

Certification Test Report FCC Part 22, Subpart H/ Industry Canada RSS 132 FCC Part 24, Subpart E/ Industry Canada RSS 133

Novatel Wireless Inc MiFi-2352R

FCC ID # NBZNRM-MIFI2352R IC ID # 3229A-MIFI2352R Project Code CG-1290

(Report CG-1290-RA-1-3)
Revision: 3
(This report supersedes CG-1290-RA-1-2)

January 20, 2010

Prepared for: Novatel Wireless Inc

Author: Deniz Demirci

Senior Wireless / EMC Technologist

Approved by: Nick Kobrosly

Director of Canadian operations

Confidentiality Statement: This report and the information contained herein represent the results of testing articles/products identified and selected by the client. The tests were performed to specifications and/or procedures approved by the client. National Technical Systems ("NTS") makes no representations expressed or implied that such testing fully demonstrates efficiency, performance, reliability, or any other characteristic of the articles being tested, or similar products. This report should not be relied upon as an endorsement or certification by NTS of the equipment tested, nor does it represent any statement whatsoever as to its merchantability or fitness of the test article or similar products for a particular purpose. This document shall not be reproduced except in full without written approval from National Technical Systems ("NTS") and the customer.

Test Facility:	National Technical Systems, Canada Product Integrity Laboratory 5151-47 th Street, N.E. Calgary Alberta T3J 3R2		
Accreditation Numbers:	0214.22 Electrical 0214.23 Mechanical Accredited by A2LA The American Association for Laboratory Accreditation CLIENTS SERVED: All interested parties FIELDS OF TESTING: Electrical/Electronic, Mechanical/Physical ACCREDITATION DATE:: May 14, 2009 VALID TO: February 28, 2010		
Applicant:	FCC: Novatel Wireless Inc. 9645 Scranton Rd, Suite 205 San Diego, CA 92121 IC: Novatel Wireless Technologies Ltd 6715 – 8th St N.E. Suite 200 Calgary, Alta. T2E-7H7		
Customer Representative:	Mr. Jim Turner Regulatory Specialist Ph: (403) 295-4855 Fax: (403) 295-4801 E Mail: jturner@nvtl.com		

Model NRM-MIFI2352R FCC ID # NBZNRM-MIFI2352R IC ID # 3229A-MIFI2352R

Test Summary

ndix	Test /	Devia	Deviations* from:		Ctatus	Applicable Rule Parts			
Appendix	Requirement Description	Base Standard	Test Basis	NTS Procedure	Status	Mode	FCC	IC	
Α	Occupied BW	No	No	No	DAGG	Cell	2.1049/22.917	RSS 132 4.5	
	Occupied BVV	NO	INO	No PASS	FASS	PCS	2.1049/24.238	RSS 133 6.5	
В	Radiated Peak Power	No No	iated Peak Power	No	No PASS	DAGG	Cell	2.1046/22.913	RSS 132 4.4
	Output	NO	INU	INO		PCS	2.1046/24.232	RSS 133 6.4	
С	TX Frequency Stability	Stability No No No PASS –	Cell	2.1055/22.335	RSS 132 4.3				
	TA Frequency Stability			PCS	2.1055/24.235	RSS 133 6.3			
D	TX Conducted Spurious	No	No	No	PASS	Cell	2.1051/22.917	RSS 132 4.5	
	Emissions	NO	INU	INO		PCS	2.1051/24.238	RSS 133 6.5	
			Cell	2.1053/22.917	RSS 132 4.3				
l E	Field Strength of Spurious Emissions		PASS			RSS Gen			
	(TX/RX)			NO PAS	NO FASS	1 700	PCS	2.1053/24.238	RSS 133 6.3 RSS Gen

Prepared By:	Deniz Demirci Senior Wireless / EMC Technologist
Reviewed By:	Glen Moore Wireless / EMC Manager
Approved By:	Alex Mathews Quality Management Representative

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

Model NRM-MIFI2352R FCC ID # NBZNRM-MIFI2352R IC ID # 3229A-MIFI2352R

Table of Contents

TEST	SUMMARY	3
REGIS	STER OF REVISIONS	5
1.0	INTRODUCTION	6
1.1	Purpose	6
2.0	EUT DESCRIPTION	6
2.1	CONFIGURATION	6
2.2	MODE OF OPERATION DURING TESTS	7
3.0	SUPPORT EQUIPMENT	7
3.1	CONFIGURATION	7
APPE	ENDICES	8
APPE	ENDIX A: OCCUPIED BANDWIDTH	9
APPE	ENDIX B: RADIATED PEAK POWER OUTPUT	16
APPE	ENDIX C: FREQUENCY STABILITY	19
APPE	ENDIX D: TX CONDUCTED SPURIOUS EMISSIONS	21
APPE	ENDIX E: TX / RX RADIATED SPURIOUS EMISSIONS 30 MHZ – 20 GHZ	36
ΔΡΡΕΙ	ENDIX E: TEST EQUIPMENT LIST	42

Register of revisions

Revision	Date	Description of Revisions
1	October 20, 2009	Released for customer review
2	December 9, 2009	2 nd Release for customer review (NovAtel Wireless PCS GPRS / EDGE PA modification)
3	January 20, 2010	Changes after TCB review

1.0 INTRODUCTION

1.1 PURPOSE

The purpose of this document is to describe the tests applied by NTS Canada to demonstrate compliance of the MiFi 2352R Wireless Modem from Novatel Wireless Inc to the following specifications:

FCC Part 22, Subpart H Public Mobile Services

FCC Part 24, Subpart E Personal Communications Services

RSS 132 - Issue 2

RSS-133, Issue 3, Rev.1 2GHz Personal Communications Services

RSS Gen – (Receiver Spurious Emissions)

Note: The MiFi 2352R also has 802.11 b/g capability for which compliance test data is shown in report CG-1290-RA-2-1

2.0 EUT DESCRIPTION

2.1 CONFIGURATION

Description of EUT

	Name	Model	Revision / Description	Serial Number	
EUT	MiFi 2352R	NRM-MiFi2352R	HW: Rev C1	001018000212028 001018000212036 PA MATCH MOD 28/10	
EOI	Power supply with Fair-Rite KS Part# 0461164281		Input: 100-240VAC 50/60 Hz Output: 5.0V 1.2A	N/A	
Classification	Mobile				
TX Operating Frequency Range	GSM 850 824.2-848.8 MHz PCS 1900 1850.2 -1909.8 MHz WCDMA Band II: 1852.4 -1907.6 MHz				
RX Operating Frequency Range	GSM 850 869-894 MHz PCS 1900 1930-1990 MHz WCDMA Band II: 1930-1990 MHz				
Maximum Output Power	Cell band 1.16 Watts ERP in GSM Mode PCS band 1.94 Watts EIRP in GSM Mode PCS band 0.66 Watts EIRP in WDCMA Mode				
Antenna Type/Gain	Manufacturer: See separate exhibit Peak Gain: 1.88 dBi for 850 MHz band 2.60 dBi for 1900 MHz band				

Functional description	The equipment under test (EUT) is the MIFI2352R, a quad-band (850/900/1800/1900) GSM/GPRS, tri-band (900/1900/2100) WCDMA/HSPA diversity USB WWAN modem. The diversity support is in the 900, 1900 and 2100 MHz WCDMA bands. In addition to these features this product also supports 802.11 functionality, and can be operated using battery power or from a wall adapter		
Voltage/Power source	AC Power Adaptor Input: 100-240VAC 50/60 Hz Output: 5.0 V 1.2 Amps DC Power (Battery) : 3.7 VDC Nominal, 3.55 VDC end operating point		
Voltage/ current into final amplifier stage	The PAs are calibrated at a PA supply voltage of 4.0V. and have a current range of 10-500 mA for WCDMA operation and 500 – 2200 mA for GSM operation .		
Tune up procedure	See separate exhibit		
Composite device description	The MiFi2352 also contains an 802.11 b/g device which covered in a separate report CG-1290-RA-2-1		
Emission Designators	GSM/GPRS 850 244K5GXW GSM/GPRS 1900 246K5GXW EDGE 850 245K5G7W EDGE 1900 245K5G7W WCDMA 1900 4M21F9W		
Frequency Tolerance	2.5 ppm in all modes		

2.2 MODE OF OPERATION DURING TESTS

The EUT was tested in all configurations to determine worst case results. See test appendices for specific EUT operating modes and conditions

3.0 SUPPORT EQUIPMENT

3.1 CONFIGURATION

The following equipment was used as the host system for the EUT

Peripheral / Device Description	Manufacturer	Model	Description	Serial Number
Laptop	DELL	INSPIRON E1420	NovAtel Wireless Test Bed 1	N/A
90W-AC Adapter	DELL	LA90PS0-00	NovAtel Wireless Test Bed 1	N/A

Model NRM-MIFI2352R FCC ID # NBZNRM-MIFI2352R IC ID # 3229A-MIFI2352R

APPENDICES

APPENDIX A: OCCUPIED BANDWIDTH

A.1. Base Standard & Test Basis

	FCC Part 2.1049
Base Standards	Industry Canada Cell Mode: IC RSS 132, Issue 2 PCS Mode: IC RSS 133, Issue 5
Test Basis	FCC PART 22.917, FCC PART 24.238 RSS GEN Issue 2, 4.6.1
Test Method	FCC PART 22.917, FCC PART 24.238 RSS GEN Issue 2, 4.6.1

A.2. Specifications

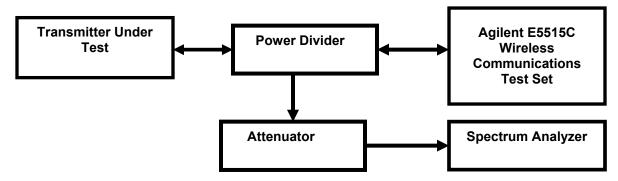
The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission

A.3. Test Method

A.3.1 FCC PART 22.917 and FCC PART 24.238

The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

A.3.2 IC:


When an occupied bandwidth value is not specified in the applicable RSS, the transmitted signal bandwidth to be reported is to be its 99% emission bandwidth, as calculated or measured. The transmitter shall be operated at its maximum carrier power measured under normal test conditions. The span of the analyzer shall be set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth shall be set to as close to 1% of the selected span as is possible without being below 1%. The video bandwidth shall be set to 3 times the resolution bandwidth. Video averaging is not permitted. Where practical, a sampling detector shall be used since a peak or, peak hold, may produce a wider bandwidth than actual. The trace data points are recovered and are directly summed in linear terms.

The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached and that frequency recorded.

The process is repeated for the highest frequency data points. This frequency is recorded.

The span between the two recorded frequencies is the occupied bandwidth.

A.4. Test Setup diagram

A.5. Operating Mode During Test

The EUT was tested while in a continuous transmit mode operating at maximum rated RF output for all bands and operating modes.

A.6. Test Results

The EUT is in compliance with the limits as specified above. The worst case bandwidths are provided below:

A.6.1 Industry Canada 99% Bandwidth Summary of Results

Cell Mode

Modulation type	Channel	Frequency (MHz)	Occupied Bandwidth
GSM/GPRS	190	836.6	243.5 kHz
EDGE	190	836.6	244.5 kHz

PCS Mode

Modulation type	Channel	Frequency (MHz)	Occupied Bandwidth
GSM/GPRS	661	1880	245.5 kHz
EDGE	661	1880	244.5 kHz
WCDMA	9400	1880	4.21 MHz

A.6.2 FCC Part 2, 22 and 24 26 dB Bandwidth Summary of Results

Cell Mode

Modulation type	Channel	Frequency (MHz)	Occupied Bandwidth
GSM/GPRS	190	836.6	278.6 kHz
EDGE	190	836.6	280.6 kHz

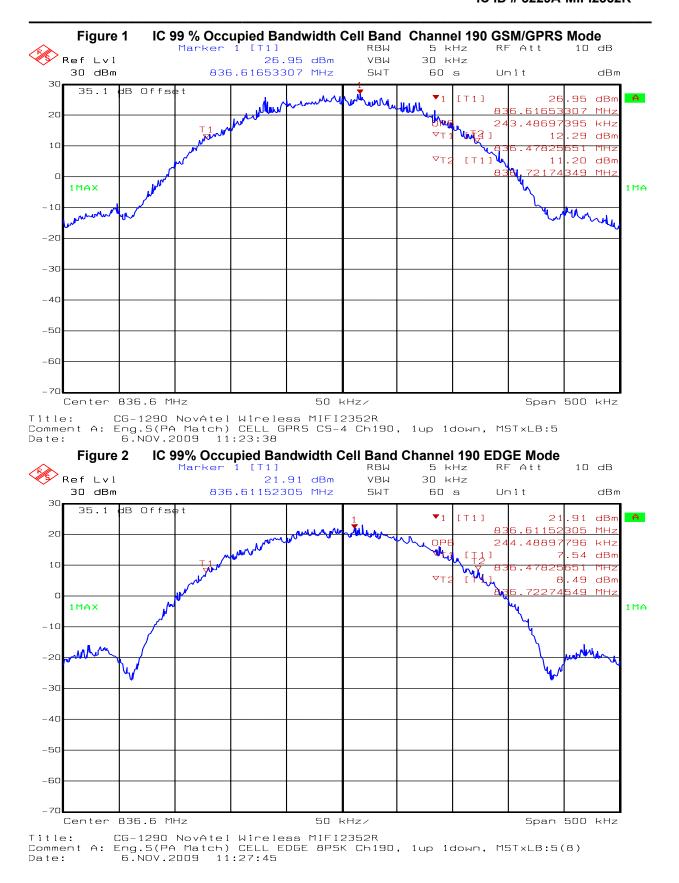
PCS Mode

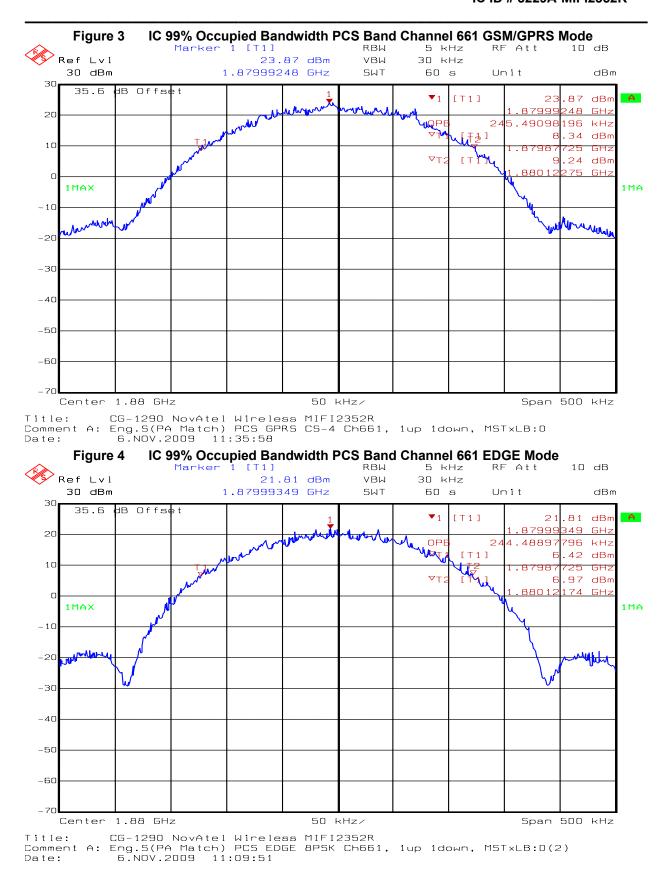
Modulation type	Channel	Frequency (MHz)	Occupied Bandwidth
GSM/GPRS	661	1880	278.6 kHz
EDGE	661	1880	282.6 kHz
WCDMA	9400	1880	4.42 MHz

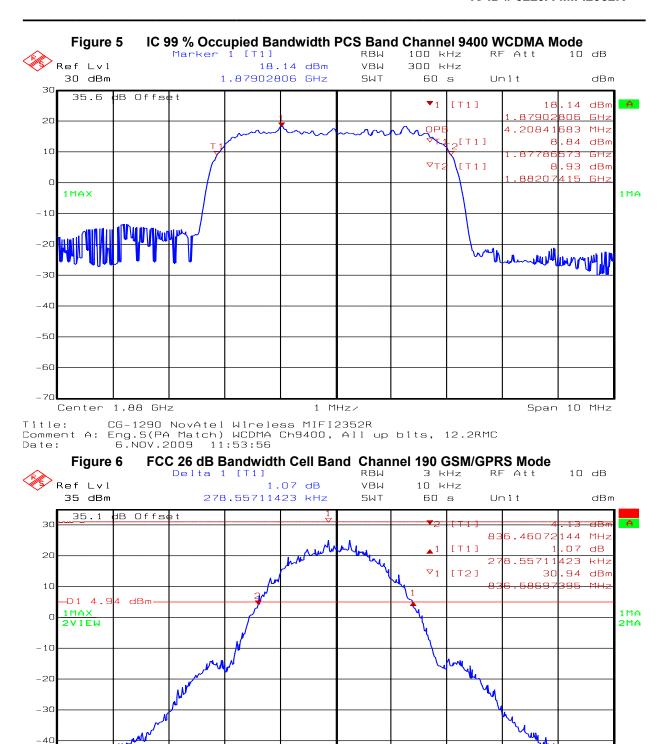
Note: Marker 1 (Trace 2) measurements in FCC 26dB Bandwidth plots show measured integrated output power with RBW set to 10 MHz and VBW set to 10 MHz (RBW >> EBW). These measurements were used as 0 dB reference point. D1 lines were set 26 dB below this reference point

A.7. Tested By

This testing was conducted in accordance with the ISO 17025:2005 scope of accreditation, table 1; Quality Manual.


Name: Deniz Demirci

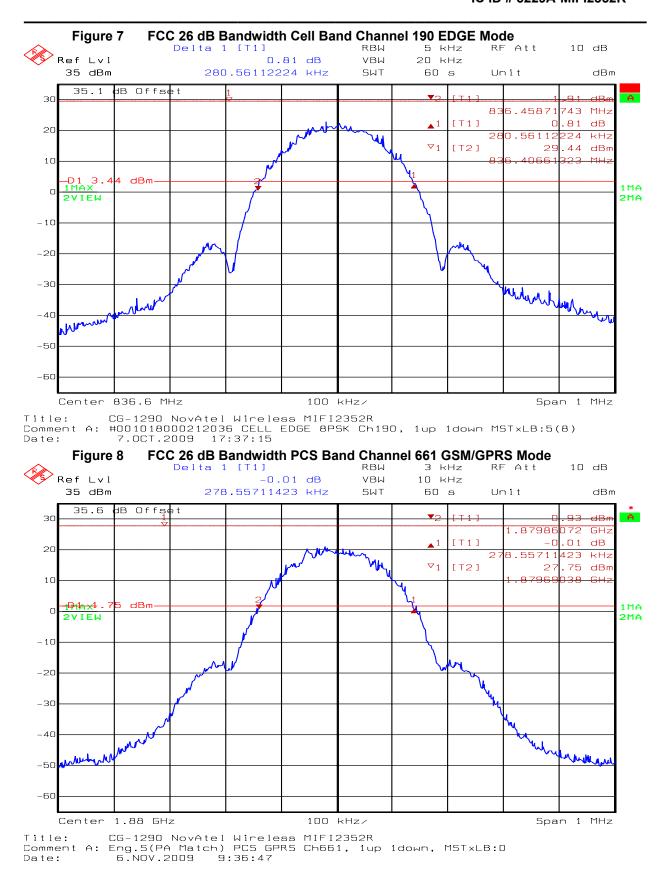

Function: Senior Wireless/EMC Technologist

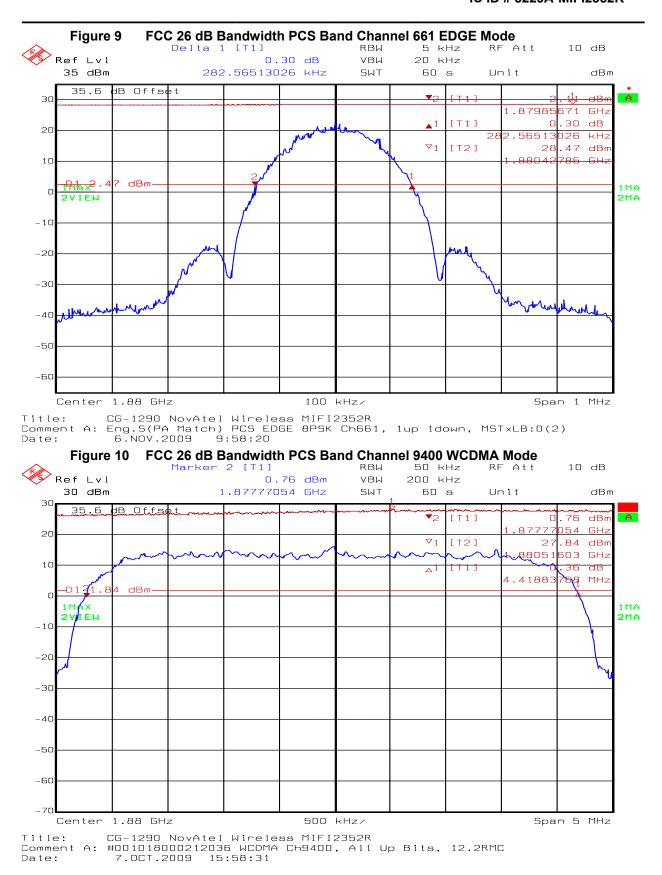

A.8. Test dates

Started: October 7, 2009 Completed: November 6, 2009

Title: CG-1290 NovAtel Wireless MIFI2352R Comment A: #001018000212036 CELL GPRS Ch190, 1up 1down MSTxLB:5 Date: 7.0CT.2009 17:29:50

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.


Span 1 MHz


NTS Product Integrity Laboratory, 5151-47th Street N.E. Tel: 403-568-6605, Fax: 403-568-6970

-60

Center 836.6 MHz

APPENDIX B: RADIATED PEAK POWER OUTPUT

B.1. Base Standard & Test Basis

Paca Standards	FCC 2.1046 Cell Mode: FCC Part 22.913 PCS Mode: FCC Part 24.232
Base Standards	Industry Canada Cell Mode: IC RSS 132, Issue 2 PCS Mode: IC RSS 133, Issue 5
Test Basis FCC 2.1046	
Test Method	TIA/EIA 603 C

B.2. Specifications

B.2.1 Cell Mode

22.913 Effective radiated power limits.

(2) Extend coverage on a secondary basis into cellular unserved areas, as those areas are defined in §22.949, the ERP of base transmitters and cellular repeaters of such systems must not exceed 1000 Watts. The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

B.2.2 PCS Mode

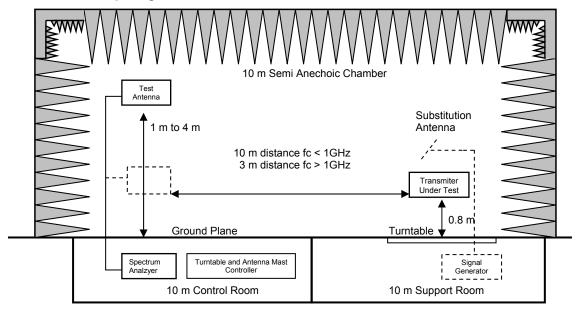
24.232 Power and antenna height limits.

(c) Mobile/portable stations are limited to 2 watts EIRP peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.

B.3. Test Method

TIA 603-C-2004 using signal substitution. The carrier signal is maximized for worst case power level and the maximum field strength is recorded. The EUT is replaced with a ½ wave dipole tuned to the frequency of interest driven by a signal source. The signal generator level is adjusted until the field strength level is equal to the field strength measured from the EUT. The signal generator level is recorded and corrected for cable losses and antenna gain to arrive at the final ERP/EIRP value. For all radiated measurements the peak power was reported using the following instrument settings:

GSM/GPRS/EDGE Measurements:


RBW: 1 MHz VBW: 1 MHz Detector: Peak

WCDMA Measurements:

RBW: 5 MHz VBW: 5 MHz Detector: Peak

B.4. Test Setup Diagram

B.5. Operating Modes During Test

The EUT was tested to determine worst case operating modes to produce maximum peak power for the different modulation types. The following modes and associated configurations produced the highest power levels

GSM 850 GPRS – 1up1down, Ms Tx level burst 5

GSM 850 EDGE – 1up 1down, Ms Tx level burst 8 (8 maximum. No change between 8 and 5)

PCS GPRS - 1up 1down, Ms Tx level burst 0

PCS EDGE - 1up 1down, Ms Tx level burst 2 (2 maximum. No change between 2 and 0)

PCS WCDMA - All up bits, HSDPA active at 12.2 kbps RMC

B.6. Test Results

Compliant

B.6.1 FCC Part 22- 850 MHz Radiated Power Measurement Test Data Summary

Compliant - The maximum ERP is 30.64 dBm or 1.16 Watts on channel 251 in GPRS Mode Results are indicated for each channel in the table below

	M850 annel #	Frequency (MHz)	Measured Field strength @ 10m (dBμV/m)	Substitution Signal generator level (dBm)	Antenna gain (dBd)	Cable loss (dB)	Measured ERP (dBm)
S	128	824.2	122.33	32.05	-0.1	1.45	30.50
GPRS	190	836.6	122.01	31.87	-0.1	1.45	30.32
G	251	848.8	122.29	32.19	-0.1	1.45	30.64
Щ	128	824.2	120.45	30.17	-0.1	1.45	28.62
EDG	190	836.6	120.51	30.37	-0.1	1.45	28.82
□	251	848.8	120.87	30.77	-0.1	1.45	29.22

B.6.2 PCS Mode – FCC 24.232 Radiated Power Measurement Test Data Summary

Compliant – The maximum EIRP is 32.86 dBm or 1.93 Watts on channel 512 in Edge Mode This is 0.14 dB below the limit. Results for each channel are indicated in the table below

_	CS nnel #	Frequency (MHz)	Measured Field strength @ 3m (dBμV/m)	Substitution Signal generator level (dBm)	Antenna gain (dBi)	Cable lass (dB)	Measured EIRP (dBm)
တ	512	1850.2	130.76	24.80	8.67	1.31	32.16
GPRS	661	1880.0	129.35	23.70	8.78	1.32	31.16
Q	810	1909.8	130.58	25.00	8.15	1.33	31.82
ш	512	1850.2	131.43	25.50	8.67	1.31	32.86
EDGE	661	1880.0	130.39	24.80	8.78	1.32	32.26
Ш	810	1909.8	131.34	25.80	8.15	1.33	32.62
₹	9262	1852.4	126.63	20.68	8.67	1.31	28.04
WCDMA	9400	1880.0	126.34	20.72	8.78	1.32	28.18
Š	9538	1907.6	125.28	20.31	8.14	1.33	27.12

Note: Eng Sample (PA MATCH MOD 28/10) was used for PCS GPRS/EDGE measurements

B.7. Tested By

This testing was conducted in accordance with the ISO 17025:2005 scope of accreditation, table 1; Quality Manual.

Name: Deniz Demirci

Function: Senior Wireless/EMC Technologist

B.8. Test dates

Started: October 8, 2009 Completed: October 30, 2009

APPENDIX C: FREQUENCY STABILITY

C.1. Base Standard & Test Basis

Base Standard Cell Mode: FCC 22.355 PCS Mode: FCC 24.235	
Test Basis	FCC Part 2.1055
Test Method	FCC Part 2.1055

C.2. Specifications

- 2.1055 Measurements required: Frequency stability;
- (a) The frequency stability shall be measured with variation of ambient temperature as follows:
- (1) From −30° to +50° centigrade for all equipment except that specified in paragraphs (a) (2) and (3) of this section.
- (d) The frequency stability shall be measured with variation of primary supply voltage as follows:
- 2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.

C.2.1 Cell Mode

22.355 Frequency Tolerance;

Except as otherwise provided in this part, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in the Table

Frequency Tolerance for Transmitters in the Public Mobile Services

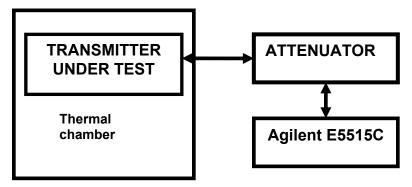
	-		
Frequency range (MHz)	Base, fixed (ppm)	Mobile >3 watts (ppm)	Mobile ≤3 watts (ppm)
25 to 50	20.0	20.0	50.0
50 to 450	5.0	5.0	50.0
450 to 512	2.5	5.0	5.0
821 to 896	1.5	2.5	2.5
928 to 929	5.0	n/a	n/a
929 to 960	1.5	n/a	n/a
2110 to 2220	10.0	n/a	n/a

C.2.2 PCS Mode

24.235 Frequency stability;

The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

C.3. Test Method


The EUT was placed in the thermal chamber and tested at 20° Celsius and increased in 10 degree increments to 50° Celsius and then down to -30° Celcius.

After a sufficient time of temperature stabilization with the EUT was attached to the callbox, the transmitter was set to transmit at full rated RF power output.

Maximum frequency drift was recorded over a 10 minute period using the appropriate technique in the case of digital modulations. Minimum 600 measurements were taken and the worst case drift for each modes were presented.

The input voltage was also varied to nominal and to the battery end operating point.

C.4. Test Setup diagram

C.5. Operating Mode During Test

For all modulation modes and bands the EUT was configured to transmit at maximum RF Power output.

C.6. Test Results

Compliant.

The maximum measured frequency drift in cell mode (Part 22 Subpart H - 2.5ppm limit) was 77 Hz. The maximum measured drift in PCS mode was -103 Hz (Part 24 subpart E), sufficient to stay within the frequency block.

Temperature (°C)	Itage dc)	GSM850 GPRS PCS GPRS 836.6 MHz 1880 MHz			PCS WCDMA 1880 MHz		
Tempe	Voltago (V dc)	Error (Hz)	Error (ppm)	Error (Hz)	Error (ppm)	Error (Hz)	Error (ppm)
21	3.75	-54	0.06	-74	0.04	-28	0.01
21	4.20	-40	0.05	-95	0.05	-41	0.02
21	3.55	77	0.09	-103	0.05	-49	0.03
-30	3.75	-53	0.06	-51	0.03	56	0.03
-20	3.75	30	0.04	-43	0.02	-55	0.03
-10	3.75	-20	0.02	24	0.01	43	0.02
0	3.75	-22	0.03	-44	0.02	50	0.03
10	3.75	25	0.03	-38	0.02	31	0.02
30	3.75	36	0.04	40	0.02	-53	0.03
40	3.75	-50	0.06	-55	0.03	-60	0.03
50	3.75	-33	0.04	-65	0.03	-52	0.03

Note: 3.44 Volts was the battery end operating point

C.7. Tested By

Name: Deniz Demirci

Function: Senior Wireless/EMC Technologist

C.8. Test date

October 20, 2009

APPENDIX D: TX CONDUCTED SPURIOUS EMISSIONS

D.1. Base Standard & Test Basis

Base Standard	Cell Mode: FCC Part 22.917 PCS Mode: FCC Part 24.238
Test Basis FCC 2.1051	
Test Method	FCC 2.1051

D.2. Specifications

Cell Mode:

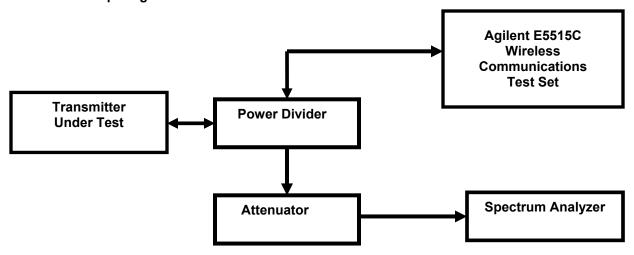
- a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.
- (b) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 100 kHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

PCS Mode:

24.238 Emission limitations for Broadband PCS equipment.

The rules in this section govern the spectral characteristics of emissions in the Broadband Personal Communications Service.

- (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.
- (b) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 MHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power


D.3. Test Method

The EUT was connected to a spectrum analyzer via a calibrated cable and attenuator assembly. Testing was done with the EUT operating in all modes at highest power level available and on low, mid and high channels with the worst case configurations being reported. All reported emissions are corrected for cable and attenuator losses.

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

D.4. Test Setup Diagram

D.5. Test Results Summary

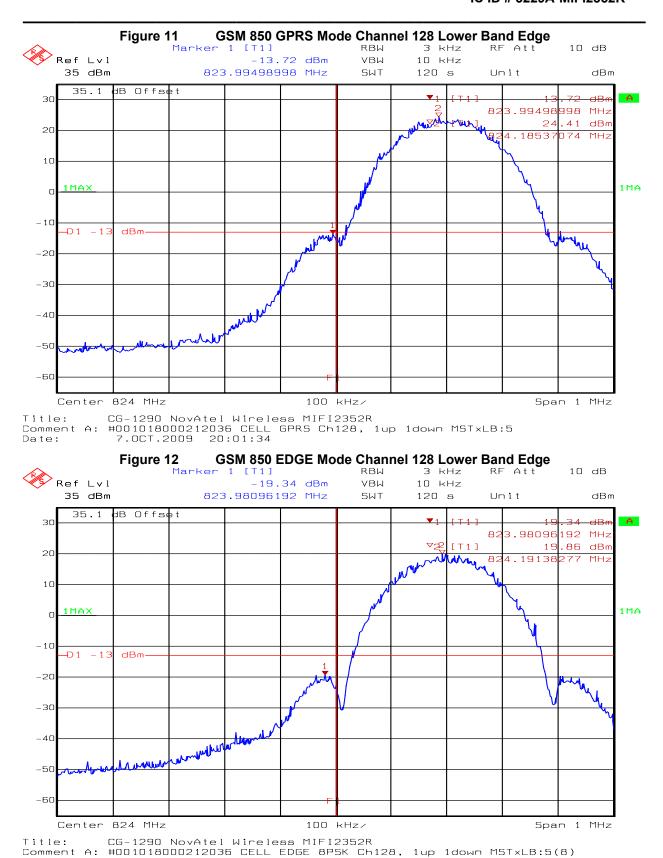
Compliant see plots on following pages and summary tables below

D.5.1 Cell Band

Channel	Mode	Note	Emission Frequency (MHz)	Level (dBm)	Limit (dBm)	Margin (dB)
128	GPRS	Lower band edge	823.99	-13.72	-13	0.72
251	GPRS	Upper band edge	849.01	-13.67	-13	0.67
128	EDGE	Lower band edge	823.98	-19.34	-13	6.34
251	EDGE	Upper band edge	849.02	-19.88	-13	6.88

Note: The above are the worst case measurements, no other reportable emissions were detected in any of the modes. Therefore for spurious emissions noise floor readings are reported along with plots of the EUT operating at highest power mode

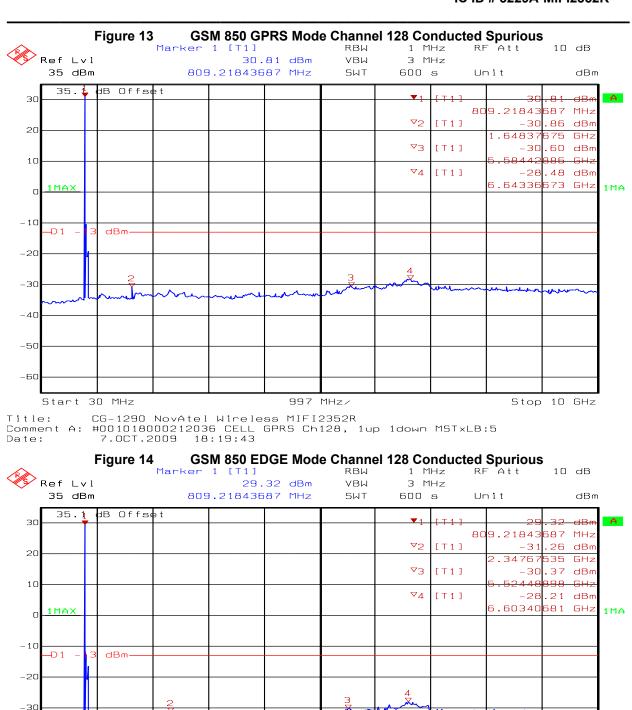
D.5.2 PCS Band


Channel	Mode	Note	Emission Frequency (MHz)	Level (dBm)	Limit (dBm)	Margin (dB)
512	GPRS	Lower band edge	1849.98	-16.37	-13	3.37
810	GPRS	Upper band edge	1910.00	-15.73	-13	2.73
512	EDGE	Lower band edge	1849.98	-20.05	-13	7.05
810	EDGE	Upper band edge	1910.03	-20.42	-13	7.42
9262	WCDMA	Lower band edge	1850.00	-19.01	-13	6.01
9538	WCDMA	Upper band edge	1910.47	-20.59	-13	7.59

Note: The above are the worst case measurements, no other reportable emissions were detected in any of the modes. Therefore for spurious emissions noise floor readings are reported along with plots of the EUT operating at highest power mode

D.6. Test Data

See following pages for plots of band edge for all modes and spurious data to the 10th harmonic.

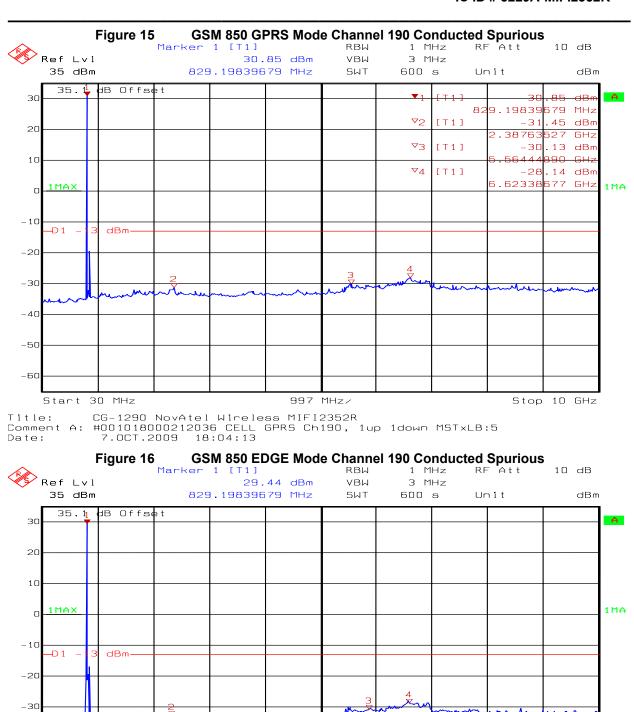

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

Date: 7.0CT.2009 19:50:31

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not

referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

Title: CG-1290 NovAtel Wireless MIFI2352R Comment A: #001018000212036 CELL EDGE 8PSK Ch128, 1up 1down MSTxLB:5(8) Date: 7.0CT.2009 19:40:54


The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

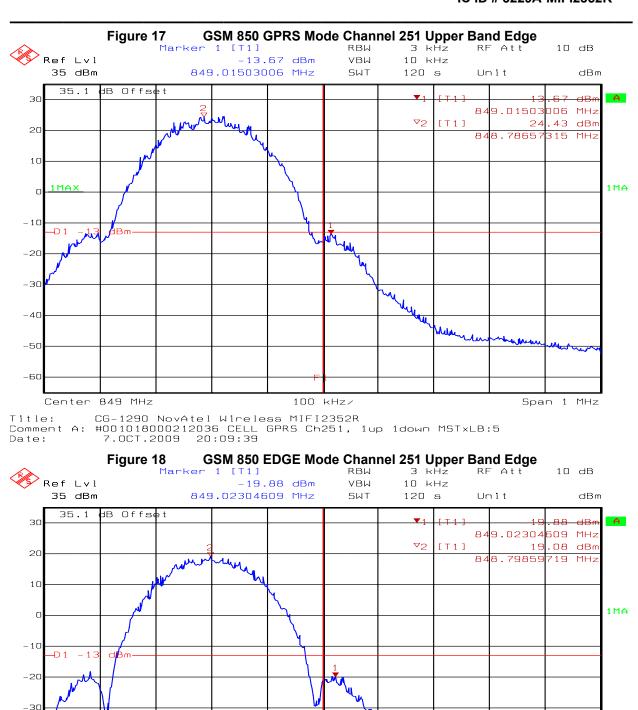
997 MHz/

-50

-60

Start 30 MHz

Title: CG-1290 NovAtel Wireless MIFI2352R Comment A: #001018000212036 CELL EDGE 8PSK Ch190, 1up 1down MSTxLB:5(8) Date: 7.0CT.2009 19:20:23


The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

997 MHz/

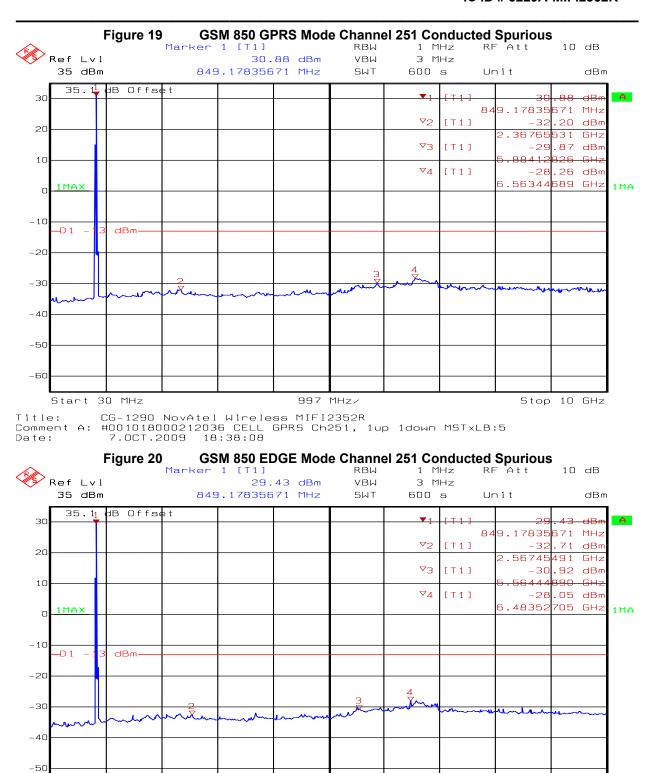
-50

-60

Start 30 MHz

Title: CG-1290 NovAtel Wireless MIFI2352R
Comment A: #001018000212036 CELL EDGE 8PSK Ch251, 1up 1down MSTxLB:5(8)
Date: 7.0CT.2009 20:14:56

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

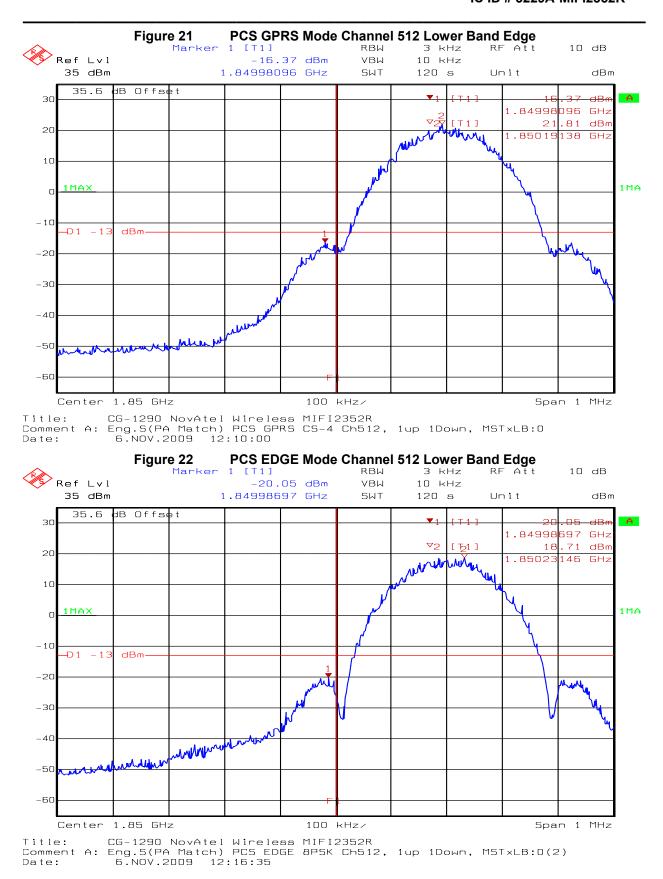

100 kHz/

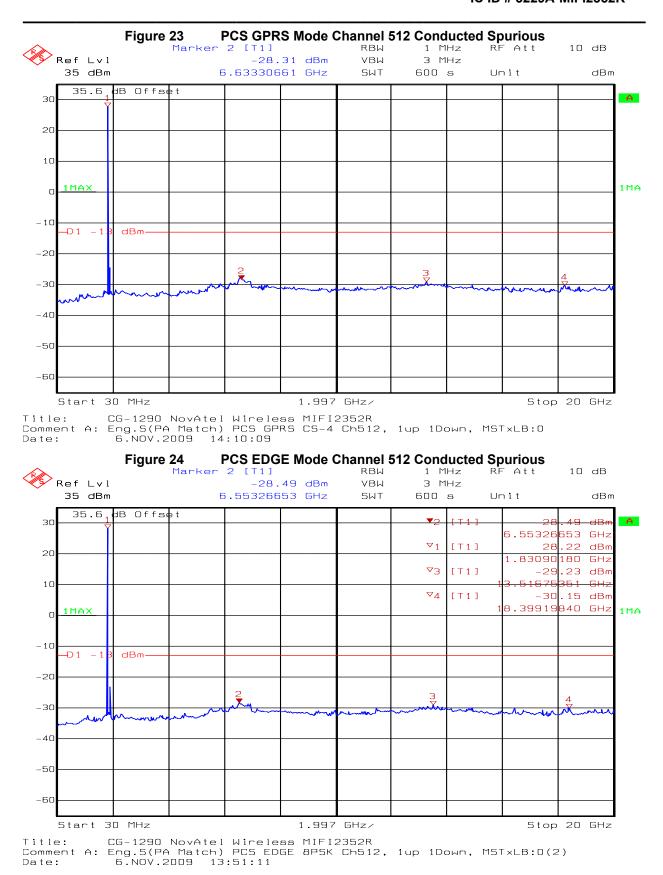
why way

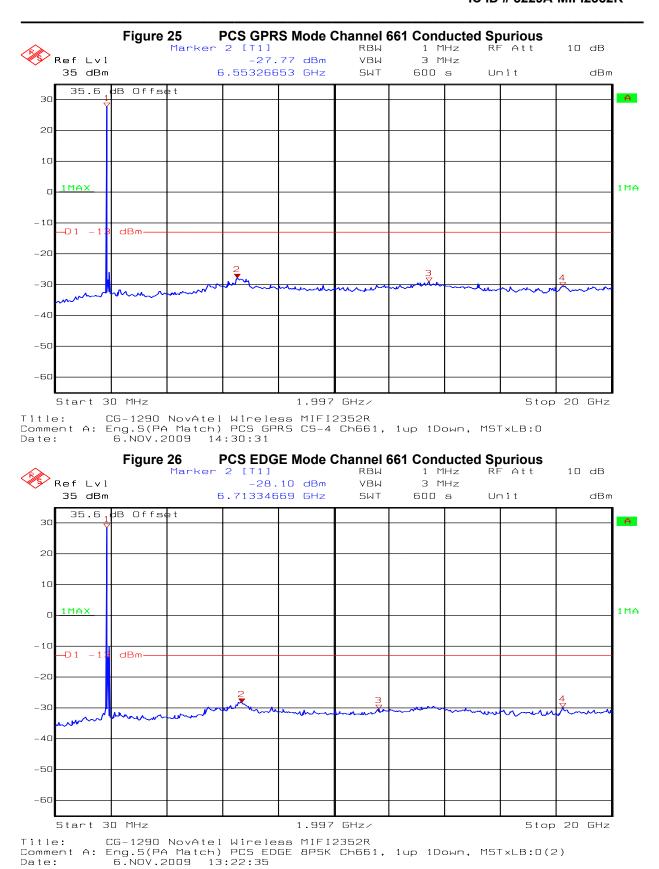
-50

-60

Center 849 MHz

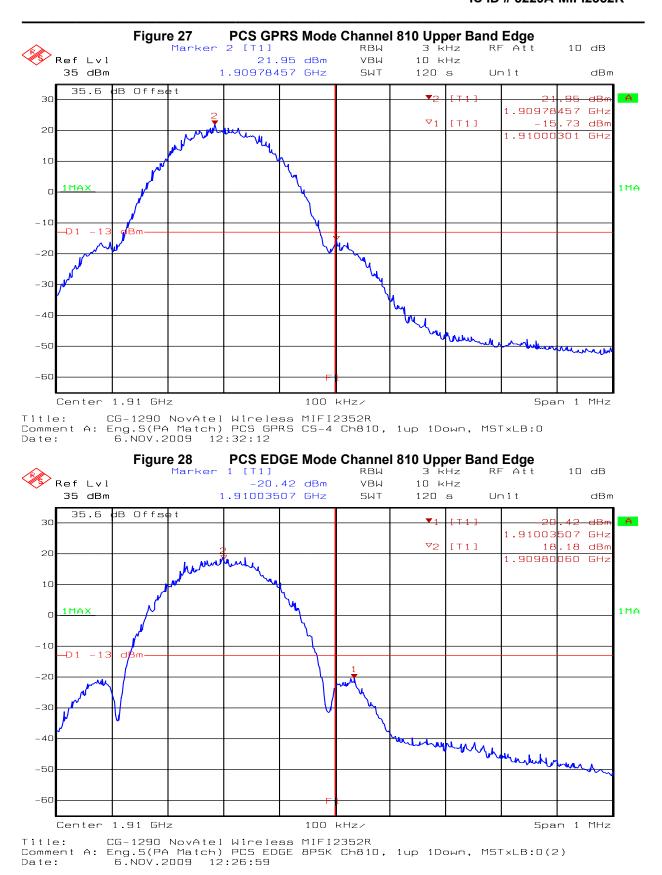

Title: CG-1290 NovAtel Wireless MIFI2352R Comment A: #001018000212036 CELL EDGE 8PSK Ch251, 1up 1down MSTxLB:5(8) Date: 7.0CT.2009 18:51:16

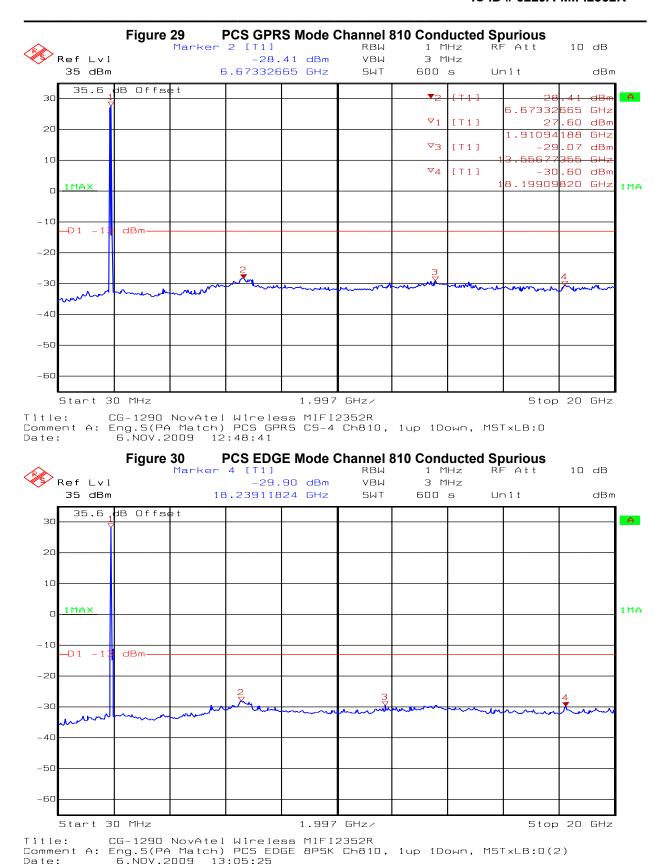

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

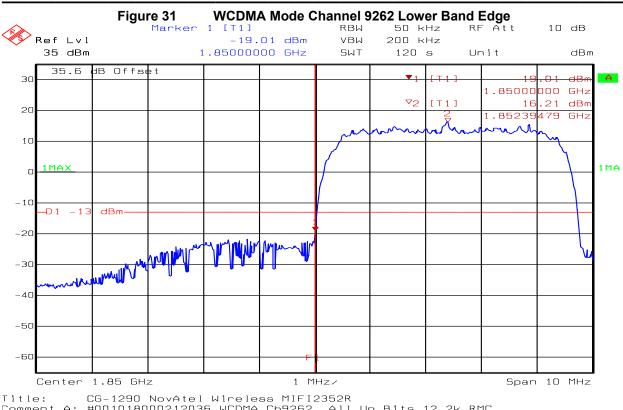

997 MHz/

-60

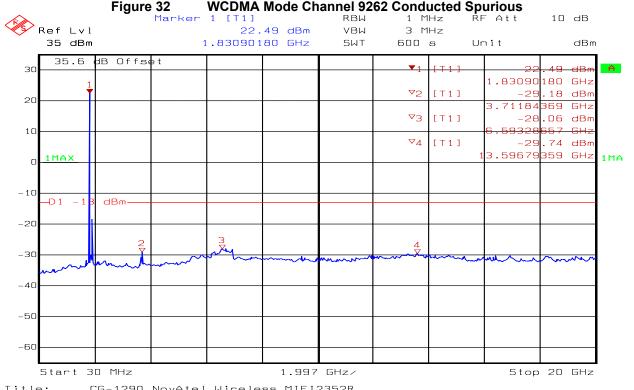
Start 30 MHz

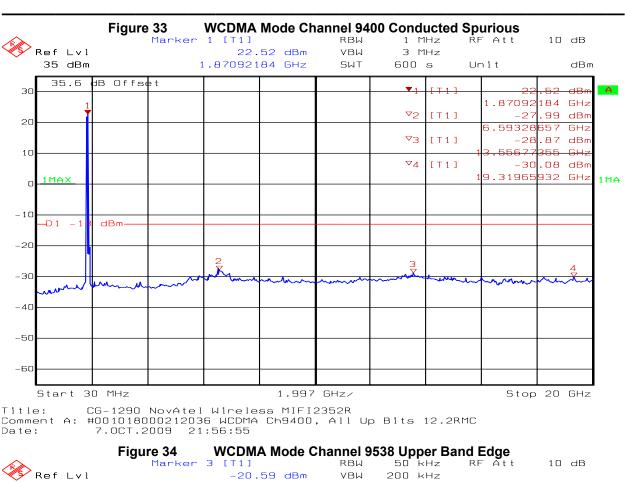





The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not

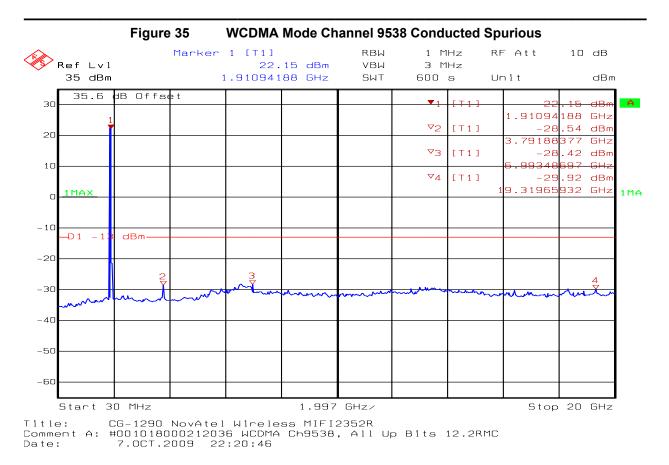
NTS Product Integrity Laboratory, 5151-47th Street N.E. Tel: 403-568-6605, Fax: 403-568-6970


referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.



Comment A: #001018000212036 WCDMA Ch9262, All Up Bits 12.2k RMC 7.0CT.2009 22:59:16

Title: CG-1290 NovAtel Wireless MIFI2352R Comment A: #001018000212036 WCDMA Ch9262, All Up Bits 12.2RMC 7.0CT.2009 22:09:25 Date:



23:08:06

7.0CT.2009

Date:

Note: Eng Sample (PA MATCH MOD 28/10) was used for PCS GPRS/EDGE measurements

D.7. Tested By

This testing was conducted in accordance with the ISO 17025:2005 scope of accreditation, table 1; Quality Manual.

Name: Deniz Demirci

Function: Senior Wireless/EMC Technologist

D.8. Test dates

Started: October 7, 2009 Completed: November 6, 2009

APPENDIX E: TX / RX RADIATED SPURIOUS EMISSIONS 30 MHZ - 20 GHZ

E.1. Base Standard & Test Basis

Base Standard	Cell Mode: FCC Part 22.917 PCS Mode: FCC Part 24.238, RSS 129/133 (RSS GEN for Receiver Spurious emissions)
Test Basis FCC 2.1053	
Test Method TIA/EIA 603-C	

E.2. Specifications

TX Spurious emissions

Cell Mode:

FCC 22.917 Emission limitations for cellular equipment

The rules in this section govern the spectral characteristics of emissions in the Cellular Radiotelephone Service

- (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.
- (b) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 100 kHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

PCS Mode:

FCC 24.238 Emission limitations for Broadband PCS equipment.

The rules in this section govern the spectral characteristics of emissions in the Broadband Personal Communications Service.

- (a) Out of band emissions. The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.
- (b) Measurement procedure. Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 MHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power

FCC 2.1053 Measurements required: Field strength of spurious radiation.

(a) Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of §2.1049, as appropriate. For equipment operating on frequencies below 890 MHz, an open field test is normally required, with the measuring instrument antenna located in the far-field at all test frequencies. In the event it is either impractical or impossible to make open field measurements (e.g. a broadcast transmitter installed in a building) measurements will be accepted of the equipment as installed. Such measurements must be accompanied by a description of the site where the measurements were made showing the location of any possible source of reflections which might distort the field strength measurements. Information submitted shall include the relative radiated power of each spurious emission with reference to the rated power output of the transmitter, assuming all emissions are radiated from half-wave dipole antennas.

RSS 129 / RSS 133 Test Method (Transmitter Spurious Emissions)

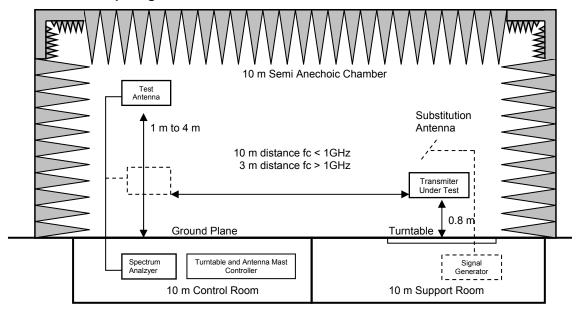
TIA 603-C-2004 using signal substitution. The carrier signal is maximized for worst case power level and the maximum field strength is recorded. The EUT is replaced with a ½ wave dipole tuned to the frequency of interest driven by a signal source. The signal generator level is adjusted until the field strength level is equal to the field strength measured from the EUT. The signal generator level is recorded and corrected for cable losses and antenna gain to arrive at the final ERP/EIRP value. For all radiated measurements the peak power was reported using the following instrument settings:

SA Settings:

RBW: 1 MHz VBW: 3 MHz Detector: Peak

RSS Gen Receiver Spurious Emissions Test Method:

TIA/EIA 603-C-2004 (2.1.1) Radiated spurious emissions RSS Gen; The following receiver spurious emission limits shall be complied with: If a radiated measurement is made, all spurious emissions shall comply with the limits of Table 1.


Table 1 - Spurious Emission Limits for Receivers

Spurious Frequency	Field Strength
(MHz)	(microvolt/m at 3 metres)
30-88	100
88-216	150
216-960	200
Above 960	500

If a conducted measurement is made, no spurious output signals appearing at the antenna terminals shall exceed 2 nanowatts per any 4 kHz spurious frequency in the band 30-1000 MHz, or 5 nanowatts above 1 GHz.

E.3. Test Setup Diagram

E.4. Operating Mode During Test

The EUT was tested to determine worst case operating modes to produce maximum peak spurious emissions for the different modulation types. The following modes and associated configurations produced the highest power levels and spurious levels. The worst case results are reported in tables

GSM 850 EDGE – 1up 1down, Ms Tx level burst 8 (8 maximum. No change between 8 and 5)

PCS GPRS - 1up 1down, Ms Tx level burst 0

GSM 850 GPRS – 1up 1down, Ms Tx level burst 5

PCS EDGE - 1up 1down, Ms Tx level burst 2 (2 maximum. No change between 2 and 0)

PCS WCDMA - All up bits, HSDPA active at 12.2 kbps RMC

And All above modes with WLAN active (Co located with 802.11g 2440MHz 100% Duty cycle)

For Receiver spurious emissions the EUT was operated in all receive modes

E.5. Test Results

No Transmitter spurious emissions were detected within 20 dB of the limit in any operating mode or band. For Receiver spurious emissions the EUT was scanned and no emissions were detected. Detected emissions in transmit mode are reported below.

E.5.1 850 MHz CELL GPRS Mode

Channel	Frequency (MHz)	Polarization	Measured level (dBμV/m)	Substitution Signal Generator level (dBm)	Substitution Antenna gain (dBd)	Cable loss (dB)	ERP Level (dBm)	Limit (dBm)	Margin (dB)
	1649.30	Η	51.55	-54.00	6.26	1.23	-48.97	-13	35.97
128	2474.95	Ι	49.11	-57.40	7.27	1.54	-51.67	-13	38.67
	6599.19	Τ	48.32	-56.00	9.49	2.72	-49.23	-13	36.23
	1673.35	V	42.00	-63.60	6.30	1.24	-58.54	-13	45.54
190	1673.35	Ι	43.58	-62.00	6.30	1.24	-56.94	-13	43.94
	2511.02	Ι	49.48	-57.00	7.30	1.57	-51.27	-13	38.27
251	2547.09	Ι	46.45	-60.00	7.33	1.58	-54.25	-13	41.25
231	2547.10	V	41.61	-64.80	7.33	1.58	-59.05	-13	46.05

E.5.2 850 MHz CELL EDGE Mode

Channel	Frequency (MHz)	Polarization	Measured level (dBμV/m)	Substitution Signal Generator level (dBm)	*Substitution Antenna gain (dBd)	Cable loss (dB)	ERP Level (dBm)	Limit (dBm)	Margin (dB)
	1649.30	Ι	50.52	-55.00	6.26	1.23	-49.97	-13	36.97
128	2474.95	Ι	45.20	-61.30	7.27	1.54	-55.57	-13	42.57
	1649.30	٧	40.80	-64.80	6.26	1.23	-59.77	-13	46.77
190	1673.34	Τ	41.71	-63.90	6.26	1.23	-58.87	-13	45.87
190	2511.00	Ι	42.88	-63.60	7.30	1.57	-57.87	-13	44.87
251	2547.10	Ι	45.22	-61.20	7.33	1.58	-55.45	-13	42.45
231	2547.10	٧	40.00	-66.40	7.33	1.58	-60.65	-13	47.65

^{*} Substitution Antenna gain (dBd) = Substitution Antenna gain (dBi) – Dipole Antenna gain (dBi)

E.5.3 PCS Band - GPRS Mode

Channel	Frequency (MHz)	Polarization	Measured level (dBµV/m)	Substitution Signal Generator level (dBm)	Substitution Antenna gain (dBd)	Cable loss (dB)	ERP Level (dBm)	Limit (dBm)	Margin (dB)
	3697.40	Н	51.01	-52.70	7.77	2.00	-46.93	-13	33.93
	3697.40	V	48.72	-56.00	7.77	2.00	-50.23	-13	37.23
512	5555.11	Н	51.22	-53.70	9.12	2.50	-47.08	-13	34.08
	5555.11	V	49.46	-54.80	9.12	2.50	-48.18	-13	35.18
	12957.91	V	55.31	-50.00	10.77	3.88	-43.11	-13	30.11
	3757.52	Н	53.63	-50.00	7.77	2.02	-44.25	-13	31.25
661	3757.51	V	49.79	-54.80	7.77	2.02	-49.05	-13	36.05
001	9390.78	V	53.79	-50.40	9.57	3.21	-44.04	-13	31.04
	13158.31	V	57.74	-46.50	10.52	3.91	-39.89	-13	26.89
	3817.63	Н	52.82	-50.50	7.76	2.06	-44.80	-13	31.80
	3817.64	V	51.44	-53.00	7.76	2.06	-47.30	-13	34.30
810	9541.08	V	53.85	-50.00	9.69	3.25	-43.56	-13	30.56
	11454.90	V	54.61	-51.10	10.58	2.70	-43.22	-13	30.22
	13368.73	V	56.75	-47.00	10.17	3.95	-40.78	-13	27.78

E.5.4 PCS Band - EDGE Mode

Channel	Frequency (MHz)	Polarization	Measured level (dBµV/m)	Substitution Signal Generator level (dBm)	Substitution Antenna gain (dBd)	Cable loss (dB)	ERP Level (dBm)	Limit (dBm)	Margin (dB)
	3697.39	Н	51.36	-52.30	7.77	2.00	-46.53	-13	33.53
	3697.39	V	49.35	-55.40	7.77	2.00	-49.63	-13	36.63
512	5555.11	Η	50.33	-54.60	9.12	2.50	-47.98	-13	34.98
	5555.11	>	48.23	-56.00	9.12	2.50	-49.38	-13	36.38
	12957.91	>	55.20	-50.10	10.77	3.88	-43.21	-13	30.21
	3757.52	Н	53.98	-49.60	7.77	2.02	-43.85	-13	30.85
661	3757.51	V	50.09	-54.50	7.77	2.02	-48.75	-13	35.75
001	9400.00	>	53.00	-51.20	9.57	3.21	-44.84	-13	31.84
	13168.33	V	56.82	-47.40	10.50	3.91	-40.81	-13	27.81
	3817.63	Н	52.95	-50.40	7.76	2.06	-44.70	-13	31.70
	3817.64	V	51.64	-52.80	7.76	2.06	-47.10	-13	34.10
810	9541.08	V	53.06	-50.80	9.69	3.25	-44.36	-13	31.36
	11454.90	V	54.80	-50.90	10.58	2.70	-43.02	-13	30.02
	13368.73	V	56.91	-46.80	10.17	3.95	-40.58	-13	27.58

Note: Eng Sample (PA MATCH MOD 28/10) was used for PCS GPRS/EDGE measurements

E.5.5 PCS Band WCDMA Mode

Channel	Frequency (MHz)	Polarization	Measured level (dΒμV/m)	Substitution Signal Generator level (dBm)	Substitution Antenna gain (dBd)	Cable loss (dB)	ERP Level (dBm)	Limit (dBm)	Margin (dB)
9262	3706.74	Н	64.82	-39.45	7.77	2.00	-33.68	-13	20.68
9202	3706.66	V	55.40	-48.80	7.77	2.00	-43.03	-13	30.03
9400	3757.90	Η	57.65	-47.00	7.77	2.02	-41.25	-13	28.25
9400	3757.74	V	49.66	-55.00	7.77	2.02	-49.25	-13	36.25
9538	3817.14	Н	61.49	-43.00	7.77	2.04	-37.27	-13	24.27
9556	3817.18	V	50.75	-53.80	7.77	2.04	-48.07	-13	35.07

E.5.6. Co-located with 802.11g, Ch6, 100% Duty cycle, 54mbps, Power setting: 13

				, , , , , , , , , , , , , , , , , , ,			, <u> </u>				
Modes and Channels	Frequency (MHz)	Polarization	Measured level (dΒμV/m)	Substitution Signal Generator Ievel (dBm)	Sub. Ant. gain (dBd)	Cable loss (dB)	ERP Level (dBm)	Limit (dBm)	Margin (dB)		
PCS											
GPRS	583.56	Н	53.04	-39.90	0.0	0.79	-40.69	-13	27.69		
Ch512											
PCS											
GPRS	553.50	Н	55.81	-37.30	0.1	0.76	-37.96	-13	24.96		
Ch661											
PCS											
GPRS	519.83	Н	57.41	-36.30	0.1	0.77	-36.97	-13	23.97		
Ch810											
PCS											
EDGE	581.16	Н	52.64	-40.80	0.0	0.79	-41.59	-13	28.59		
Ch512											
PCS											
EDGE	551.40	Н	55.73	-37.30	0.1	0.78	-37.98	-13	24.98		
Ch661											
PCS											
EDGE	519.63	Н	57.78	-36.00	0.1	0.76	-36.66	-13	23.66		
Ch810											

Note: There were no Co-located spurious emission observed in Cell GPRS / EDGE modes and PCS WCDMA modes.

E.6. Tested By

This testing was conducted in accordance with the ISO 17025:2005 scope of accreditation, table 1; Quality Manual.

Name: Deniz Demirci

Function: Senior Wireless/EMC Technologist

E.7. Test dates

Started: October 8, 2009 Completed: November 10, 2009

APPENDIX F: TEST EQUIPMENT LIST

Manufacturer	Type/Mod	el	Asset #	Cal Due	Cal Date
Bilog Antenna	Teseq	CBL 6112B	CG0314	21SEP10	29OCT08
Horn Antenna (Rx) 1 GHz – 18 GHz	EMCO	3115	CG0103	06MAR11	30SEP08
Standard Gain Horn (Rx) 18 GHz – 26.5 GHz	EMCO	3160-09	CG0075	N/A (1)	27NOV01
Dipole Antenna Set (Substitution)	EMCO	3121	CG0104	02FEB11	02FEB09
Horn Antenna (Substitution)	EMCO	3115	CG0368	08SEP11	08SEP09
Standard Gain Horn (Substitution)	EMCO	3160-09	CG0076	N/A (1)	27NOV01
LNA 1 GHz < f < 18 GHz	Miteq	JSD00121	CG0317	01DEC10	01DEC08
LNA 18GHz < f < 26.5GHz	Miteq	JSD00119	CG0482	02OCT11	02OCT09
High pass filter f > 1000 MHz	MicroTronics	HPM14576	CG0963	01DEC10	01DEC08
High pass filter f > 2800 MHz	MicroTronics	HPM50111	CG0964	N/A	N/A
Spectrum Analyzer 9 kHz – 40 GHz	Rohde & Schwarz	FSEK-20	CG0118	06AUG10	06AUG09
Test Receiver	Rohde & Schwarz	ESAI	CG0123 CG0124	26FEB10	26FEB09
Signal Generator	R & S	SMP-04	CG0435	22DEC09	22DEC08
Wireless Communication Test Set	Agilent	8960 E5515C	CG-R- 1286	02OCT11	24SEP09
Environmental Simulation Chamber	Thermotron	SM-8C	CG0001	N/A	N/A
Data Logger	Fluke	Fluke	CG0203	10FEB10	10OCT08
Voltmeter	Fluke	87	CG0383	17FEB10	17FEB09
DC Power Source	HP	6675A	CG1362	N/A	N/A
HPIB Extender	HP	37204	CG0181	N/A	N/A
Mast Controller	EMCO	2090	CG0179	N/A	N/A
Turntable Controller	EMCO	2090	CG0178	N/A	N/A

^{(1):} As per manufacturer recommend, this item does not require periodic calibration. Its electromagnetic performance is almost exclusively depended on the physical dimension of the horn. A thorough mechanical check is all that is needed to guarantee the antenna performance.

The test results contained in this report refer exclusively to the product(s) presented for testing. The test results do not cover models or products not referred herein. This test report should not be published or duplicated in whole or part without permission from the testing body and the customer.

END OF DOCUMENT