N		CHAR 10/4/01	10/4/03
Audio Oscillator	HP	653A	832-00260	CHAR 3/1/01	3/1/03
Frequency Counter	HP	5382A	1620A03535	CHAR 3/2/01	3/2/03
Frequency Counter	HP	5385A	3242A07460	CHAR 12/11/01	12/11/03
Preamplifier	HP	8449B-H02	3008A00372	CHAR 3/4/01	3/4/03
Amplifier	HP	11975A	2738A01969	CHAR 3/1/01	3/1/03
Egg Timer	Unk			CHAR 8/31/01	8/31/03
Measuring Tape, 20M	Kraftixx	0631-20		CHAR 2/1/02	2/1/04
Measuring Tape, 7.5M	Kraftixx	7.5M PROFI		2/1/02	2/1/04
Coaxial Cable #51	Insulated Wire Inc.	NPS 2251-2880	Timco #51	CHAR 1/23/02	1/23/04
Coaxial Cable #64	Semflex Inc.	60637	Timco #64	CHAR 1/24/02	1/24/04
Coaxial Cable #65	General Cable Co.	E9917 RG233/U	Timco #65	CHAR 1/23/02	1/23/04
Coaxial Cable #106	Unknown	Unknown	Timco #106	CHAR 1/23/02	1/23/04

APPLICANT: WAVE WIRELESS NETWORKING

FCC ID: NCB9102A

REPORT #: W\WAVE_NCB\356UT3\356UT3TestReport.doc

TEST PROCEDURE

GENERAL: This report shall NOT be reproduced except in full without the written approval of TIMCO ENGINEERING, INC. Shielded interface cables were used in all cases except for cables connecting to the telephone line and the power cords. A test program was run which simulated a normal data transmission on a network.

POWER LINE CONDUCTED INTERFERENCE: The procedure used was ANSI STANDARD C63.4-1992 using a 50uH LISN. Both lines were observed with the UUT transmitting. The bandwidth of the spectrum analyzer was 10 kHz with an appropriate sweep speed. The ambient temperature of the UUT was 76°F with a humidity of 55%.

BANDWIDTH 6.0dB: The measurements were made with the spectrum analyzer's resolution bandwidth(RBW)=1.0 MHz and the video bandwidth(VBW) =3.0 MHz and the span set as shown on plot.

POWER OUTPUT: The RF power output was measured at the antenna feed point using a peak power meter.

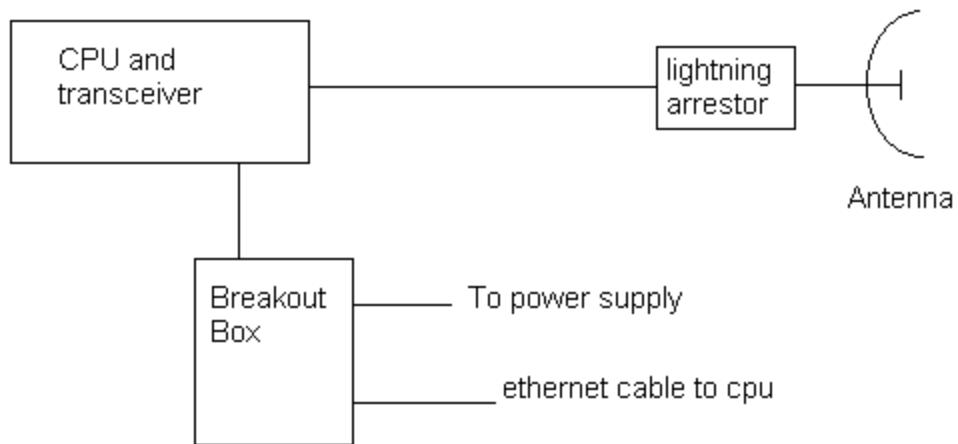
ANTENNA CONDUCTED EMISSIONS: The RBW=100 kHz, VBW=300 kHz and the span set to 10 MHz and the spectrum was scanned from 30 MHz to the 10th Harmonic of the fundamental. Above 1 GHz the resolution bandwidth was 1 MHz and the VBW = 3 MHz and the span to 50 MHz.

RADIATION INTERFERENCE: The test procedure used was ANSI STANDARD C63.4-1992 using a HEWLETT PACKARD spectrum analyzer with a preselector. The bandwidth (RBW) of the spectrum analyzer was 100 kHz up to 1 GHz and 1.0 MHz above 1 GHz with an appropriate sweep speed. The VBW above 1.0 GHz was = 3.0 MHz. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The ambient temperature of the UUT was 85°F with a humidity of 45%.

APPLICANT: WAVE WIRELESS NETWORKING

FCC ID: NCB9102A

REPORT #: W\WAVE_NCB\356UT3\356UT3TestReport.doc


Page 5 of 19

PRODUCT DESCRIPTION:

The NCBSL9102A is a (WLAN) direct sequence spread spectrum radio that operated in the 2412 (Channel 1) to 2462 MHz (Channel 11) frequency band.

The channels are selected via software that the end user does not have access to.

EUT

APPLICANT: WAVE WIRELESS NETWORKING

FCC ID: NCBSL9102A

REPORT #: W\WAVE_NCB\356UT3\356UT3TestReport.doc

Page 6 of 19

APPLICANT: WAVE WIRELESS NETWORKING

FCC ID: NCBSL9102A

NAME OF TEST: POWER LINE CONDUCTED INTERFERENCE

RULES PART NO.: 15.107(a)

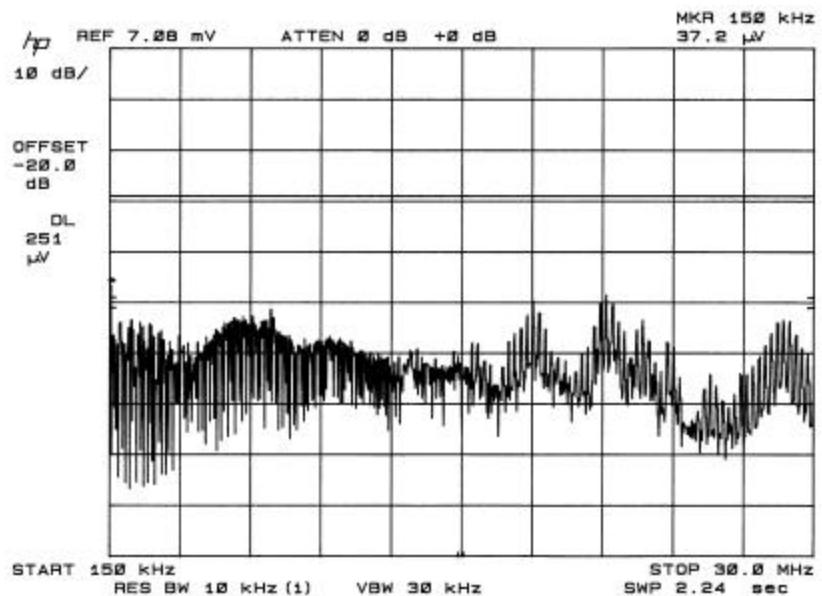
REQUIREMENTS:	QUASI-PEAK	AVERAGE
0.15- 0.5 MHz	66-56 dBuV	56-46 dBuV
0.5 - 5.0	56	46
5.0 - 30.	60	50

TEST PROCEDURE: ANSI STANDARD C63.4-1992. The spectrum was scanned from 0.15 to 30 MHz.

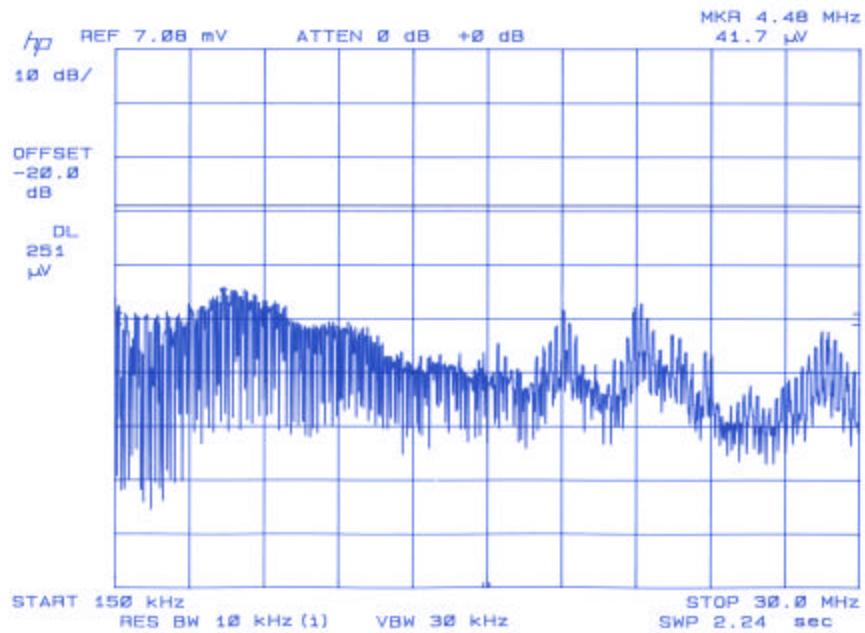
TEST DATA:

THE PLOTS ON THE FOLLOWING PAGE REPRESENT THE EMISSIONS TAKEN FOR THIS DEVICE.

TEST RESULTS: Both lines were observed. The measurements indicate that the unit DOES meet the FCC requirements for this class of equipment.


APPLICANT: WAVE WIRELESS NETWORKING

FCC ID: NCBSL9102A


REPORT #: W\WAVE_NCB\356UT3\356UT3TestReport.doc

Page 7 of 19

LINE 1

LINE 2

APPLICANT: WAVE WIRELESS NETWORKING

FCC ID: NCBSL9102A

REPORT #: W\WAVE_NCB\356UT3\356UT3TestReport.doc

Page 8 of 19

APPLICANT: WAVE WIRELESS NETWORKING

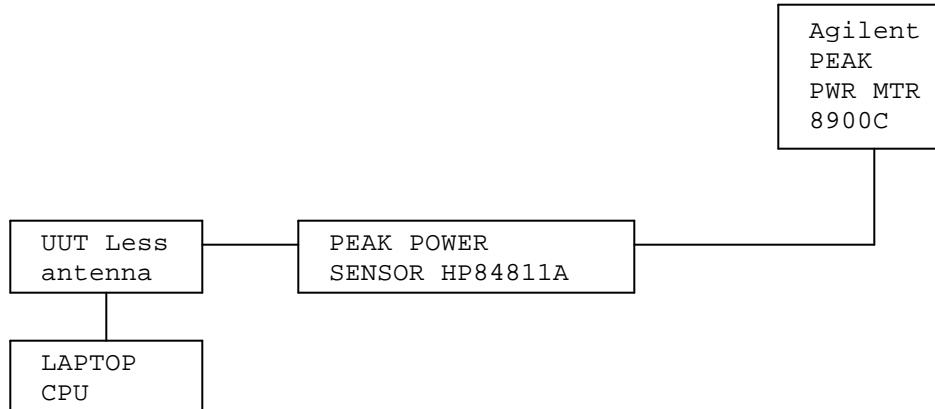
FCC ID: NCBSL9102A

NAME OF TEST: 6.0dB BANDWIDTH

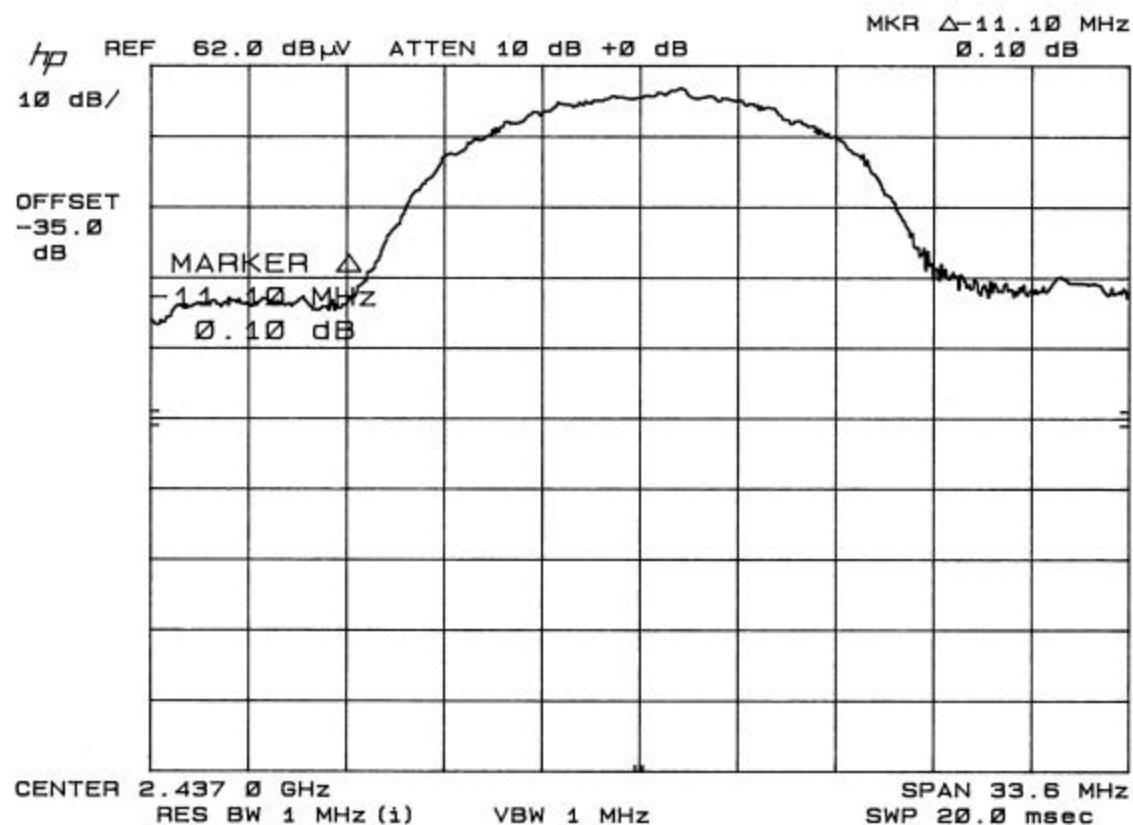
RULES PART NO.: 15.247(a)(2)

REQUIREMENTS: The 6.0dB bandwidth must be greater than 500 kHz.

MEASUREMENT: The 6.0dB bandwidth measured @ 2437.00MHz was 11.10 MHz. Three channels were tested and the worst case is presented here.


DATA: See plot on next page.

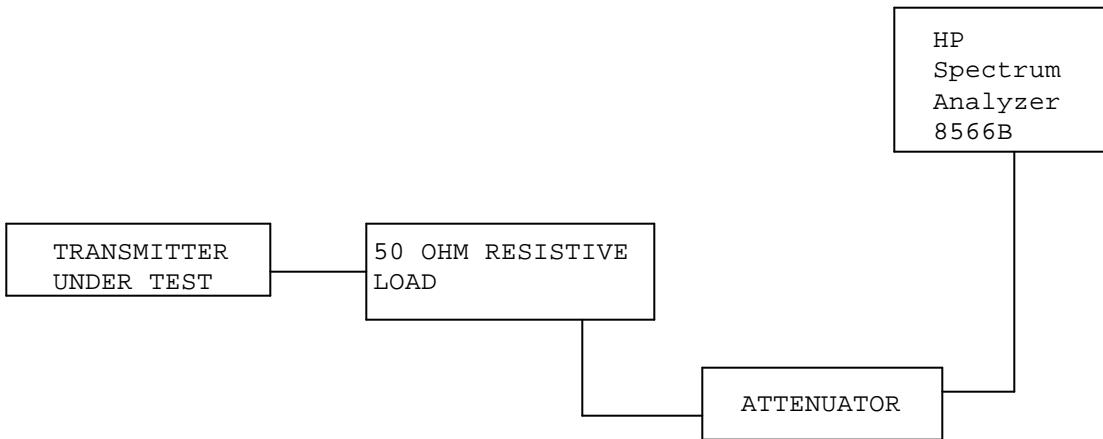
NAME OF TEST: POWER OUTPUT


RULES PART NO.: 15.247(b) 1.0Watt or +30dBm
250mW Watts or 24dBm for 24dBi Gain Ant

MEASUREMENT: 40 mWATTS or 16.0 dBm @ 2433.0MHz

15.247(c) Method of Measuring RF Power output: The Peak power Sensor was connected in place of the antenna.

6 dB BANDWIDTH PLOT



APPLICANT: WAVE WIRELESS NETWORKING

FCC ID: NCBSL9102A

REPORT #: W\WAVE_NCB\356UT3\356UT3TestReport.doc

Page 10 of 19

NAME OF TEST: SPURIOUS EMISSIONS AT ANTENNA TERMINALS

REQUIREMENTS: Emissions must be at least 20dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.

TF	EF	dB BELOW CARRIER
2457.00	2457.00	0
4914.00		51.8
7371.00		57.8
9828.0		69.4

TF: Tuned Frequency

EF: Emission Frequency

NOTE: Three channels were measured and the worst case data is presented. The spectrum was scanned to the 10th harmonic.

APPLICANT: WAVE WIRELESS NETWORKING

FCC ID: NCB9102A

REPORT #: W\WAVE_NCB\356UT3\356UT3TestReport.doc

Page 11 of 19

15.247(c), 15.205 & 15.209(b) Field strength of spurious emissions:

REQUIREMENTS:

FIELD STRENGTH of Fundamental: 902-928 MHz 2.4-2.4835 Hz 127.38 dBuV/m @3m	FIELD STRENGTH of Harmonics 30 - 88 MHz 88 - 216 MHz 216 - 960 MHz 54 dBuV/m @3m	S15.209 40 dBuV/m @3M 43.5 46 ABOVE 960 MHz 54dBuV/m
--	---	--

EMISSIONS RADIATED OUTSIDE OF THE SPECIFIED FREQUENCY BANDS, EXCEPT FOR HARMONICS, SHALL BE ATTENUATED BY AT LEAST 50 dB BELOW THE LEVEL OF THE FUNDAMENTAL OR TO THE GENERAL RADIATED EMISSION LIMITS IN 15.209, WHICHEVER IS THE LESSER ATTENUATION.

REQUIREMENTS: Emissions that fall in the restricted bands (15.205) must be less than 54 dBuV/m otherwise the spurious and harmonics must be attenuated by at least 20 dB.

TEST DATA: PEAK

Tuned Frequency MHz	Emission Frequency MHz	Meter Reading dBuV	ANT. POLARITY	Coax Loss dB	Correction Factor dB	Field Strength dBuV/m	Margin dB
2,412.0	2,412.00	80.0	V	3.33	30.67	114.00	13.38
2,418.0	2,418.00	90.1	V	3.33	29.27	122.70	4.68
2,418.00	4,834.00	13.0	V	5.97	34.17	53.14	0.86
2,418.00	7,253.00	NF					
2,437.0	2,437.00	79.6	V	3.35	29.30	112.25	15.13
2,437.0	2,438.30	90.8	H	3.35	29.30	123.45	3.93
2,437.0	4,874.00	13.0	V	6.02	34.30	53.32	0.68
2,457.00	2,458.30	91.5	V	3.37	29.33	124.20	3.18
2,457.00	4,914.00	13.4	V	6.08	34.42	53.90	0.10
2,463.00	2,463.00	80.5	V	3.37	30.80	114.67	12.71
2,462.0	4,938.00	9.6	V	6.11	34.50	48.41	5.59

TEST DATA: AVERAGE

Tuned Frequency MHz	Emission Frequency MHz	Meter Reading dBuV	ANT. POLARITY	Coax Loss dB	Correction Factor dB	Field Strength dBuV/m	Margin dB
2,418.0	4,834.00	0.3	V	5.97	34.17	40.44	13.56
2,418.0	7,253.00	NF					
2,437.0	4,874.00	-1.8	V	6.02	34.30	38.52	15.48
2,457.0	4,914.00	-0.8	V	6.08	34.42	39.70	14.30

The spectrum was scanned to the 10th harmonic. Three places in the band were tested and the worst case is presented above.

METHOD OF MEASUREMENT: The procedure used was ANSI STANDARD C63.4-1992 & the FCC/OET Guidance on Measurements for Direct Sequence Spread Spectrum Systems - Public Notice 54797 Dated July 12, 1995. Measurements were made at the open field test site of TIMCO ENGINEERING INC. located at 849 N.W. State Road 45, Newberry, FL 32669.

APPLICANT: WAVE WIRELESS NETWORKING

FCC ID: NCBSL9102A

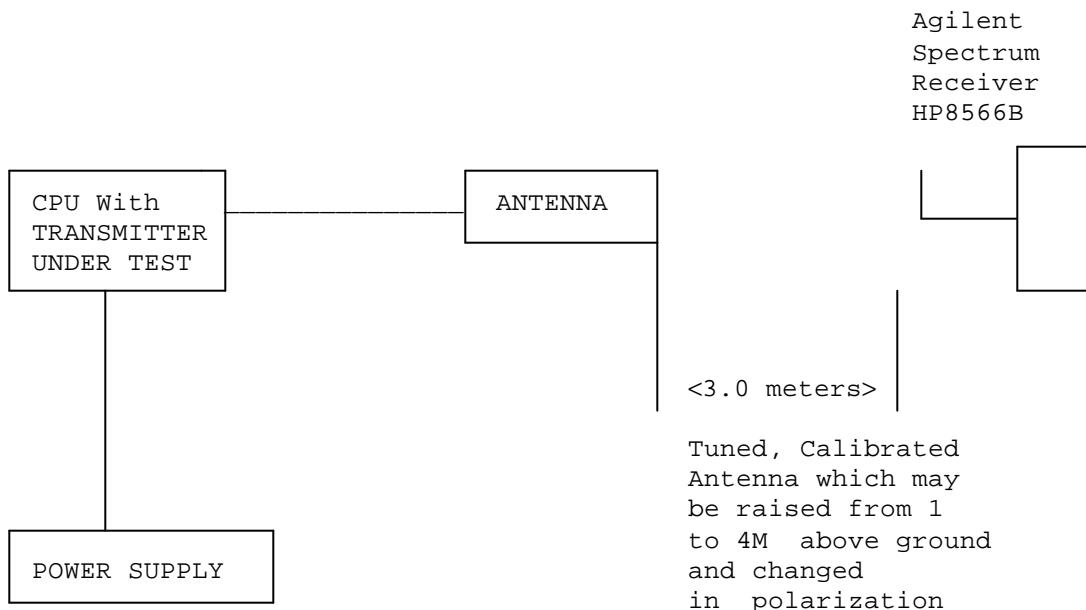
REPORT #: W\WAVE_NCB\356UT3\356UT3TestReport.doc

NAME OF TEST: RADIATED SPURIOUS EMISSIONS

RULES PART NO.: 15.109(a) - Class B Computing Device

REQUIREMENTS: 30-88 MHz 40.0 dBuV/m measured at 3 meters
88-216 MHz 43.5 dbuV/m
216-960 MHz 46.0 dbuV/m
ABOVE 960 MHz 54.0 dbuV/m

TEST DATA:


Tuned Frequency MHz	Emission Frequency MHz	Meter Reading dBuv	Ant. Polarity	Coax Loss dB	Correction Factor dB	Field Strength dBuV/m
2,462.0	32.02	18.9	V	0.53	10.33	29.76
2,462.0	37.80	21.2	V	0.68	10.55	32.43
2,462.0	43.80	21.7	V	0.74	10.77	33.21
2,462.0	48.00	25.3	V	0.78	10.92	37.00
2,462.0	51.30	25.8	V	0.81	10.58	37.19
2,462.0	51.90	27.7	V	0.82	10.38	38.90
2,462.0	52.40	26.1	V	0.82	10.22	37.14
2,462.0	52.70	27.2	V	0.83	10.12	38.15
2,462.0	52.98	25.8	V	0.83	10.03	36.66
2,462.0	53.56	27.2	V	0.84	9.84	37.88
2,462.0	53.80	27.9	V	0.84	9.77	38.51
2,462.0	54.06	28.5	V	0.84	9.68	39.02
2,462.0	56.60	27.2	H	0.87	8.86	36.93
2,462.0	71.80	26.6	H	1.01	7.70	35.31
2,462.0	75.00	25.9	V	1.03	9.38	36.31
2,462.0	125.02	24.7	H	1.30	11.35	37.35
2,462.0	128.00	26.5	H	1.31	12.02	39.83
2,462.0	132.00	24.2	H	1.33	12.90	38.43
2,462.0	134.70	22.2	V	1.34	13.50	37.04
2,462.0	136.00	22.5	H	1.34	13.79	37.63
2,462.0	139.90	22.2	H	1.36	14.66	38.22
2,462.0	141.30	25.5	H	1.37	14.97	39.84
2,462.0	146.70	20.3	H	1.39	16.17	37.86
2,462.0	148.00	18.9	H	1.39	16.46	36.75
2,462.0	160.00	21.0	H	1.48	16.81	39.29
2,462.0	173.40	21.5	H	1.59	16.68	39.77
2,462.0	178.70	19.1	H	1.63	16.07	36.80
2,462.0	192.00	17.4	H	1.74	13.90	33.04
2,462.0	198.60	14.7	H	1.79	12.83	29.32
2,462.0	204.00	17.1	H	1.82	12.82	31.74
2,462.0	205.30	21.4	H	1.82	12.79	36.01
2,462.0	224.00	25.4	H	1.90	12.42	39.72
2,462.0	250.00	19.8	H	2.00	14.40	36.20
2,462.0	256.00	24.4	H	2.02	14.62	41.04
2,462.0	352.00	19.7	H	2.51	16.84	39.05
2,462.0	384.00	14.1	V	2.70	16.27	33.07

APPLICANT: WAVE WIRELESS NETWORKING

FCC ID: NCB9102A

REPORT #: W\WAVE_NCB\356UT3\356UT3TestReport.doc

Method of Measuring Radiated Spurious Emissions

Equipment placed 80cm above ground on a rotatable platform.

APPLICANT: WAVE WIRELESS NETWORKING

FCC ID: NCBSL9102A

NAME OF TEST: RADIATED SPURIOUS EMISSIONS INTO ADJACENT RESTRICTED BAND

REQUIREMENTS: Emissions that fall in the restricted bands (15.205). These emissions must be less than or equal to 500 uV/m (54 dBuV/m).

TEST PROCEDURE: An in band field strength measurement of the fundamental Emission using the RBW and detector function required by C63.4-2000 and FCC Rules. The procedure was repeated with an average detector and a plot made. The calculated field strength in the adjacent restricted band is presented below.

Average

CHANNEL 1

FREQUENCY:	2387.13 MHz
- 0.80	dBuV from plot
+29.22	dB ACF
+ 3.31	dB Coax Loss
+20.00	dB Attn. Pad
<hr/>	
+51.73	dbuV

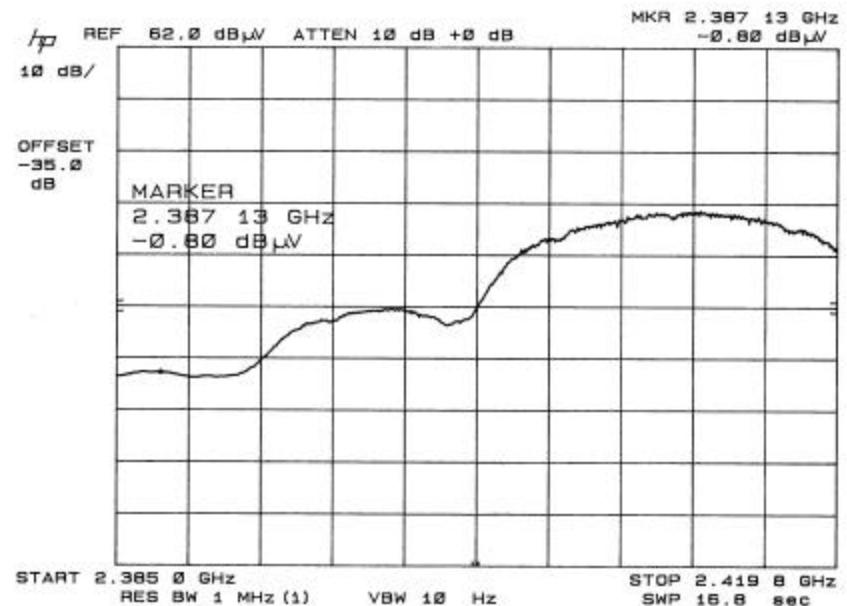
Average

CHANNEL 11

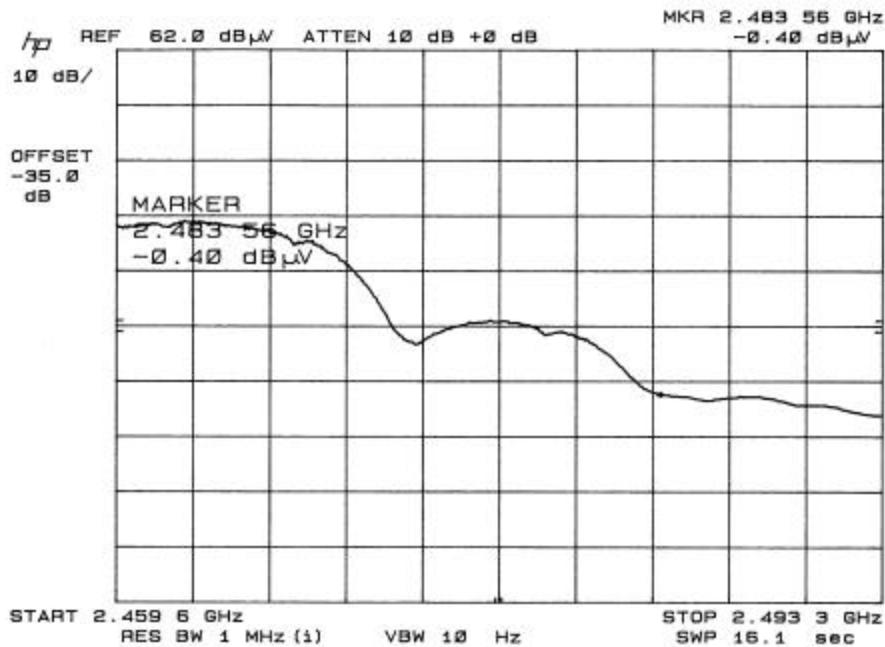
FREQUENCY:	2483.56 MHz
- 0.40	dBuV from plot
+29.37	dB ACF
+ 3.39	dB Coax Loss
+20.00	dB Attn. Pad
<hr/>	
+52.36	dBuV

Peak

CHANNEL 1


FREQUENCY:	2369.70 MHz
+37.00	dBuV from plot
+29.22	dB ACF
+ 3.31	dB Coax Loss
<hr/>	
+69.53	dbuV

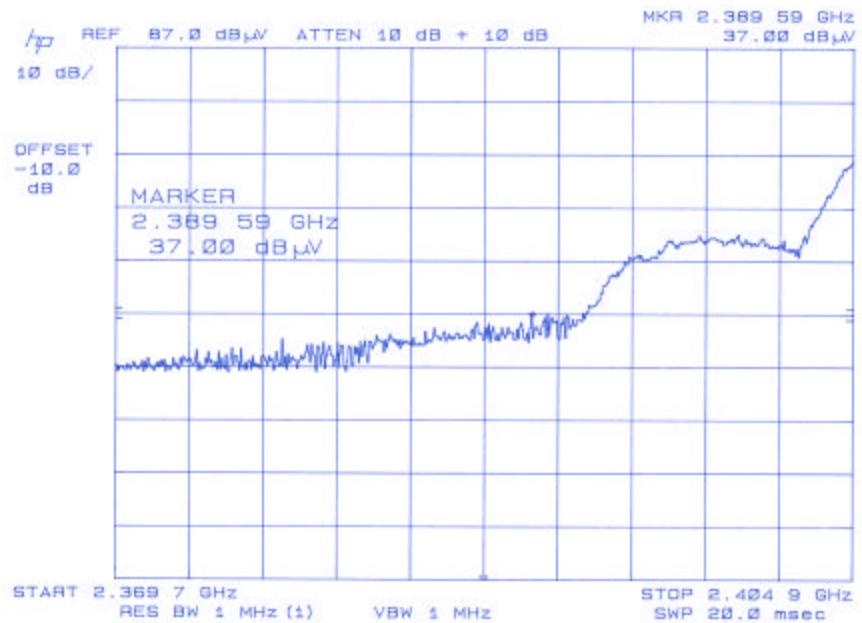
Peak


CHANNEL 11

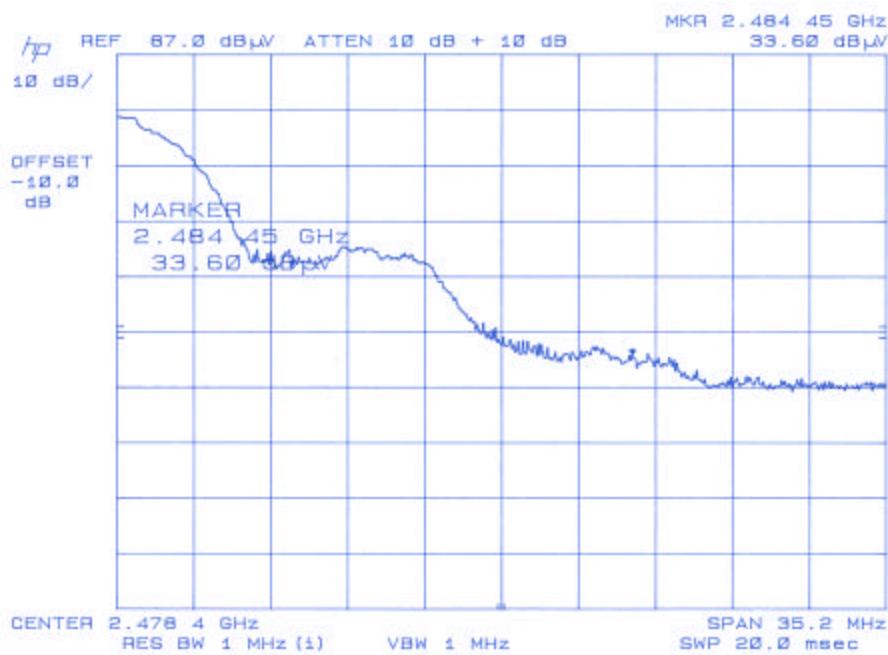
FREQUENCY:	2478.40 MHz
+33.60	dBuV from plot
+29.37	dB ACF
+ 3.39	dB Coax Loss
<hr/>	
+66.36	dBuV

BANDEDGE PLOT AVERAGE

BANDEDGE PLOT AVERAGE


APPLICANT: WAVE WIRELESS NETWORKING

FCC ID: NCSL9102A


REPORT #: W\WAVE_NCB\356UT3\356UT3TestReport.doc

Page 16 of 19

BANDEDGE PLOT PEAK

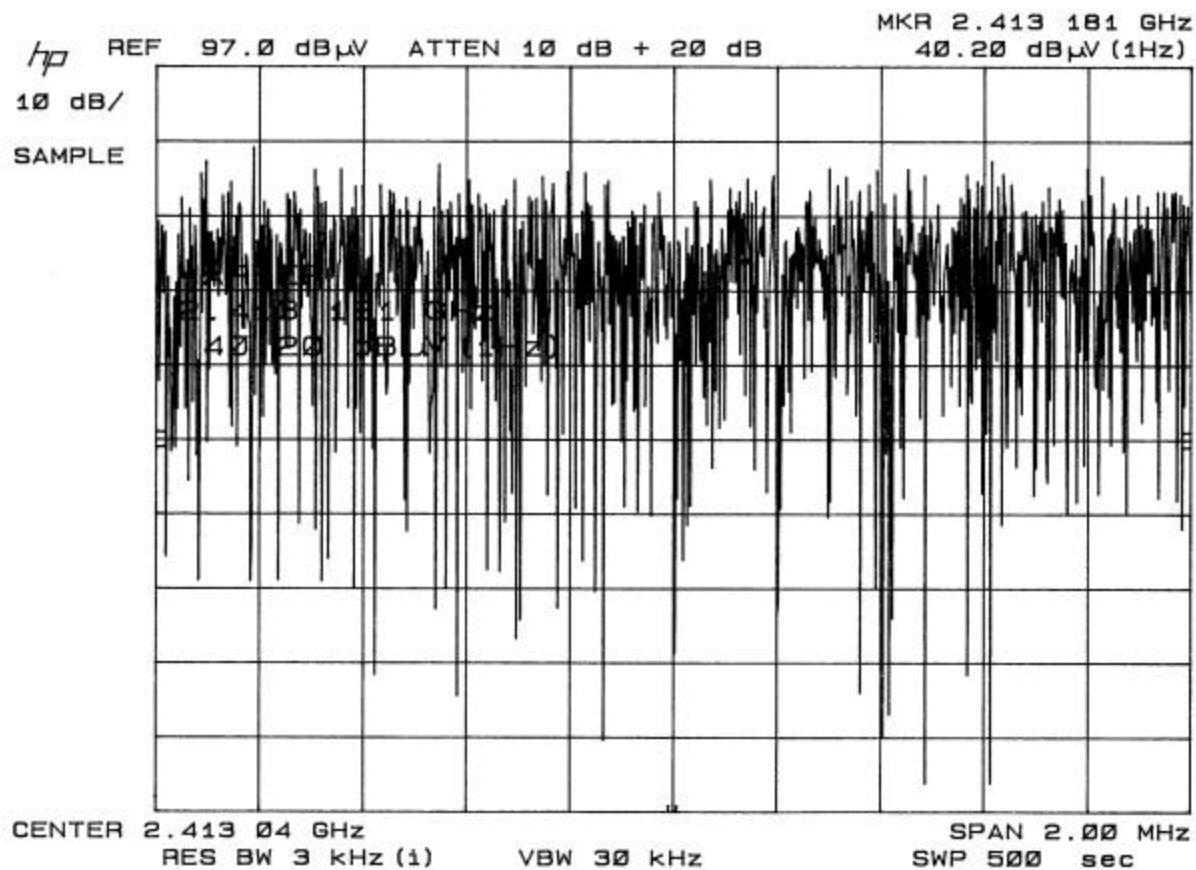
BANDEDGE PLOT PEAK

APPLICANT: WAVE WIRELESS NETWORKING

FCC ID: NCB9102A

REPORT #: W\WAVE_NCB\356UT3\356UT3TestReport.doc

Page 17 of 19


APPLICANT: WAVE WIRELESS NETWORKING
FCC ID: NCBSL9102A
NAME OF TEST: POWER SPECTRAL DENSITY
RULES PART NO.: 15.247(d)
REQUIREMENTS: The peak level measured must be no greater than +8.0dBm.
DATA: THE PLOT IS SHOWN IN EXHIBITS #8.

The level at 2413.04 MHz was 40.20 dBuV.

+40.20	dBuV
+ 6.00	dB Attn.
+35.00	dB Correction Factor
<hr/>	
+81.20	dBuV
-107.00	
<hr/>	
-25.8	dBm

3 Channels were tested, the worst case is presented.

POWER SPECTRAL DENSITY PLOT

APPLICANT: WAVE WIRELESS NETWORKING

FCC ID: NCBSL9102A

REPORT #: W\WAVE_NCB\356UT3\356UT3TestReport.doc

Page 19 of 19