

802 N. Twin Oaks Valley Road, Suite 105 • San Marcos, CA 92069 • U.S.A. TEL (760) 471-2100 • FAX (760) 471-2121 http://www.rfexposurelab.com

CERTIFICATE OF COMPLIANCE SAR EVALUATION

Novatel Wireless 6715 8th Street N.E.

Calgary, Alberta, Canada T2E 7H7

Dates of Test: September 21 - 24, 2010

Test Report Number: SAR.20100905

FCC ID: NBZNRM-MC547 IC Certificate: 3229A- MC547

Model(s): MC547

Test Sample: **Engineering Unit Same as Production**

Serial No.: Unit 27

Equipment Type: Wireless Modem

Classification: Portable Transmitter Next to Body

TX Frequency Range: 824.2 - 848.8 MHz, 1850.2 - 1909.8 MHz

Frequency Tolerance: ± 25 ppm

Maximum RF Output: 850 MHz (GPRS) - 32.85 dBm, 850 MHz (WCDMA) - 22.46 dBm,

1900 MHz (GPRS) - 29.92 dBm, 1900 MHz (GPRS) - 22.29 dBm

Conducted

Signal Modulation: GMSK, 8PSK, WCDMA

Antenna Type (Length): Internal Certification Application Type: FCC Rule Parts: Part 22, 24 Industry Canada: RSS-102

This wireless mobile and/or portable device has been shown to be compliant for localized specific absorption rate (SAR) for uncontrolled environment/general exposure limits specified in ANSI/IEEE Std. C95.1-1999 and had been tested in accordance with the measurement procedures specified in IEEE 1528-2003, OET Bulletin 65 Supp. C, RSS-102 and Safety Code 6 (See test report).

I attest to the accuracy of the data. All measurements were performed by myself or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

RF Exposure Lab, LLC certifies that no party to this application has been denied FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 853(a).

Jay M. Moulton Vice President

Table of Contents

1. Introduction	
SAR Definition [5]	3
2. SAR Measurement Setup	4
Robotic System	
System Hardware	
System Description	
E-Field Probe	
3. Robot Specifications	
Probe and Dipole Calibration	
Phantom & Simulating Tissue Specifications	
SAM Phantom	
Brain & Muscle Simulating Mixture Characterization	
Device Holder	
	9
Ear Reference Point	
Device Reference Points	
7. Test Configuration Positions	
Positioning for Cheek/Touch [5]	
Positioning for Ear / 15° Tilt [5]	
Body Worn Configurations	
8. ANSI/IEEE C95.1 – 1999 RF Exposure Limits [2]	
Uncontrolled Environment	
Controlled Environment	
9. Measurement Uncertainty	
10. System Validation	
Tissue Verification	
Test System Verification	
11. SAR Test Data Summary	
Procedures Used To Establish Test Signal	
Device Test Condition	
12. FCC Measurement Procedures – March 2008	18
12.1 Procedures Used to Establish RF Signal for SAR	
12.2 SAR Measurement Conditions for WCDMA/HSDPA/HSUPA	
12.2 SAR Measurement Conditions for GSM	
12.2 SAR Device Functionality	
SAR Data Summary – 850 MHz Body – GPRS	20
SAR Data Summary – 850 MHz Body – WCDMA	
SAR Data Summary – 1900 MHz Body – GPRS	
SAR Data Summary – 1900 MHz Body – WCDMA	
13. Test Equipment List	
14. Conclusion	
15. References	
Appendix A – System Validation Plots and Data	
Appendix B – System Validation Flots and Data	
Appendix C – SAR Test Setup Photos	
Appendix D – Probe Calibration Data Sheets	
Appendix E – Dipole Calibration Data Sheets	
Appendix F – Dipole Calibration Data Sheets	
ADDETICIA I - FIIGITIUTI GAIDIALIUT DALA STIECES	100

1. Introduction

This measurement report shows compliance of the Novatel Wireless Model MC547 FCC ID: NBZNRM-MC547 with FCC Part 2, 1093, ET Docket 93-62 Rules for mobile and portable devices and IC Certificate: 3229A-MC547 with RSS102 & Safety Code 6. The FCC have adopted the guidelines for evaluating the environmental effects of radio frequency radiation in ET Docket 93-62 on August 6, 1996 to protect the public and workers from the potential hazards of RF emissions due to FCC regulated portable devices. [1], [6]

The test procedures, as described in ANSI C95.1 – 1999 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [2], ANSI C95.3 – 2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields [3], FCC OET Bulletin 65 Supp. C – 2001 [4], IEEE Std.1528 – 2003 Recommended Practice [5], and Industry Canada Safety Code 6 Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz were employed.

For USB dongle transmitters, the device is required to be tested on all four sides of the modem. Two of the orientations (1 horizontal side and 1 vertical side) must be conducted installed in a laptop. The remaining two sides may be conducted at the end of 12" high quality USB extender cable.

SAR Definition [5]

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ).

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dV} \right)$$

SAR is expressed in units of watts per kilogram (W/kg). SAR can be related to the electric field at a point by

$$SAR = \frac{\sigma \mid E \mid^2}{\rho}$$

where:

 σ = conductivity of the tissue (S/m)

 ρ = mass density of the tissue (kg/m³)

E = rms electric field strength (V/m)

2. SAR Measurement Setup

Robotic System

The measurements are conducted utilizing the ALSAS-10-U automated dosimetric assessment system. The ALSAS-10-U is designed and manufactured by Aprel Laboratories in Nepean, Ontario, Canada. The system utilizes a Robcomm 3 robot manufactured by ThermoCRS located in Michigan USA.

System Hardware

The system consists of a six axis articulated arm, controller for precise probe positioning (0.05 mm repeatability), a power supply, a teach pendent for teaching area scans, near field probe, an IBM Pentium 4^{TM} 2.66 GHz PC with Windows XP Pro^{TM} , and custom software developed to enable communications between the robot controller software and the host operating system.

An amplifier is located on the articulated arm, which is isolated from the custom designed end effector and robot arm. The end effector provides the mechanical touch detection functionality and probe connection interface. The amplifier is functionally validated within the manufacturer's site and calibrated at NCL Calibration Laboratories. A Data Acquisition Card (DAC) is used to collect the signal as detected by the isotropic e-field probe. The DAC manufacturer calibrates the DAC to NIST standards. A formal validation is executed using all mechanical and electronic components to prove conformity of the measurement platform as a whole.

System Description

The ALSAS-10-U has been designed to measure devices within the compliance environment to meet all recognized standards. The system also conforms to standards, which are currently being developed by the scientific and manufacturing community.

The course scan resolution is defined by the operator and reflects the requirements of the standard to which the device is being tested. Precise measurements are made within the predefined course scan area and the values are logged.

The user predefines the sample rate for which the measurements are made so as to ensure that the full duty-cycle of a pulse modulation device is covered during the sample. The following algorithm is an example of the function used by the system for linearization of the output for the probe.

$$V_i = U_i + U_i^2 \bullet \frac{cf}{dcp_i}$$

The Aprel E-Field probe is evaluated to establish the diode compression point.

A complex algorithm is then used to calculate the values within the measured points down to a resolution of 1mm. The data from this process is then used to provide the co-ordinates from which the cube scan is created for the determination of the 1 g and 10 g averages.

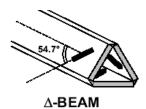
Cube scan averaging consists of a number of complex algorithms, which are used to calculate the one, and ten gram averages. The basis for the cube scan process is centered on the location where the maximum measured SAR value was found. When a secondary peak value is found which is within 60% of the initial peak value, the system will report this back to the operator who can then assess the need for further analysis of both the peak values prior to the one and ten-gram cube scan averaging process. The algorithm consists of 3D cubic Spline, and Lagrange extrapolation to the surface, which form the matrix for calculating the measurement output for the one and ten gram average values. The resolution for the physical scan integral is user defined with a final calculated resolution down to 1mm.

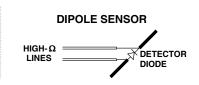
In-depth analysis for the differential of the physical scanning resolution for the cube scan analysis has been carried out, to identify the optimum setting for the probe positioning steps, and this has been determined at 8mm increments on the X, & Y planes. The reduction of the physical step increment increased the time taken for analysis but did not provide a better uncertainty or return on measured values.

The final output from the system provides data for the area scan measurements, physical and splined (1mm resolution) cube scan with physical and calculated values (1mm resolution).

The overall uncertainty for the methodology and algorithms the ALSAS-10-U used during the SAR calculation was evaluated using the data from IEEE 1528 f3 algorithm:

$$f_3(x,y,z) = A \frac{a^2}{\frac{a^2}{4} + x'^2 + y'^2} \left(e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2} \right)$$


The probe used during the measurement process has been assessed to provide values for diode compression. These values are calculated during the probe calibration exercise and are used in the mathematical calculations for the assessment of SAR.


E-Field Probe

The E-field probe used by RF Exposure Lab, LLC, has been fully calibrated and assessed for isotropic, and boundary effect. The probe utilizes a triangular sensor arrangement as detailed in the diagram below right.

The SAR is assessed with the probe which moves at a default height of 5mm from the center of the diode, which is mounted to the sensor, to the phantom surface (Z height). The diagram above right shows how the center of the sensor is defined with the location of the diode placed at the center of the dipole. The 5mm default in the Z axis is the optimum height for assessing SAR where the boundary effect is at its least, with the probe located closest to the phantom surface (boundary).

The manufacturer specified precision of the robot is \pm 0.05 mm and the precision of the APREL bottom detection device is \pm 0.1 mm. These precisions are calibrated and tested in the manufacturing process of the bottom detection device. A constant distance is maintained because the surface of the phantom is dynamically detected for each point. The surface detection algorithm corrects the position of the robot so that the probe rests on the surface of the phantom. The probe is then moved to the measurement location 2.44 mm above the phantom surface resulting in the probe center location to be at 4.0 mm above the phantom surface. Therefore, the probe sensor will be at 4.0 mm above the phantom surface \pm 0.1 mm for each SAR location for frequencies below 3 GHz. The probe is moved to the measurement location 1.44 mm above the phantom surface resulting in the probe center location to be at 2.0 mm above the phantom surface. Therefore, the probe sensor will be at 2.0 mm above the phantom surface \pm 0.1 mm for each SAR location for frequencies above 3 GHz.

The probe boundary effect compensation cannot be disabled in the ALSAS-10U testing system. The probe tip will always be at least half a probe tip diameter from the phantom surface. For frequencies up to 3 GHz, the probe diameter is 5 mm. With the sensor offset set at 1.54 mm (default setting), the sensor to phantom gap will be 4.0 mm which is greater than half the probe tip diameter. For frequencies greater than 3 GHz, the probe diameter is 3 mm. With the sensor offset set at 0.56 mm (default setting), the sensor to phantom gap will be 3.0 mm which is greater than half the probe tip diameter.

The separation of the first 2 measurement points in the zoom scan is specified in the test setup software. For frequencies below 3 GHz, the user must specify a zoom scan resolution of less than 6 mm in the z-axis to have the first two measurements within 1 cm of the surface. The z-axis is set to 4 mm as shown on each of the data sheets in Appendix B. For frequencies above 3 GHz, the user must specify a zoom scan resolution of less than 3 mm in the z-axis to have the first two measurements within 5 mm of the surface. The z-axis is set to 2 mm as shown on each of the data sheets in Appendix B.

The zoom scan volume for devices ≤ 3 GHz with a cube scan of 5x5x8 yields a volume of 32x32x28 mm³. For devices ≥ 3 GHz and ≤ 4.5 GHz, the cube scan of 9x9x9 yields a volume of 32x32x24 mm³. For devices ≥ 4.5 GHz, the cube scan of 7x7x12 yields a volume of 24x24x22 mm³.

3. Robot Specifications

Specifications

Positioner: ThermoCRS, Robot Model: Robocomm 3

Repeatability: 0.05 mm

No. of axis: 6

Data Acquisition Card (DAC) System

Cell Controller

Processor: Pentium 4[™] Clock Speed: 2.66 GHz

Operating System: Windows XP Pro™

Data Converter

Features: Signal Amplifier, End Effector, DAC

Software: ALSAS 10-U Software

E-Field Probe

Model: Various See Probe Calibration Sheet
Serial Number: Various See Probe Calibration Sheet
Construction: Triangular Core Touch Detection System

Frequency: 10MHz to 6GHz

Phantom

Phantom: Uniphantom, Right Phantom, Left Phantom

4. Probe and Dipole Calibration

See Appendix D and E.

5. Phantom & Simulating Tissue Specifications

SAM Phantom

The Aprel system utilizes three separate phantoms. Each phantom for SAR assessment testing is a low loss dielectric shell, with shape and dimensions derived from the anthropomorphic data of the 90th percentile adult male head dimensions as tabulated by the US Army. The SAM phantom shell is bisected along the mid sagittai plane into right and left halves. The perimeter sidewalls of each phantom half is extended to allow filling with liquid to a depth of 15 cm that is sufficient to minimize reflections from the upper surface [5]. The Uni-Phantom is used to conduct body measurements and held to face measurements. The depth of the phantom allows for 15 cm of tissue material to be filled within the phantom. See photos in Appendix C.

Brain & Muscle Simulating Mixture Characterization

The brain and muscle mixtures consist of the material based on the table listed below. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. Body tissue parameters that have not been specified in P1528 are derived from the issue dielectric parameters computed from the 4-Cole-Cole equations.

Table 5.1 Typical Composition of Ingredients for Tissue

In one dia ota		Simulating Tissue				
Ingredients		835 MHz Muscle	1900 MHz Muscle			
Mixing Percentage						
Water		52.40	69.91			
Sugar		45.00	0.00			
Salt		1.40	0.13			
HEC		1.00	0.00			
Bactericide		0.10	0.00			
DGBE		0.00	29.96			
Dielectric Constant	Target	55.20	53.30			
Conductivity (S/m)	Target	0.97	1.52			

Device Holder

In combination with the SAM phantom, the mounting device enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation point is the ear opening. The devices can easily, accurately, and repeatably be positioned according to the FCC specifications. The device holder can be locked at different phantom locations (left head, right head, and uni-phantom).

6. Definition of Reference Points

Ear Reference Point

Figure 6.2 shows the front, back and side views of the SAM Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERPs are 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 6.1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front) is perpendicular to the reference plane and passing through the RE (or LE) is called the Reference Pivoting Line (see Figure 6.1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

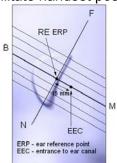


Figure 6.1 Close-up side view of ERP's

Figure 6.2 Front, back and side view of SAM

Device Reference Points

Two imaginary lines on the device need to be established: the vertical centerline and the horizontal line. The test device is placed in a normal operating position with the "test device reference point" located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Fig. 6.3). The "test device reference point" is than located at the same level as the center of the ear reference point. The test device is positioned so that the "vertical centerline" is bisecting the front surface of the device at it's top and bottom edges, positioning the "ear reference point" on the outer surface of both the left and right head phantoms on the ear reference point [5].

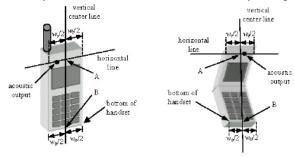


Figure 6.3 Handset Vertical Center & Horizontal Line Reference Points

7. Test Configuration Positions

Positioning for Cheek/Touch [5]

1. Position the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 7.1), such that the plane defined by the vertical center line and the horizontal line of the device is approximately parallel to the sagittal plane of the phantom.

Figure 7.1 Front, Side and Top View of Cheek/Touch Position

- 2. Translate the device towards the phantom along the line passing through RE and LE until the device touches the ear.
- 3. While maintaining the device in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to MB-NF including the line MB (called the reference plane).
- 4. Rotate the device around the vertical centerline until the device (horizontal line) is symmetrical with respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE and maintaining the device contact with the ear, rotate the device about the line NF until any point on the device is in contact with a phantom point below the ear (cheek). See Figure 7.2.

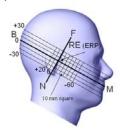


Figure 7.2 Side view w/ relevant markings

Positioning for Ear / 15° Tilt [5]

With the test device aligned in the Cheek/Touch Position":

- 1. While maintaining the orientation of the device, retracted the device parallel to the reference plane far enough to enable a rotation of the device by 15 degrees.
- 2. Rotate the device around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the device, move the device parallel to the reference plane until any part of the device touches the head. (In this position, point A is located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact is at any location other than the pinna, the angle of the device shall be reduced. The tilted position is obtained when any part of the device is in contact with the ear as well as a second part of the device is in contact with the head (see Figure 7.3).

Figure 7.3 Front, Side and Top View of Ear/15° Tilt Position

Body Worn Configurations

Body-worn operating configurations are tested with the accessories attached to the device and positioned against a flat phantom in a normal use configuration. A device with a headset output is tested with a headset connected to the device. Body dielectric parameters are used.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then, when multiple accessories that contain metallic components are supplied with the device, the device is tested with each accessory that contains a unique metallic component. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration where a separation distance between the back of the device and the flat phantom is used. All test position spacings are documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessory(ies), including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

In all cases SAR measurements are performed to investigate the worst-case positioning. Worst-case positioning is then documented and used to perform Body SAR testing.

In order for users to be aware of the body-worn operating requirements for meeting RF exposure compliance, operating instructions and cautions statements are included in the user's manual.

8. ANSI/IEEE C95.1 – 1999 RF Exposure Limits [2]

Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Table 8.1 Human Exposure Limits

	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIROMENT Professional Population (W/kg) or (mW/g)
SPATIAL PEAK SAR ¹ Brain	1.60	8.00
SPATIAL AVERAGE SAR ² Whole Body	0.08	0.40
SPATIAL PEAK SAR ³ Hands, Feet, Ankles, Wrists	4.00	20.00

¹ The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

² The Spatial Average value of the SAR averaged over the whole body.

³ The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

9. Measurement Uncertainty

Exposure Assessment Measurement Uncertainty

					oncer carriey			
Source of Uncertainty	Tolerance Value	Probability Distribution	Divisor	c _i ¹ (1- g)	c _i ¹ (10- g)	Standard Uncertainty (1-g) %	Standard Uncertainty (10-g) %	
Measurement System								
Medsdrement byseem								
Probe Calibration	3.5	normal	1	1	1	3.5	3.5	
Axial Isotropy	3.7	rectangular	√3	(1-	(1-	1.5	1.5	
IMIGI ISOCIOPY		receangular		cp) 1/2	cp) 1/2	1.5	1.0	
Hemispherical	10.9	rectangular	√3	√ср	√ср	4.4	4.4	
Isotropy								
Boundary Effect	1.0	rectangular	√3	1	1	0.6	0.6	
Linearity	4.7	rectangular	√3	1	1	2.7	2.7	
Detection Limit	1.0	rectangular	√3	1	1	0.6	0.6	
Readout Electronics	1.0	normal	1	1	1	1.0	1.0	
Response Time	0.8	rectangular	√3	1	1	0.5	0.5	
Integration Time	1.7	rectangular	√3	1	1	1.0	1.0	
RF Ambient Condition	3.0	rectangular	√3	1	1	1.7	1.7	
Probe Positioner Mech.	0.4	rectangular	√3	1	1	0.2	0.2	
Restriction								
Probe Positioning	2.9	rectangular	√3	1	1	1.7	1.7	
with respect to		_						
Phantom Shell								
Extrapolation and	3.7	rectangular	√3	1	1	2.1	2.1	
Integration								
Test Sample	4.0	normal	1	1	1	4.0	4.0	
Positioning								
Device Holder	2.0	normal	1	1	1	2.0	2.0	
Uncertainty								
Drift of Output	4.2	rectangular	√3	1	1	2.4	2.4	
Power								
Phantom and Setup								
Phantom	3.4	rectangular	√3	1	1	2.0	2.0	
Uncertainty(shape &								
thickness tolerance)			10	0 =	0 5			
Liquid	5.0	rectangular	√3	0.7	0.5	2.0	1.4	
Conductivity(target)	0.5		1	0 5	0 5	0 4	0.0	
Liquid	0.5	normal	1	0.7	0.5	0.4	0.3	
Conductivity (meas.)	F 0		./2	0.6	0 5	1 7	1 4	
Liquid	5.0	rectangular	√3	0.6	0.5	1.7	1.4	
Permittivity(target)	1 0		1	0.6	0 5		0.5	
Liquid	1.0	normal	1	0.6	0.5	0.6	0.5	
Permittivity (meas.)		7.00						
Combined Uncertainty		RSS		1		9.6	9.4	
Combined Uncertainty		Normal(k=2)				19.1	18.8	
(coverage factor=2)								

10. System Validation

Tissue Verification

Table 10.1 Measured Tissue Parameters

Table 10.1 Measured 1135de Faranneters								
		1900 MHz Body		1900 MHz Body		835 MHz Body		
Date(s)		Sep.	21, 2010	Sep. 22, 2010		Sep. 23, 2010		
Liquid Temperature (°C)	20.0	Target	Measured	Target	Measured	Target	Measured	
Dielectric Constant: ε	53.30	53.24	53.30	53.06	55.20	55.04		
Conductivity: σ		1.52	1.55	1.52	1.53	0.97	0.99	
		835 N	/IHz Body					
Date(s)		Sep.	24, 2010					
Liquid Temperature (°C)	20.0	Target	Measured					
Dielectric Constant: ε		55.20	55.18					
Conductivity: σ		0.97	0.97					

See Appendix A for data printout.

Test System Verification

Prior to assessment, the system is verified to the $\pm 10\%$ of the specifications at the test frequency by using the system kit. Power is extrapolated to 1 watt. (Graphic Plots Attached)

Table 10.2 System Dipole Validation Target & Measured

	Test Frequency	Targeted SAR _{1g} (W/kg)	Measure SAR _{1g} (W/kg)	Deviation (%)
23-Sep-2010	835 MHz	9.49	10.14	+ 6.85
24-Sep-2010	835 MHz	9.49	9.92	+ 4.53
21-Sep-2010	1900 MHz	38.70	41.18	+ 6.41
22-Sep-2010	1900 MHz	38.70	40.01	+ 3.39

See Appendix A for data plots.

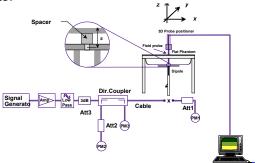


Figure 10.1 Dipole Validation Test Setup

11. SAR Test Data Summary See Measurement Result Data Pages

See Appendix B for SAR Test Data Plots. See Appendix C for SAR Test Setup Photos.

Procedures Used To Establish Test Signal

The device was placed into simulated transmit mode using the manufacturer's test codes. Such test signals offer a consistent means for testing SAR and are recommended for evaluating SAR. When test modes are not available or inappropriate for testing a device, the actual transmission is activated through a base station simulator or similar equipment. See data pages for actual procedure used in measurement.

Device Test Condition

In order to verify that the device was tested at full power, conducted output power measurements were performed before and after each SAR measurement to confirm the output power unless otherwise noted. If a conducted power deviation of more than 5% occurred, the test was repeated.

The testing was conducted on all side sides of the modem. The bottom side testing was conducted with the modem installed in a side USB port on a Toshiba Portege A600 Laptop. The right side testing was conducted with the modem installed in a rear USB port on a Dell Latitude D631 Laptop. All other positions were conducted with the modem installed on a 12 inch USB extension cable. The extension cable was installed in a side USB port on a Toshiba Portege A600. The gap was measured to be 5 mm from the phantom for all sides.

This device is capable of operating in 850/1900 GSM/GPRS/EDGE frequency bands. In GSM/GPRS mode, the device is in Class 4 for 850 MHz and Class 1 for 1900 MHz. In EDGE mode, the device is in Class E2 for 850/1900 MHz. The GSM/GPRS testing was conducted in the GPRS mode. The GPRS mode has 2-slot and 4-slot configurations. The power measured is peak power. The average power in GPRS 1-Slot is ½ dB higher than the average power in GPRS 2-slot which is ½ dB higher than 4-slot. The EDGE mode is 3 dB lower than its equivalent slot configuration for GPRS. Therefore, the device was only tested in the highest power configuration which was 1-slot GPRS.

The WCDMA testing was conducted using 12.2 kbps RMC configured in Test Loop Mode 1. The HSPA testing was conducted with HS-DPCCH, E-DPCCH and E-DPDCH all enabled and a 12.2 kbps RMC. FRC was configured according to HS-DPCCH Sub-Test 1 using H-set 1 and QPSK.

12. FCC Measurement Procedures - March 2008

Power measurements were performed using a base station simulator under average power.

12.1 Procedures Used to Establish RF Signal for SAR

The device was placed into a simulated call using a base station simulator in a screen room. Such test signals offer a consistent means for testing SAR and recommended for evaluating SAR. The SAR measurement software calculates a reference point at the start and end of the test to check for power drifts. If conducted power deviations of more than 5% occurred, the tests were repeated.

12.2 SAR Measurement Conditions for WCDMA/HSDPA/HSUPA

Configure the call box 8960 to support all WCDMA tests in respect to the 3GPP 34.121 (listed in Table below). Measure the power at Ch4132, 4182 and 4233 for US cell; Ch9262, 9400 and 9538 for US PCS band.

For Rel99

- Set a Test Mode 1 loop back with a 12.2kbps Reference Measurement Channel (RMC).
- Set and send continuously Up power control commands to the UNDP-1
- Measure the power at the UNDP-1 antenna connector using the power meter with average detector.

For HSDPA Rel 6

- Establish a Test Mode 1 look back with both 1 12.2kbps RMC channel and a H-Set1 Fixed Reference Channel (FRC). With the 8820 this is accomplished by setting the signal Channel Coding to "Fixed Reference Channel" and configuring for HSET-1 QKSP.
- Set beta values and HSDPA settings for HSDPA Subtest1 according to Table below.
- Send continuously Up power control commands to the UNDP-1
- Measure the power at the UNDP-1 antenna connector using the power meter with modulated average detector.
- Repeat the measurement for the HSDPA Subtest2, 3 and 4 as given in Table below.

For HSUPA Rel 6

- Use UL RMC 12.2kbps and FRC H-Set1 QPSK, Test Mode 1 loop back. With the 8960 this is accomplished by setting the signal Channel Coding to "E-DCH Test Channel" and configuring the equipment category to Cat5_10ms.
- Set the Absolute Grant for HSUPA Subtest1 according to Table below.
- Set the UNDP power to be at least 5dB lower than the Maximum output power
- Send power control bits to give one TPC_cmd = +1 command to the UNDP. If UNDP doesn't send any E-DPCH data with decreased E-TFCI within 500ms, then repeat this process until the decreased E-TFCI is reported.
- Confirm that the E-TFCI transmitted by the UNDP is equal to the target E-TFCI in Table below. If the E-TFCI transmitted by the UNDP is not equal to the target E-TFCI, then send power control bits to give one TPC_cmd = -1 command to the UE. If UE sends any E-DPCH data with decreased E-TFCI within 500 ms, send new

power control bits to give one TPC_cmd = -1 command to the UE. Then confirm that the E-TFCl transmitted by the UE is equal to the target E-TFCl in Table below.

- Measure the power using the power meter with modulated average detector.
- Repeat the measurement for the HSUPA Subtest2, 3, 4 and 5 as given in Table below.

12.2 SAR Measurement Conditions for GSM

Configure the 8960 box to support GMSK and 8PSK call respectively, and set one timeslot and two timeslot transmission for GMSK GSM/GPRS and 8PSK EDGE. Measure and record power outputs for both modulations.

3GPP Release	Mode	Cellul	ar Band	[dBm]	Sub-Test (See Table	MPR
Version		4132	5183	4233	` Below)	
99	WCDMA	22.46	22.35	22.31	-	-
6		22.43	22.30	22.27	1	0
6	HSDPA	22.40	22.34	22.29	2	0
6	порга	21.95	21.81	21.86	3	0.5
6		21.97	21.89	21.80	4	0.5
6		22.39	22.32	22.30	1	0
6		20.51	20.46	20.29	2	2
6	HSUPA	21.47	21.52	21.39	3	1
6		20.69	20.63	20.42	4	2
6		22.41	22.29	22.25	5	0

3GPP Release	Mode	PCS Band [dBm]	Bm]	Sub-Test (See Table	MPR	
Version		9262	9400	9538	Below)	
99	WCDMA	22.15	22.29	22.17	-	-
6		22.08	22.24	22.10	1	0
6	HSDPA	22.10	22.26	22.15	2	0
6	НЭДРА	21.67	21.82	21.71	3	0.5
6		21.63	21.75	21.64	4	0.5
6		22.12	22.20	22.13	1	0
6		20.21	20.36	20.21	2	2
6	HSUPA	21.18	21.30	21.26	3	1
6		20.24	20.42	20.34	4	2
6		22.13	22.24	22.12	5	0

Sub-Test Setup for Release 6 HSDPA

Sub-Test	eta_{c}	β_{d}	B _c / β _d	eta_{hs}	
1	2/15	15/15	2/15	4/15	
2	12/15	15/15	15/15	24/15	
3	15/15	8/15	15/8	30/15	
4	15/15	4/15	15/4	30/15	
Δ_{ack} , Δ_{nack} and Δ_{cqi} = 8					

Sub-Test Setup for Release 6 HSUPA

Sub-Test	eta_{c}	β_{d}	B _c / β _d	eta_{hs}	B _{ec}	B_{ed}	MPR	AG Index	E-TFCI
1	11/15	15/15	11/15	22/15	209/225	1039/225	0.0	20	75
2	6/15	15/15	6/15	12/15	12/15	94/75	2.0	12	67
3	15/15	9/15	15/9	30/15	30/15	47/15	1.0	15	92
4	2/15	15/15	2/15	4/15	2/15	56/15	2.0	17	71
5	15/15	15/15	15/15	30/15	24/15	134/15	0.0	21	81
Δ_{ack} , Δ_{nack} as	Δ_{ack} , Δ_{nack} and $\Delta_{\text{coi}} = 8$								

GPRS/1 slot						
Band	Channel	Power				
	128	32.85				
Cellular	190	32.72				
	251	32.76				
	512	29.92				
PCS	661	29.49				
	810	29.51				

GPRS/2 slot						
Band	Power					
	128	29.37				
Cellular	190	29.24				
	251	29.26				
	512	26.45				
PCS	661	26.01				
	810	26.06				

EDGE/1 slot						
Band	Channel	Power				
	128	29.23				
Cellular	190	29.10				
	251	29.18				
	512	26.37				
PCS	661	25.96				
	810	26.00				

EDGE/2 slot						
Band Channel Powe						
	128	26.48				
Cellular	190	26.32				
	251	26.39				
	512	23.61				
PCS	661	23.15				
	810	23.21				

12.2 SAR Device Functionality

The MC547 utilizes a mechanism that alters the transmit functionality of the device based on the angle of the USB connector. When the device is inserted into a horizontal USB port (Reference KDB 447498, "Horizontal Up position 'A') the modem hinge has been engineered to automatically orient the modem angle to 120°. At this angle the modem will function normally. If the modem is moved slightly either up or down (110° to 130°) there is no affect on the performance of the device. Should the MC547 move at an angle less than 110° or greater than 130° the transmit power will turn off. There is a delay mechanism that allows the modem to continue transmitting for 5s in the case of accidental movement. Once the device has been returned to the 120° position normal operation can be restored.

The measured SAR orientations have been considered based on the possible USB positions stated in KDB 447498.

The following is a description of the process by which the UUT, under normal operation, disables it's transmitter after being triggered by a USB orientation mechanism. The MC547 have a mechanical switch in the USB hinge assembly which disables the transmitter when not in the desired 120 degree orientation. The UUT is only supposed to operate it's transmitters when in normal USB orientation (approx 120 degrees).

Supporting operational verification:

Figure 1:QXDM logging of Tx Power when using the USB Tx Power disable Switch

Figure 2: QXDM message shown the triggering event to turn off the Transmitter.

Figure 3: QXDM showing the UUT going into LPM - Low Power Mode

Figure 4: QXDM message showing the actual deactivation of the transmitter by software, about 10-12 seconds later. Completed transition to LPM.

Figure 5: QXDM message showing Layer 1 in IDLE state. No transmitter is on in this state, only the receiver.

Figure 6: QXDM message showing UUT allowing Transmit operation again (XMIT ALLOWED) and setting the UUT to ONLINE mode.

Figure 7: QXDM message showing transitioning back to the 120 degree normal operating mode, returning to ONLINE mode for connecting to the network.

Figure 8: QXDM message showing successful transition from ONLINE mode to ACQ (acquired cell information)

Figure 9: QXDM message showing successful Tx RACH and getting back in a call.

USB Hardware Switch for controlling Power Amplifier Mode of operation.

Below is a plot of the WCDMA Tx power (green lines) based on a Qualcomm tool (QXDM) that is capable of reporting real time operation and messaging during operation. The red, yellow and blue lines have been added to the plot to explain events that happen. Refer to the detailed description below.

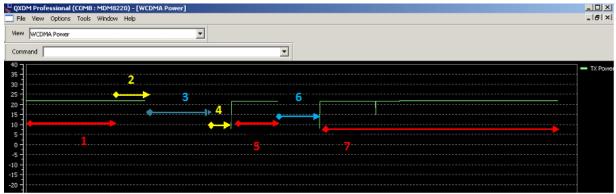


Figure 10:QXDM logging of Tx Power when using the USB Tx Power disable Switch

The above diagram is described further below. For the above diagram the GREEN lines are the actual transmitted power by the UUT, based on QXDM logging information.

- RED arrows show the transmitting portions
- YELLOW arrows describe TRIGGER events based on USB switch input
- BLUE arrows represent Rx only (Tx OFF) or "IDLE".
- 1. Unit under test is in a call transmitting at +23dBm full power, with the UUT in its normal 120 degree operating position.
- 2. During the call, the UUT is placed into a "flat" position, 0 degrees.
- 3. Within approximately 12 seconds, the UUT ceases transmit operation (no green line showing Tx power)
- 4. UUT is returned to the normal operating position (120 degrees).
- 5. Shortly after returning to the 120 degree position, the UUT re-registers with the network.
- 6. After re-registering with the network, the UUT returns to an "IDLE" state (no Tx) waiting for a command to connect to the network again.
- 7. UUT is initiated into a normal call again, transmitting full at +23dBm, in the UUT's normal operating position.

The diagram on the previous page, is also shown here in QXDM messages. Numbers shown below match that of the original plot, Figure 1.

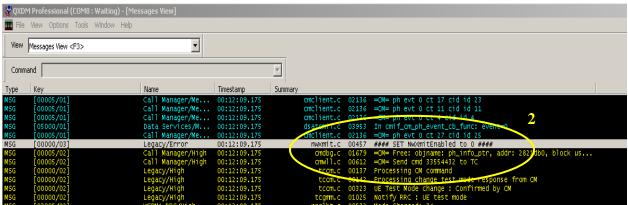


Figure 11: QXDM message shown the triggering event to turn off the Transmitter.

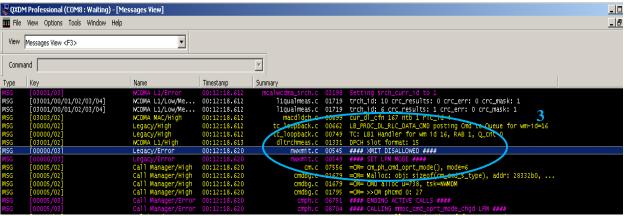


Figure 12: QXDM showing the UUT going into LPM - Low Power Mode

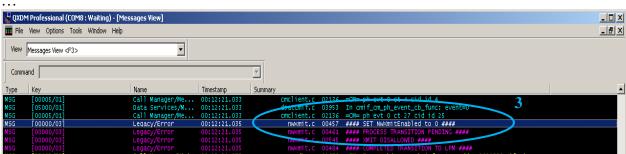


Figure 13: QXDM message showing the actual deactivation of the transmitter by software, about 10-12 seconds later. Completed transition to LPM (Low Power Mode).

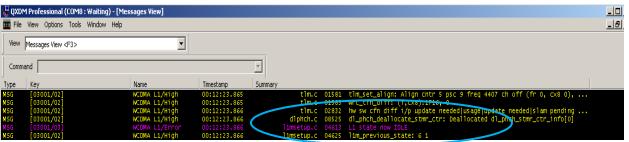


Figure 14: QXDM message showing Layer 1 in IDLE state. No transmitter is on in this state, only the receiver.

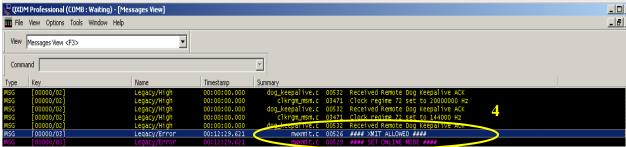


Figure 15: QXDM message showing UUT allowing Transmit operation again (XMIT ALLOWED) and setting the UUT to ONLINE mode.

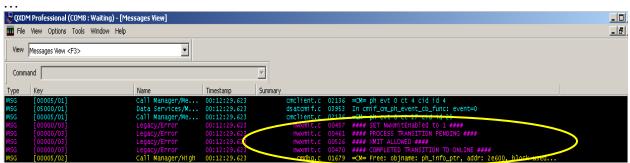


Figure 16: QXDM message showing transitioning back to the 120 degree normal operating mode, returning to ONLINE mode for connecting to the network.

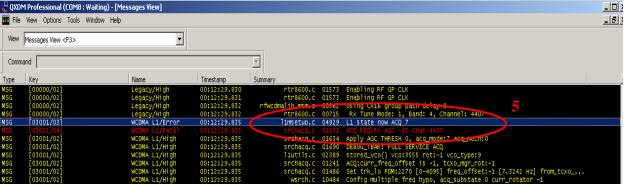


Figure 17: QXDM message showing successful transition from ONLINE mode to ACQ (acquired cell information)

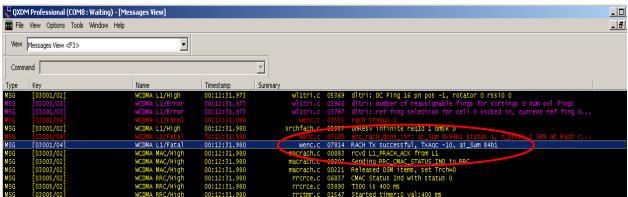


Figure 18: QXDM message showing successful Tx RACH and getting back in a call.

SAR Data Summary - 850 MHz Body - GPRS

MEAS	MEASUREMENT RESULTS									
Gap	Side	Frequency		Modulation	Begin/End Power		, TX	Multislot	SAR	
-		MHz	Ch.		(dBm)	(dBm)	Level	Configuration	(W/kg)	
	Тор	824.2	128	GMSK	32.85	32.80	0	1 Slot	1.17	
		836.6	190	GMSK	32.72	32.70	0	1 Slot	1.01	
		848.8	251	GMSK	32.76	32.75	0	1 Slot	1.04	
	Bottom	824.2	128	GMSK	32.84	32.83	0	1 Slot	0.30	
5 mm	Right	824.2	128	GMSK	32.82	32.79	0	1 Slot	0.68	
		824.2	128	GMSK	32.83	32.81	0	1 Slot	1.02	
	Left	836.6	190	GMSK	32.70	32.68	0	1 Slot	1.12	
		848.8	251	GMSK	32.75	32.71	0	1 Slot	0.93	
	Tip	824.2	128	GMSK	32.81	32.79	0	1 Slot	0.45	

Muscle
1.6 W/kg (mW/g)
averaged over 1 gram

1.	Battery is fully charged for a	all tests.			
	Power Measured	⊠Conducted	ERP	☐EIRP	
2.	SAR Measurement Phantom Configuration SAR Configuration	☐Left Head ☐Head	⊠Uniphantom ⊠Body	Right Head	
3.	Test Signal Call Mode	Test Code	⊠Base Station Simu	lator	
4.	Test Configuration	☐With Belt Clip	Without Belt Clip	⊠N/A	
Jay M	. Moulton				

Note: When the measured channel is 3 dB or more below the limit the remaining channels are not required to be tested per KDB 447498 section 1) e).

Vice President

SAR Data Summary – 850 MHz Body – WCDMA

MEASUREMENT RESULTS									
Gap	Side	Frequ	Frequency Modulation		_	n/End wer	RMC	Test Set Up	SAR
		MHz	Ch.		(dBm)	(dBm)		-	(W/kg)
	Top Bottom	826.4	4132	WCDMA	22.46	22.40	12.2 kbps	Test Loop 1	1.02
		836.6	4183	WCDMA	22.35	22.29	12.2 kbps	Test Loop 1	1.02
		846.6	4233	WCDMA	22.31	22.27	12.2 kbps	Test Loop 1	1.07
		836.6	4183	WCDMA	22.31	22.26	12.2 kbps	Test Loop 1	0.31
5 mm	Right	836.6	4183	WCDMA	22.33	22.28	12.2 kbps	Test Loop 1	0.63
		826.4	4132	WCDMA	22.40	22.35	12.2 kbps	Test Loop 1	0.81
	Left	836.6	4183	WCDMA	22.32	22.27	12.2 kbps	Test Loop 1	0.85
		846.6	4233	WCDMA	22.29	22.25	12.2 kbps	Test Loop 1	0.82
	Tip	836.6	4183	WCDMA	22.34	22.31	12.2 kbps	Test Loop 1	0.35

Muscle
1.6 W/kg (mW/g)
averaged over 1 gram

1.	Battery is fully charged for a Power Measured	ll tests. ⊠Conducted	□ERP	□EIRP
2.	SAR Measurement Phantom Configuration SAR Configuration	☐Left Head ☐Head	⊠Uniphantom ⊠Body	Right Head
3.	Test Signal Call Mode	Test Code	⊠Base Station Simu	lator
4.	Test Configuration	☐With Belt Clip	☐Without Belt Clip	⊠N/A
7				

Jay M. Moulton Vice President

Note: When the measured channel is 3 dB or more below the limit the remaining channels are not required to be tested per KDB 447498 section 1) e).

SAR Data Summary – 1900 MHz Body – GPRS

MEASUREMENT RESULTS									
Gap	Side	Freque	ncy	Modulation	Begin/End Power		TX	Multislot	SAR
		MHz	Ch.		(dBm)	(dBm)	Level	Configuration	(W/kg)
		1850.2	512	GMSK	29.92	29.90	0	1 Slot	0.98
	Тор	1880.0	661	GMSK	29.49	29.46	0	1 Slot	0.79
		1908.8	810	GMSK	29.51	29.49	0	1 Slot	0.93
5 mm	Bottom	1850.2	512	GMSK	29.89	29.87	0	1 Slot	0.33
	Right	1850.2	512	GMSK	29.91	29.88	0	1 Slot	0.67
	Left	1850.2	512	GMSK	29.87	29.84	0	1 Slot	0.68
	Tip	1850.2	512	GMSK	29.90	29.89	0	1 Slot	0.27

Muscle
1.6 W/kg (mW/g)
averaged over 1 gram

1.	Battery is fully charged for	all tests.			
	Power Measured	⊠Conducted	ERP	EIRP	
2.	SAR Measurement Phantom Configuration SAR Configuration	☐Left Head ☐Head	⊠Uniphantom ⊠Body	Right Head	
3.	Test Signal Call Mode	Test Code	⊠Base Station Simu	lator	
4.	Test Configuration	☐With Belt Clip	☐Without Belt Clip	⊠N/A	
5					
Jay M	. Moulton				

Note: When the measured channel is 3 dB or more below the limit the remaining channels are not required to be tested per KDB 447498 section 1) e).

Vice President

SAR Data Summary – 1900 MHz Body – WCDMA

MEASUREMENT RESULTS									
Gap	Side	Frequency		Modulation	Begin/End Power		RMC	Test Set Up	SAR
		MHz	Ch.		(dBm)	(dBm)		•	(W/kg)
	Тор	1852.4	9612	WCDMA	22.15	22.11	12.2 kbps	Test Loop 1	1.53
		1880.0	9750	WCDMA	22.29	22.24	12.2 kbps	Test Loop 1	1.24
		1907.6	9888	WCDMA	22.17	22.14	12.2 kbps	Test Loop 1	1.34
	Bottom	1852.4	9612	WCDMA	22.13	22.10	12.2 kbps	Test Loop 1	0.59
5 mm		1852.4	9612	WCDMA	22.14	22.11	12.2 kbps	Test Loop 1	0.81
	Right	1880.0	9750	WCDMA	22.27	22.26	12.2 kbps	Test Loop 1	0.74
		1907.6	9888	WCDMA	22.14	22.10	12.2 kbps	Test Loop 1	0.73
	Left	1852.4	9612	WCDMA	22.12	22.09	12.2 kbps	Test Loop 1	0.76
	Tip	1852.4	9612	WCDMA	22.14	22.13	12.2 kbps	Test Loop 1	0.46

Muscle
1.6 W/kg (mW/g)
averaged over 1 gram

1.	Battery is fully charged for a Power Measured	ll tests. ⊠Conducted	□ERP	□EIRP
2.	SAR Measurement Phantom Configuration SAR Configuration	☐Left Head ☐Head	⊠Uniphantom ⊠Body	Right Head
3.	Test Signal Call Mode	Test Code	⊠Base Station Simu	lator
4.	Test Configuration	☐With Belt Clip	☐Without Belt Clip	N/A
7				

Jay M. Moulton Vice President

Note: When the measured channel is 3 dB or more below the limit the remaining channels are not required to be tested per KDB 447498 section 1) e).

13. Test Equipment List

Table 12.1 Equipment Specifications

Туре	Calibration Due Date	Serial Number
ThermoCRS Robot	N/A	RAF0338198
ThermoCRS Controller	N/A	RCF0338224
ThermoCRS Teach Pendant (Joystick)	N/A	STP0334405
IBM Computer, 2.66 MHz P4	N/A	8189D8U KCPR08N
Aprel E-Field Probe ALS-E020	10/21/2010	RFE-217
Aprel E-Field Probe ALS-E030	07/14/2011	E030-001
Aprel Dummy Probe	N/A	023
Aprel Left Phantom	N/A	RFE-267
Aprel Right Phantom	N/A	RFE-268
Aprel UniPhantom	N/A	RFE-273
Aprel Validation Dipole ALS-D-450-S-2	01/12/2011	RFE-362
Aprel Validation Dipole ALS-D-835-S-2	01/14/2011	180-00561
Aprel Validation Dipole ALS-D-900-S-2	01/12/2011	RFE-275
Aprel Validation Dipole ALS-D-1900-S-2	01/15/2011	210-00713
Aprel Validation Dipole ALS-D-2450-S-2	01/12/2011	RFE-278
Aprel Validation Dipole RFE-D-2600-S-2	01/18/2011	RFE-121
Aprel Validation Dipole RFE-D-BB-S-2	01/12/2011	235-00801
Agilent (HP) 437B Power Meter	03/24/2011	3125U08837
Agilent (HP) 8481B Power Sensor	03/24/2011	3318A05384
Advantest R3261A Spectrum Analyzer	03/24/2011	31720068
Agilent (HP) 8350B Signal Generator	04/19/2011	2749A10226
Agilent (HP) 83525A RF Plug-In	04/19/2011	2647A01172
Agilent (HP) 8753C Vector Network Analyzer	03/25/2011	3135A01724
Agilent (HP) 85047A S-Parameter Test Set	03/25/2011	2904A00595
Agilent (HP) E55125C Base Station Sim.	03/25/2012	MY48360364
Aprel Dielectric Probe Assembly	N/A	0011
Brain Equivalent Matter (450 MHz)	N/A	N/A
Brain Equivalent Matter (835 MHz)	N/A	N/A
Brain Equivalent Matter (1900 MHz)	N/A	N/A
Brain Equivalent Matter (2450 MHz)	N/A	N/A
Muscle Equivalent Matter (450 MHz)	N/A	N/A
Muscle Equivalent Matter (835 MHz)	N/A	N/A
Muscle Equivalent Matter (1900 MHz)	N/A	N/A
Muscle Equivalent Matter (2450 MHz)	N/A	N/A
Muscle Equivalent Matter (5200 MHz)	N/A	N/A
Muscle Equivalent Matter (5800 MHz)	N/A	N/A

14. Conclusion

The SAR measurement indicates that the EUT complies with the RF radiation exposure limits of the FCC. These measurements are taken to simulate the RF effects exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The tested device complies with the requirements in respect to all parameters subject to the test. The test results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body is a very complex phenomena that depends on the mass, shape, and size of the body; the orientation of the body with respect to the field vectors; and, the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because innumerable factors may interact to determine the specific biological outcome of an exposure to electromagnetic fields, any protection guide shall consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

15. References

- [1] Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of Radio Frequency Radiation, August 1996
- [2] ANSI/IEEE C95.1 1999, American National Standard Safety Levels with respect to Human Exposure to Radio Frequency Electromagnetic Fields, 300kHz to 100GHz, New York: IEEE, 1992.
- [3] ANSI/IEEE C95.3 2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields RF and Microwave, New York: IEEE, 1992.
- [4] Federal Communications Commission, OET Bulletin 65 (Edition 97-01), Supplement C (Edition 01-01), Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields, July 2001.
- [5] IEEE Standard 1528 2003, IEEE Recommended Practice for Determining the Peak-Spatial Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communication Devices: Measurement Techniques, October 2003.
- [6] Industry Canada, RSS 102e, Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands), November 2005.
- [7] Industry Canada, Safety Code 6, Limits of Human Exposure to Radiofrequency Electromagnetic Fields in the Frequency Range from 3kHz to 300 GHz, 1999.

Appendix A – System Validation Plots and Data

```
****************
Thu 23/Sep/2010 09:24:22
Freq Frequency (GHz)
FCC_eH FCC Bulletin 65 Supplement C ( June 2001) Limits for Head Epsilon
               FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma
FCC sH
FCC_BB FCC Limits for Body Epsilon
FCC_SB FCC Limits for Body Sigma
Test_e Epsilon of UIM
Test_s Sigma of UIM
*****************
Freq FCC_eB FCC_sB Test_e 0.8050 55.32 0.97 55.20 0.94 0.8150 55.28 0.97 55.15 0.95 0.8250 55.24 0.97 55.09 0.97 0.8350 55.20 0.97 55.04 0.99 0.8450 55.17 0.98 55.00 1.01 0.8550 55.14 0.99 54.96 1.02
0.8650 55.11 1.01
                                                  54.93
                                                                   1.04
******************
Test Result for UIM Dielectric Parameter
Fri 24/Sep/2010 07:02:12
Freq Frequency (GHz)
FCC_eH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM

Test_s Sigma of UIM
**************
Freq FCC_eB FCC_sB Test_e Test_s
0.8050 55.32 0.97 55.33 0.91
0.8150 55.28 0.97 55.29 0.93
0.8250 55.24 0.97 55.24 0.95
0.8350 55.20 0.97 55.18 0.97
0.8450 55.17 0.98 55.14 0.99

      0.8450
      55.17
      0.98
      55.14
      0.99

      0.8550
      55.14
      0.99
      55.11
      1.01

0.8650
                                                  56.07
               55.11
                                1.01
                                                                   1.03
```



```
****************
Test Result for UIM Dielectric Parameter
Tue 21/Sep/2010 03:22:19
Freq Frequency(GHz)
FCC_eH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilon FCC_sH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Sigma FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma Test_e Epsilon of UIM

Test_s Sigma of UIM
*****************
Freq FCC_eB FCC_sB Test_e Test_s
1.8700 53.30 1.52 53.31 1.51
1.8800 53.30 1.52 53.29 1.52
1.8900 53.30 1.52 53.26 1.54
1.9000 53.30 1.52 53.24 1.55
1.9100 53.30 1.52 53.22 1.56
1.9200 53.30 1.52 53.19 1.58
1.9300 53.30 1.52 53.17 1.59
*****************
Test Result for UIM Dielectric Parameter
Wed 22/Sep/2010 06:57:05
Freq Frequency (GHz)
FCC_eH FCC Bulletin 65 Supplement C ( June 2001) Limits for Head Epsilon
FCC_sH FCC Bulletin 65 Supplement C (June 2001) Limits for Head Epsilor FCC_eB FCC Limits for Body Epsilon FCC_sB FCC Limits for Body Sigma

Test_e Epsilon of UIM

Test_s Sigma of UIM
*****************
Freq FCC_eB FCC_sB Test_e Test_s
1.8700 53.30 1.52 53.13 1.57
1.8800 53.30 1.52 53.11 1.55
1.8900 53.30 1.52 53.08 1.54
1.9000 53.30 1.52 53.06 1.53
1.9100 53.30 1.52 53.04 1.51
1.9200 53.30 1.52 53.01 1.51
1.9300 53.30 1.52 53.01 1.51
1.9300 53.30 1.52 52.99 1.50
```

RF Exposure Lab

SAR Test Report

By Operator : Jay

Measurement Date : 23-Sep-2010

Starting Time : 23-Sep-2010 09:31:11 AM End Time : 23-Sep-2010 09:46:12 AM Scanning Time : 901 secs

Product Data

Product Data
Device Name : Validation
Serial No. : 835
Type : Dipole
Model : ALS-D-835-S-2
Frequency : 835.00 MHz Max. Transmit Pwr : 0.1 W

Drift Time : 0 min(s)
Length : 161 mm
Width : 3.6 mm
Depth : 89.8 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start : 1.114 W/kg Power Drift-Finish: 1.098 W/kg Power Drift (%) : -1.442

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 23-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 49.00 RH%

Epsilon : 55.04 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : Probe 217 - RFEL
Model : E020
Type : E-Field Triangle

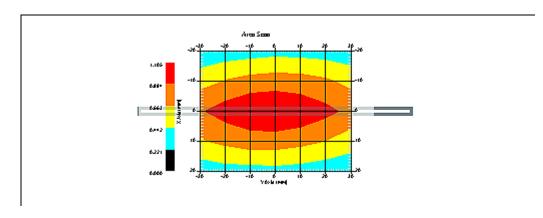
Serial No. : 217

Last Calib. Date: 21-Oct-2009 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.1

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Compression Point: 95.00 mV : 1.56 mm Offset

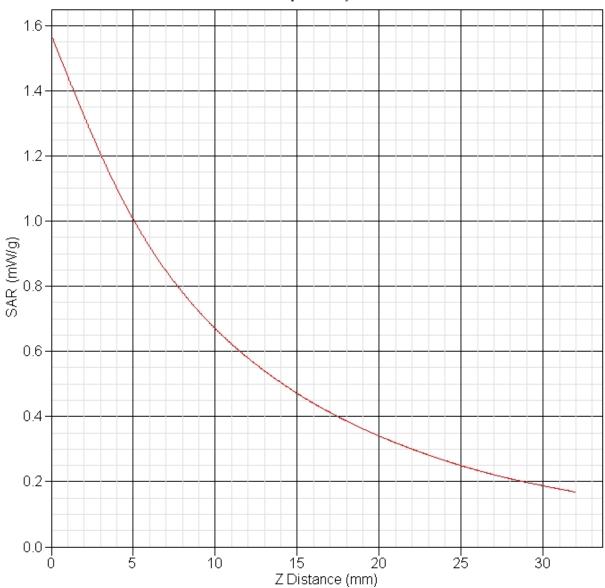

Measurement Data Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 25.00 °C
Set-up Date : 23-Sep-2010
Set-up Time : 9:21:48 AM

Area Scan : 5x7x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch Separation : 15 mm Channel : Mid



1 gram SAR value : 1.014 W/kg 10 gram SAR value : 0.641 W/kg Area Scan Peak SAR : 1.105 W/kg Zoom Scan Peak SAR : 1.571 W/kg

SAR-Z Axis

at Hotspot x:0.20 y:-0.14

SAR Test Report

By Operator : Jay

Measurement Date : 24-Sep-2010

Starting Time : 24-Sep-2010 07:07:14 AM End Time : 24-Sep-2010 07:22:33 AM Scanning Time : 919 secs

Product Data

Product Data

Device Name : Validation

Serial No. : 835

Type : Dipole

Model : ALS-D-835-S-2

Frequency : 835.00 MHz

Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s)
Length : 161 mm
Width : 3.6 mm
Depth : 89.8 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start : 1.084 W/kg Power Drift-Finish: 1.073 W/kg Power Drift (%) : -1.005

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 24-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 49.00 RH%

Epsilon : 55.18 F/m

Sigma : 0.97 S/m

Density : 1000.00 kg/cu. m

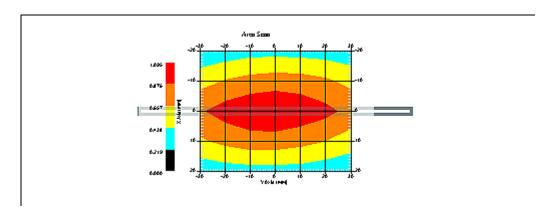
Probe Data
Name : Probe 217 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date : 21-Oct-2009 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.1

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

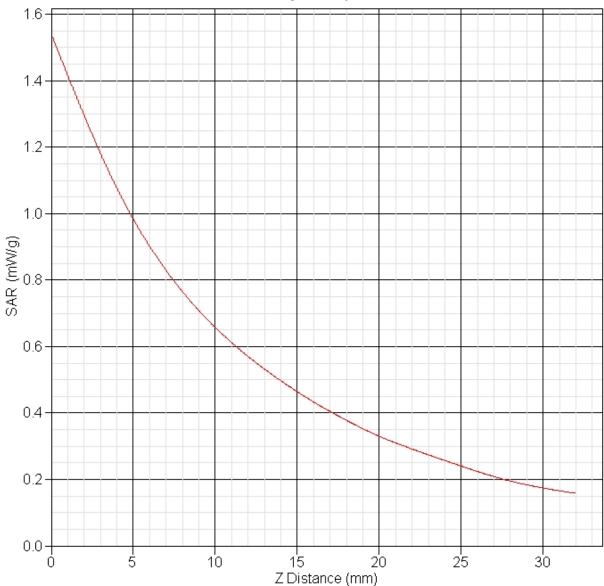

Measurement Data
Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 25.00 °C
Set-up Date : 24-Sep-2010
Set-up Time : 9:21:48 AM

Area Scan : 5x7x1 : Measurement x=10mm, y=10mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch Separation : 15 mm Channel : Mid



1 gram SAR value : 0.992 W/kg 10 gram SAR value : 0.626 W/kg Area Scan Peak SAR : 1.094 W/kg Zoom Scan Peak SAR : 1.541 W/kg

SAR-Z Axis

at Hotspot x:0.23 y:-0.13

SAR Test Report

By Operator : Jay

Measurement Date : 21-Sep-2010

Starting Time : 21-Sep-2010 03:33:41 PM End Time : 21-Sep-2010 03:47:00 PM Scanning Time : 799 secs

Product Data

Product Data

Device Name : Validation

Serial No. : 1900

Type : Dipole

Model : ALS-D-1900-S-2

Frequency : 1900.00 MHz

Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s)
Length : 68 mm
Width : 3.6 mm
Depth : 39.5 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start : 4.265 W/kg Power Drift-Finish: 4.284 W/kg Power Drift (%) : 0.453

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 21-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 49.00 RH%

Epsilon : 53.24 F/m

Sigma : 1.55 S/m

Density : 1000.00 kg/cu. m

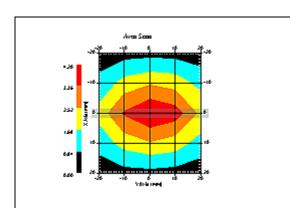
Probe Data
Name : Probe 217 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date : 21-Oct-2009 Frequency : 1900.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 4.85

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

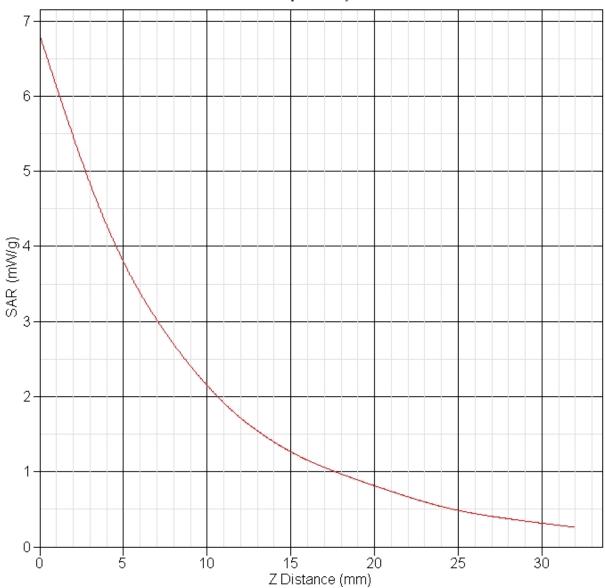


Measurement Data Crest Factor : 1

Crest Factor : 1
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 21-Sep-2010
Set-up Time : 8:39:41 AM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch Separation : 10 mm Channel : Mid



1 gram SAR value : 4.118 W/kg 10 gram SAR value : 1.983 W/kg Area Scan Peak SAR: 4.264 W/kg Zoom Scan Peak SAR: 6.872 W/kg

SAR-Z Axis

at Hotspot x:0.25 y:-0.17

SAR Test Report

By Operator : Jay

Measurement Date : 22-Sep-2010

Starting Time : 22-Sep-2010 07:02:33 AM End Time : 22-Sep-2010 07:15:43 AM Scanning Time : 790 secs

Product Data

Product Data

Device Name : Validation

Serial No. : 1900

Type : Dipole

Model : ALS-D-1900-S-2

Frequency : 1900.00 MHz

Max. Transmit Pwr : 0.1 W Drift Time : 0 min(s)
Length : 68 mm
Width : 3.6 mm
Depth : 39.5 mm
Antenna Type : Internal
Orientation : Touch Power Drift-Start : 4.597 W/kg Power Drift-Finish: 4.622 W/kg Power Drift (%) : 0.544

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 22-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 49.00 RH%

Epsilon : 53.06 F/m

Sigma : 1.53 S/m

Density : 1000.00 kg/cu. m

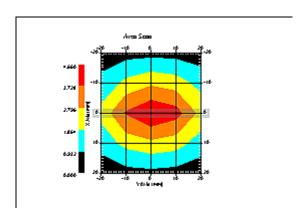
Probe Data
Name : Probe 217 - RFEL
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date : 21-Oct-2009 Frequency : 1900.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 4.85

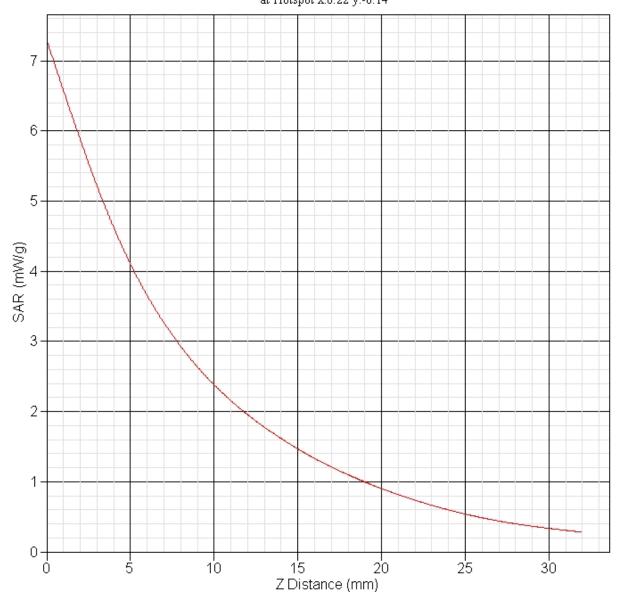
Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$



Measurement Data Crest Factor : 1

Crest Factor : 1
Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2010
Set-up Time : 8:39:41 AM
Area Scan : 5x5x1 : Measurement x=10mm, y=10mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data


DUT Position : Touch Separation : 10 mm Channel : Mid

1 gram SAR value : 4.001 W/kg 10 gram SAR value : 2.082 W/kg Area Scan Peak SAR: 4.660 W/kg Zoom Scan Peak SAR: 7.296 W/kg

SAR-Z Axis at Hotspot x:0.22 y:-0.14

Appendix B – SAR Test Data Plots

SAR Test Report

By Operator : Jay

Measurement Date : 24-Sep-2010

Starting Time : 24-Sep-2010 08:34:36 AM End Time : 24-Sep-2010 08:49:59 AM Scanning Time : 923 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : Unit 27
Mode : GPRS 1-Slot
Model : MC547
Frequency : 850.00 MHz

Max. Transmit Pwr : 2 W Drift Time : 0 min(s)
Length : 80 mm
Width : 30 mm
Depth : 9 mm
Antenna Type : Internal
Orientation : Top

Power Drift-Start : 0.800 W/kg Power Drift-Finish: 0.783 W/kg Power Drift (%) : -2.124

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 24-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.18 F/m

Sigma : 0.97 S/m

Density : 1000.00 kg/cu. m

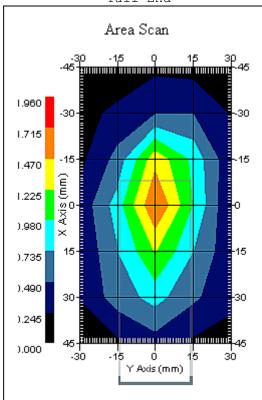
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date : 21-Oct-2009 Frequency : 835.00 MHz

Duty Cycle Factor: 8 Conversion Factor: 6.1

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

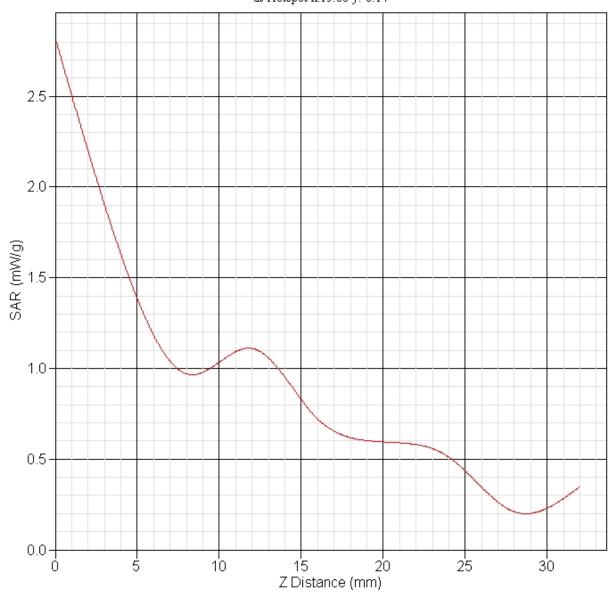

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 24-Sep-2010
Set-up Time : 7:41:59 AM

Area Scan : 7x5x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=4mm, y=4mm, z=4mm

Other Data

DUT Position : Top Separation : 5 mm Channel : Low

Tail End



Connector End

1 gram SAR value : 1.172 W/kg 10 gram SAR value : 0.743 W/kg Area Scan Peak SAR : 1.617 W/kg Zoom Scan Peak SAR : 2.022 W/kg

SAR-Z Axis at Hotspot x:15.06 y:-0.14

SAR Test Report

By Operator : Jay

Measurement Date : 24-Sep-2010

Starting Time : 24-Sep-2010 08:52:29 AM End Time : 24-Sep-2010 09:07:41 AM Scanning Time : 912 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : Unit 27
Mode : GPRS 1-Slot
Model : MC547
Frequency : 850.00 MHz

Max. Transmit Pwr : 2 W Drift Time : 0 min(s)
Length : 80 mm
Width : 30 mm
Depth : 9 mm
Antenna Type : Internal
Orientation : Top

Power Drift-Start : 0.780 W/kg Power Drift-Finish: 0.753 W/kg Power Drift (%) : -3.467

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 24-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.18 F/m

Sigma : 0.97 S/m

Density : 1000.00 kg/cu. m

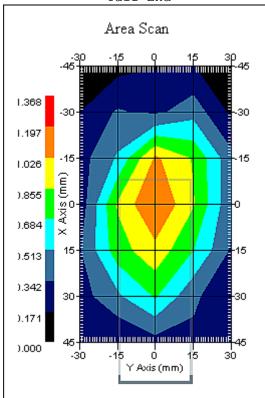
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date : 21-Oct-2009 Frequency : 835.00 MHz

Duty Cycle Factor: 8 Conversion Factor: 6.1

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 24-Sep-2010
Set-up Time : 7:41:59 AM

Area Scan : 7x5x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=4mm, y=4mm, z=4mm

Other Data

DUT Position : Top Separation : 5 mm Channel : Mid

Tail End

Connector End

1 gram SAR value : 1.011 W/kg 10 gram SAR value : 0.595 W/kg Area Scan Peak SAR : 1.198 W/kg Zoom Scan Peak SAR : 1.811 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 24-Sep-2010

Starting Time : 24-Sep-2010 09:09:10 AM End Time : 24-Sep-2010 09:24:25 AM Scanning Time : 915 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : Unit 27
Mode : GPRS 1-Slot
Model : MC547
Frequency : 850.00 MHz

Max. Transmit Pwr : 2 W Drift Time : 0 min(s)
Length : 80 mm
Width : 30 mm
Depth : 9 mm
Antenna Type : Internal
Orientation : Top

Power Drift-Start : 0.709 W/kg Power Drift-Finish: 0.688 W/kg Power Drift (%) : -2.967

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 24-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.18 F/m

Sigma : 0.97 S/m

Density : 1000.00 kg/cu. m

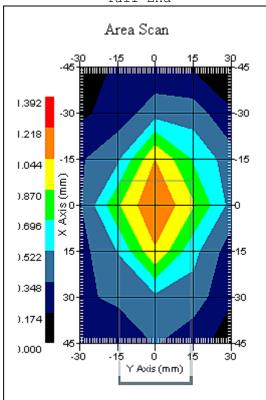
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date : 21-Oct-2009 Frequency : 835.00 MHz

Duty Cycle Factor: 8 Conversion Factor: 6.1

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 24-Sep-2010
Set-up Time : 7:41:59 AM

Area Scan : 7x5x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=4mm, y=4mm, z=4mm

Other Data

DUT Position : Top Separation : 5 mm Channel : High

Tail End

Connector End

1 gram SAR value : 1.039 W/kg 10 gram SAR value : 0.621 W/kg Area Scan Peak SAR : 1.221 W/kg Zoom Scan Peak SAR : 1.981 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 23-Sep-2010

Starting Time : 23-Sep-2010 09:14:37 PM End Time : 23-Sep-2010 09:29:25 PM Scanning Time : 888 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : Unit 27
Mode : GPRS 1-Slot
Model : MC547
Frequency : 850.00 MHz

Max. Transmit Pwr : 2 W Drift Time : 0 min(s)
Length : 80 mm
Width : 30 mm
Depth : 9 mm
Antenna Type : Internal
Orientation : Bottom Power Drift-Start : 0.191 W/kg Power Drift-Finish: 0.182 W/kg Power Drift (%) : -4.934

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 23-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.04 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

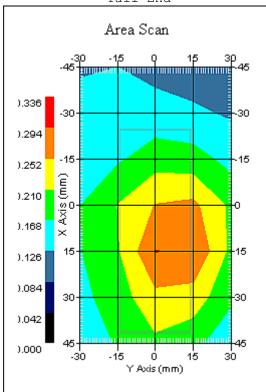
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date : 21-Oct-2009 Frequency : 835.00 MHz

Duty Cycle Factor: 8 Conversion Factor: 6.1

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Sep-2010
Set-up Time : 9:51:14 AM

Area Scan : 7x5x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=4mm, y=4mm, z=4mm

Other Data

DUT Position : Bottom Separation : 5 mm Channel : Low

Tail End

Connector End

1 gram SAR value : 0.296 W/kg 10 gram SAR value : 0.215 W/kg Area Scan Peak SAR : 0.295 W/kg Zoom Scan Peak SAR : 0.390 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 23-Sep-2010

Starting Time : 23-Sep-2010 10:20:10 AM End Time : 23-Sep-2010 10:35:00 AM Scanning Time : 890 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : Unit 27
Mode : GPRS 1-Slot
Model : MC547
Frequency : 850.00 MHz

Max. Transmit Pwr : 2 W Drift Time : 0 min(s)
Length : 80 mm
Width : 9 mm
Depth : 30 mm
Antenna Type : Internal
Orientation : Right Power Drift-Start : 0.721 W/kg Power Drift-Finish: 0.753 W/kg Power Drift (%) : 4.432

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 23-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.04 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

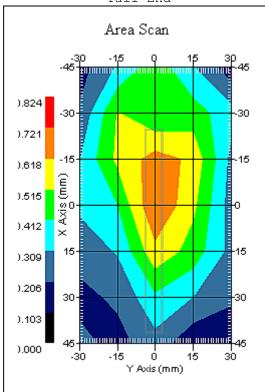
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date : 21-Oct-2009 Frequency : 835.00 MHz

Duty Cycle Factor: 8 Conversion Factor: 6.1

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Sep-2010
Set-up Time : 9:51:14 AM

Area Scan : 7x5x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=4mm, y=4mm, z=4mm

Other Data

DUT Position : Right
Separation : 5 mm
Channel : Low

Tail End

Connector End

1 gram SAR value : 0.684 W/kg 10 gram SAR value : 0.462 W/kg Area Scan Peak SAR : 0.722 W/kg Zoom Scan Peak SAR : 1.461 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 23-Sep-2010

Starting Time : 23-Sep-2010 11:12:43 AM End Time : 23-Sep-2010 11:27:26 AM Scanning Time : 883 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : Unit 27
Mode : GPRS 1-Slot
Model : MC547
Frequency : 850.00 MHz

Max. Transmit Pwr : 2 W Drift Time : 0 min(s)
Length : 80 mm
Width : 9 mm
Depth : 30 mm
Antenna Type : Internal
Orientation : Left Power Drift-Start : 0.957 W/kg

Power Drift-Finish: 0.999 W/kg

Power Drift (%) : 4.415

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 23-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.04 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

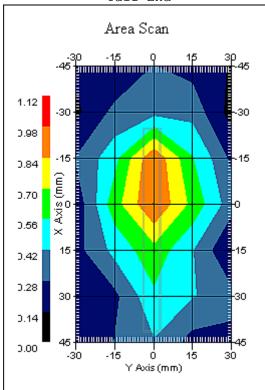
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 21-Oct-2009 Frequency : 835.00 MHz

Duty Cycle Factor: 8 Conversion Factor: 6.1

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Sep-2010
Set-up Time : 9:51:14 AM

Area Scan : 7x5x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=4mm, y=4mm, z=4mm

Other Data

DUT Position : Left Separation : 5 mm Channel : Low

Tail End

Connector End

1 gram SAR value : 1.015 W/kg 10 gram SAR value : 0.650 W/kg Area Scan Peak SAR : 0.981 W/kg Zoom Scan Peak SAR : 1.701 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 23-Sep-2010

Starting Time : 23-Sep-2010 11:29:13 AM End Time : 23-Sep-2010 11:43:56 AM Scanning Time : 883 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : Unit 27
Mode : GPRS 1-Slot
Model : MC547
Frequency : 850.00 MHz

Max. Transmit Pwr : 2 W Drift Time : 0 min(s)
Length : 80 mm
Width : 9 mm
Depth : 30 mm
Antenna Type : Internal
Orientation : Left

Power Drift-Start : 1.089 W/kg Power Drift-Finish: 1.117 W/kg

Power Drift (%) : 2.573

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 23-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.04 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

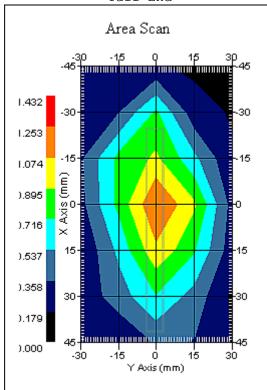
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date : 21-Oct-2009 Frequency : 835.00 MHz

Duty Cycle Factor: 8 Conversion Factor: 6.1

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Sep-2010
Set-up Time : 9:51:14 AM

Area Scan : 7x5x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=4mm, y=4mm, z=4mm

Other Data

DUT Position : Left Separation : 5 mm Channel : Mid

Tail End

Connector End

1 gram SAR value : 1.116 W/kg 10 gram SAR value : 0.714 W/kg Area Scan Peak SAR : 1.254 W/kg Zoom Scan Peak SAR : 2.221 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 23-Sep-2010

Starting Time : 23-Sep-2010 11:45:21 AM End Time : 23-Sep-2010 12:00:15 PM Scanning Time : 894 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : Unit 27
Mode : GPRS 1-Slot
Model : MC547
Frequency : 850.00 MHz

Max. Transmit Pwr : 2 W Drift Time : 0 min(s)
Length : 80 mm
Width : 9 mm
Depth : 30 mm
Antenna Type : Internal
Orientation : Left Power Drift-Start : 0.897 W/kg

Power Drift-Finish: 0.903 W/kg Power Drift (%) : 0.663

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 23-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.04 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

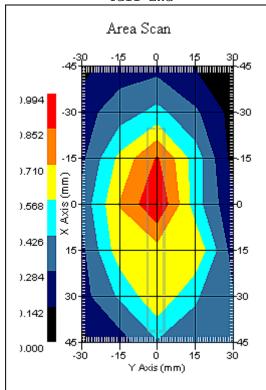
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date : 21-Oct-2009 Frequency : 835.00 MHz

Duty Cycle Factor: 8 Conversion Factor: 6.1

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Sep-2010
Set-up Time : 9:51:14 AM

Area Scan : 7x5x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=4mm, y=4mm, z=4mm

Other Data

DUT Position : Left Separation : 5 mm Channel : High

Tail End

Connector End

1 gram SAR value : 0.933 W/kg 10 gram SAR value : 0.588 W/kg Area Scan Peak SAR : 0.992 W/kg Zoom Scan Peak SAR : 1.951 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 23-Sep-2010

Starting Time : 23-Sep-2010 10:04:33 PM End Time : 23-Sep-2010 10:19:18 PM Scanning Time : 885 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : Unit 27
Mode : GPRS 1-Slot
Model : MC547
Frequency : 850.00 MHz

Max. Transmit Pwr : 2 W Drift Time : 0 min(s)
Length : 80 mm
Width : 30 mm
Depth : 9 mm
Antenna Type : Internal
Orientation : Tip

Power Drift-Start : 0.385 W/kg Power Drift-Finish: 0.381 W/kg Power Drift (%) : -0.981

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 23-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.04 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

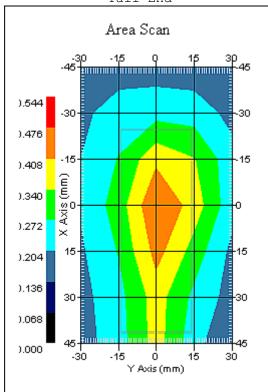
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date : 21-Oct-2009 Frequency : 835.00 MHz

Duty Cycle Factor: 8 Conversion Factor: 6.1

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Sep-2010
Set-up Time : 9:51:14 AM

Area Scan : 7x5x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=4mm, y=4mm, z=4mm

Other Data

DUT Position : Tip Separation : 5 mm Channel : Low

Tail End

Connector End

1 gram SAR value : 0.450 W/kg 10 gram SAR value : 0.311 W/kg Area Scan Peak SAR : 0.477 W/kg Zoom Scan Peak SAR : 0.680 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 24-Sep-2010

Starting Time : 24-Sep-2010 08:01:10 AM End Time : 24-Sep-2010 08:16:02 AM Scanning Time : 892 secs

Product Data

Product Data

Device Name : Novatel Wireless
Serial No. : Unit 27

Mode : WCDMA Mode : WCDMA
Model : MC547
Frequency : 850.00 MHz Max. Transmit Pwr : 0.25 W Drift Time : 0 min(s)
Length : 80 mm
Width : 30 mm
Depth : 9 mm
Antenna Type : Internal
Orientation : Top

Power Drift-Start : 0.934 W/kg Power Drift-Finish: 0.916 W/kg Power Drift (%) : -1.949

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 24-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.18 F/m

Sigma : 0.97 S/m

Density : 1000.00 kg/cu. m

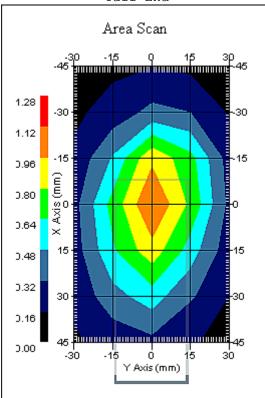
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date : 21-Oct-2009 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.1

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 24-Sep-2010
Set-up Time : 7:41:59 AM

Area Scan : 7x5x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=4mm, y=4mm, z=4mm

Other Data

DUT Position : Top Separation : 5 mm Channel : Low

Tail End

Connector End

1 gram SAR value : 1.021 W/kg 10 gram SAR value : 0.674 W/kg Area Scan Peak SAR : 1.121 W/kg Zoom Scan Peak SAR : 1.441 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 24-Sep-2010

Starting Time : 24-Sep-2010 07:44:03 AM End Time : 24-Sep-2010 07:59:22 AM Scanning Time : 919 secs

Product Data

Product Data

Device Name : Novatel Wireless
Serial No. : Unit 27

Mode : WCDMA Mode : WCDMA
Model : MC547
Frequency : 850.00 MHz Max. Transmit Pwr : 0.25 W Drift Time : 0 min(s)
Length : 80 mm
Width : 30 mm
Depth : 9 mm
Antenna Type : Internal
Orientation : Top

Power Drift-Start : 0.919 W/kg Power Drift-Finish: 0.906 W/kg Power Drift (%) : -1.425

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 24-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.18 F/m

Sigma : 0.97 S/m

Density : 1000.00 kg/cu. m

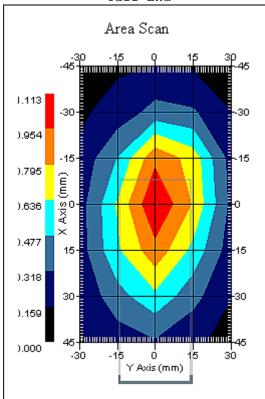
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date : 21-Oct-2009 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.1

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 24-Sep-2010
Set-up Time : 7:41:59 AM

Area Scan : 7x5x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=4mm, y=4mm, z=4mm

Other Data

DUT Position : Top Separation : 5 mm Channel : Mid

Tail End

Connector End

1 gram SAR value : 1.017 W/kg 10 gram SAR value : 0.668 W/kg Area Scan Peak SAR : 1.113 W/kg Zoom Scan Peak SAR : 1.441 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 24-Sep-2010

Starting Time : 24-Sep-2010 08:17:32 AM End Time : 24-Sep-2010 08:32:30 AM Scanning Time : 898 secs

Product Data

Product Data

Device Name : Novatel Wireless
Serial No. : Unit 27

Mode : WCDMA Mode : WCDMA
Model : MC547
Frequency : 850.00 MHz Max. Transmit Pwr : 0.25 W Drift Time : 0 min(s)
Length : 80 mm
Width : 30 mm
Depth : 9 mm
Antenna Type : Internal
Orientation : Top

Power Drift-Start : 0.976 W/kg Power Drift-Finish: 0.951 W/kg Power Drift (%) : -2.654

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 24-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.18 F/m

Sigma : 0.97 S/m

Density : 1000.00 kg/cu. m

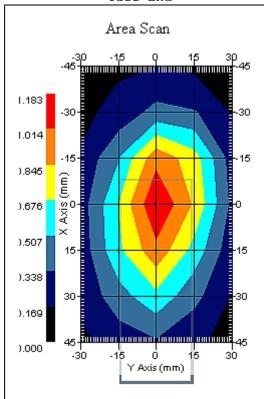
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date : 21-Oct-2009 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.1

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 24-Sep-2010
Set-up Time : 7:41:59 AM

Area Scan : 7x5x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=4mm, y=4mm, z=4mm

Other Data

DUT Position : Top Separation : 5 mm Channel : High

Tail End

Connector End

1 gram SAR value : 1.067 W/kg 10 gram SAR value : 0.696 W/kg Area Scan Peak SAR : 1.181 W/kg Zoom Scan Peak SAR : 1.591 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 23-Sep-2010

Starting Time : 23-Sep-2010 08:40:58 PM End Time : 23-Sep-2010 08:55:48 PM Scanning Time : 890 secs

Product Data

Product Data

Device Name : Novatel Wireless
Serial No. : Unit 27

Mode : WCDMA Mode : WCDMA
Model : MC547
Frequency : 850.00 MHz Max. Transmit Pwr : 0.25 W Drift Time : 0 min(s)
Length : 80 mm
Width : 30 mm
Depth : 9 mm
Antenna Type : Internal
Orientation : Bottom Power Drift-Start : 0.177 W/kg Power Drift-Finish: 0.182 W/kg

Power Drift (%) : 2.823

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 23-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.04 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

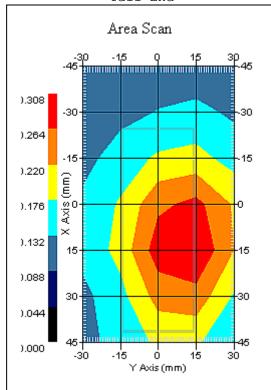
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 21-Oct-2009 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.1

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Sep-2010
Set-up Time : 9:51:14 AM

Area Scan : 7x5x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=4mm, y=4mm, z=4mm

Other Data

DUT Position : Bottom Separation : 5 mm Channel : Mid

Tail End

Connector End

1 gram SAR value : 0.308 W/kg 10 gram SAR value : 0.219 W/kg Area Scan Peak SAR : 0.306 W/kg Zoom Scan Peak SAR : 0.450 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 23-Sep-2010

Starting Time : 23-Sep-2010 10:02:47 AM End Time : 23-Sep-2010 10:17:38 AM Scanning Time : 891 secs

Product Data

Product Data

Device Name : Novatel Wireless
Serial No. : Unit 27

Mode : WCDMA Mode : WCDMA
Model : MC547
Frequency : 850.00 MHz Max. Transmit Pwr : 0.25 W Drift Time : 0 min(s)
Length : 80 mm
Width : 9 mm
Depth : 30 mm
Antenna Type : Internal
Orientation : Right Power Drift-Start : 0.662 W/kg Power Drift-Finish: 0.661 W/kg Power Drift (%) : -0.136

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 23-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.04 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

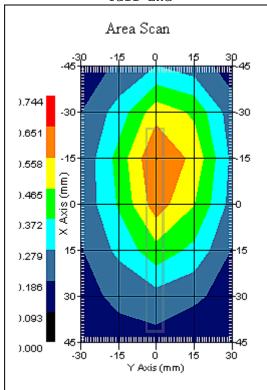
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 21-Oct-2009 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.1

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Sep-2010
Set-up Time : 9:51:14 AM

Area Scan : 7x5x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=4mm, y=4mm, z=4mm

Other Data

DUT Position : Right Separation : 5 mm Channel : Mid

Tail End

Connector End

1 gram SAR value : 0.629 W/kg 10 gram SAR value : 0.434 W/kg Area Scan Peak SAR : 0.654 W/kg Zoom Scan Peak SAR : 0.910 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 23-Sep-2010

Starting Time : 23-Sep-2010 12:18:54 PM End Time : 23-Sep-2010 12:33:44 PM Scanning Time : 890 secs

Product Data

Product Data

Device Name : Novatel Wireless
Serial No. : Unit 27

Mode : WCDMA Mode : WCDMA
Model : MC547
Frequency : 850.00 MHz Max. Transmit Pwr : 0.25 W Drift Time : 0 min(s)
Length : 80 mm
Width : 9 mm
Depth : 30 mm
Antenna Type : Internal
Orientation : Left Power Drift-Start : 0.783 W/kg

Power Drift-Finish: 0.765 W/kg Power Drift (%) : -2.265

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 23-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.04 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

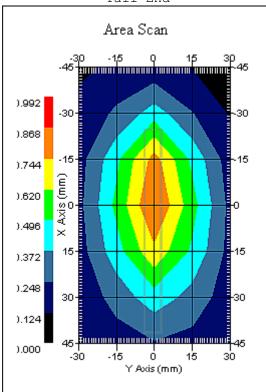
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 21-Oct-2009 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.1

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Sep-2010
Set-up Time : 9:51:14 AM

Area Scan : 7x5x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=4mm, y=4mm, z=4mm

Other Data

DUT Position : Left Separation : 5 mm Channel : Low

Tail End

Connector End

1 gram SAR value : 0.809 W/kg 10 gram SAR value : 0.531 W/kg Area Scan Peak SAR : 0.870 W/kg Zoom Scan Peak SAR : 1.221 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 23-Sep-2010

Starting Time : 23-Sep-2010 12:02:47 PM End Time : 23-Sep-2010 12:17:30 PM Scanning Time : 883 secs

Product Data

Product Data

Device Name : Novatel Wireless
Serial No. : Unit 27

Mode : WCDMA Mode : WCDMA
Model : MC547
Frequency : 850.00 MHz Max. Transmit Pwr : 0.25 W Drift Time : 0 min(s)
Length : 80 mm
Width : 9 mm
Depth : 30 mm
Antenna Type : Internal
Orientation : Left Power Drift-Start : 0.821 W/kg

Power Drift-Finish: 0.798 W/kg

Power Drift (%) : -2.788

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 23-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.04 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

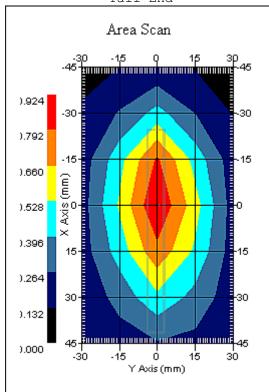
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 21-Oct-2009 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.1

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Sep-2010
Set-up Time : 9:51:14 AM

Area Scan : 7x5x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=4mm, y=4mm, z=4mm

Other Data

DUT Position : Left Separation : 5 mm Channel : Mid

Tail End

Connector End

1 gram SAR value : 0.852 W/kg 10 gram SAR value : 0.556 W/kg Area Scan Peak SAR : 0.922 W/kg Zoom Scan Peak SAR : 1.251 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 23-Sep-2010

Starting Time : 23-Sep-2010 12:35:57 PM End Time : 23-Sep-2010 12:50:46 PM Scanning Time : 889 secs

Product Data

Product Data

Device Name : Novatel Wireless
Serial No. : Unit 27

Mode : WCDMA Mode : WCDMA
Model : MC547
Frequency : 850.00 MHz Max. Transmit Pwr : 0.25 W Drift Time : 0 min(s)
Length : 80 mm
Width : 9 mm
Depth : 30 mm
Antenna Type : Internal
Orientation : Left Power Drift-Start : 0.785 W/kg

Power Drift-Finish: 0.791 W/kg

Power Drift (%) : 0.725

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 23-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.04 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

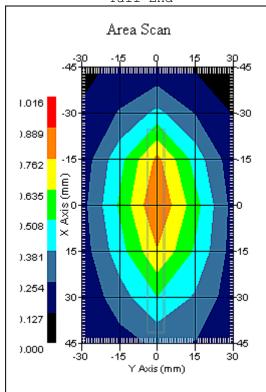
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 21-Oct-2009 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.1

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Sep-2010
Set-up Time : 9:51:14 AM

Area Scan : 7x5x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=4mm, y=4mm, z=4mm

Other Data

DUT Position : Left Separation : 5 mm Channel : High

Tail End

Connector End

1 gram SAR value : 0.817 W/kg 10 gram SAR value : 0.534 W/kg Area Scan Peak SAR : 0.890 W/kg Zoom Scan Peak SAR : 1.191 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 23-Sep-2010

Starting Time : 23-Sep-2010 10:20:51 PM End Time : 23-Sep-2010 10:35:40 PM Scanning Time : 889 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : Unit 27
Mode : WCDMA
Model : MC547
Frequency : 850.00 MHz Max. Transmit Pwr : 0.25 W Drift Time : 0 min(s)
Length : 80 mm
Width : 30 mm
Depth : 9 mm
Antenna Type : Internal
Orientation : Tip

Power Drift-Start : 0.238 W/kg Power Drift-Finish: 0.229 W/kg Power Drift (%) : -3.784

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 835
Frequency : 835.00 MHz
Last Calib. Date : 23-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 40.00 RH%

Epsilon : 55.04 F/m

Sigma : 0.99 S/m

Density : 1000.00 kg/cu. m

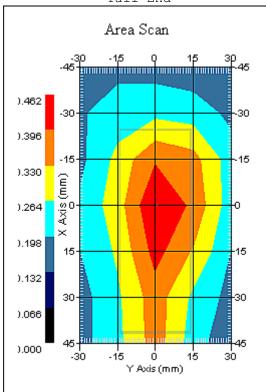
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 21-Oct-2009 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.1

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 23-Sep-2010
Set-up Time : 9:51:14 AM

Area Scan : 7x5x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=4mm, y=4mm, z=4mm

Other Data

DUT Position : Tip Separation : 5 mm Channel : Mid

Tail End

Connector End

1 gram SAR value : 0.351 W/kg 10 gram SAR value : 0.253 W/kg Area Scan Peak SAR : 0.462 W/kg Zoom Scan Peak SAR : 0.480 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 22-Sep-2010

Starting Time : 22-Sep-2010 06:59:04 PM End Time : 22-Sep-2010 07:13:48 PM Scanning Time : 884 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : Unit 27
Mode : GPRS 1-Slot
Model : MC547
Frequency : 1900.00 MHz

Max. Transmit Pwr : 1 W Drift Time : 0 min(s)

Length : 80 mm

Width : 30 mm

Depth : 9 mm

Antenna Type : Internal

Orientation : Top

Power Drift-Start : 0.515 W/kg Power Drift-Finish: 0.498 W/kg Power Drift (%) : -3.383

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 22-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 36.00 RH%

Epsilon : 53.06 F/m

Sigma : 1.53 S/m

Density : 1000.00 kg/cu. m

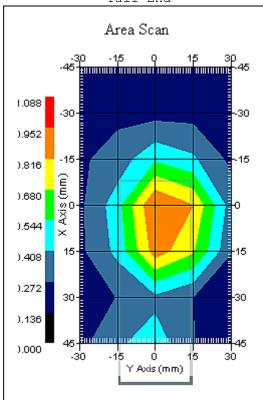
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 21-Oct-2009 Frequency : 1900.00 MHz

Duty Cycle Factor: 8 Conversion Factor: 4.85

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

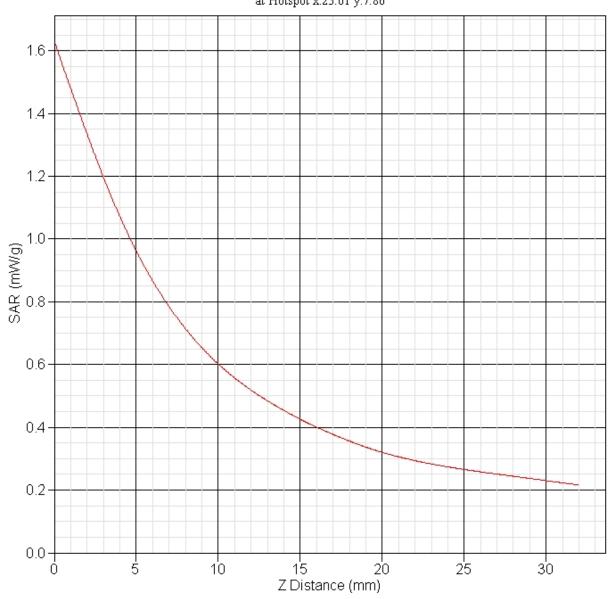

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2010
Set-up Time : 1:33:25 PM

Area Scan : 7x5x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=4mm, y=4mm, z=4mm

Other Data

DUT Position : Top Separation : 5 mm Channel : Low

Tail End


Connector End

1 gram SAR value : 0.983 W/kg 10 gram SAR value : 0.566 W/kg Area Scan Peak SAR : 0.953 W/kg Zoom Scan Peak SAR : 1.631 W/kg

SAR-Z Axis at Hotspot x:23.01 y:7.86

SAR Test Report

By Operator : Jay

Measurement Date : 22-Sep-2010

Starting Time : 22-Sep-2010 07:16:04 PM End Time : 22-Sep-2010 07:30:45 PM Scanning Time : 881 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : Unit 27
Mode : GPRS 1-Slot
Model : MC547
Frequency : 1900.00 MHz

Max. Transmit Pwr : 1 W Drift Time : 0 min(s)
Length : 80 mm
Width : 30 mm
Depth : 9 mm
Antenna Type : Internal
Orientation : Top

Power Drift-Start : 0.397 W/kg Power Drift-Finish: 0.403 W/kg

Power Drift (%) : 1.408

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 22-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 36.00 RH%

Epsilon : 53.06 F/m

Sigma : 1.53 S/m

Density : 1000.00 kg/cu. m

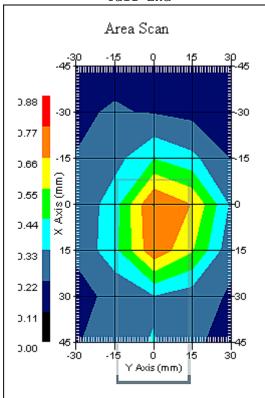
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 21-Oct-2009 Frequency : 1900.00 MHz

Duty Cycle Factor: 8 Conversion Factor: 4.85

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2010
Set-up Time : 1:33:25 PM

Area Scan : 7x5x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=4mm, y=4mm, z=4mm

Other Data

DUT Position : Top Separation : 5 mm Channel : Mid

Tail End

Connector End

1 gram SAR value : 0.789 W/kg 10 gram SAR value : 0.467 W/kg Area Scan Peak SAR : 0.772 W/kg Zoom Scan Peak SAR : 1.331 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 22-Sep-2010

Starting Time : 22-Sep-2010 07:32:17 PM End Time : 22-Sep-2010 07:47:03 PM Scanning Time : 886 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : Unit 27
Mode : GPRS 1-Slot
Model : MC547
Frequency : 1900.00 MHz

Max. Transmit Pwr : 1 W Drift Time : 0 min(s)

Length : 80 mm

Width : 30 mm

Depth : 9 mm

Antenna Type : Internal

Orientation : Top

Power Drift-Start : 0.463 W/kg Power Drift-Finish: 0.458 W/kg Power Drift (%) : -0.989

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 22-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 36.00 RH%

Epsilon : 53.06 F/m

Sigma : 1.53 S/m

Density : 1000.00 kg/cu. m

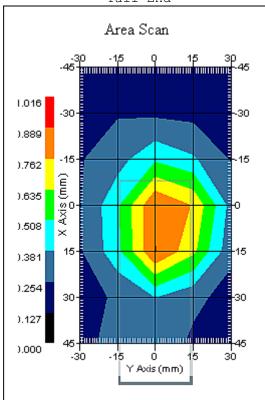
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 21-Oct-2009 Frequency : 1900.00 MHz

Duty Cycle Factor: 8 Conversion Factor: 4.85

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2010
Set-up Time : 1:33:25 PM

Area Scan : 7x5x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=4mm, y=4mm, z=4mm

Other Data

DUT Position : Top Separation : 5 mm Channel : High

Tail End

Connector End

1 gram SAR value : 0.926 W/kg 10 gram SAR value : 0.553 W/kg Area Scan Peak SAR : 0.892 W/kg Zoom Scan Peak SAR : 1.521 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 22-Sep-2010

Starting Time : 22-Sep-2010 02:21:15 PM End Time : 22-Sep-2010 02:35:47 PM Scanning Time : 872 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : Unit 27
Mode : GPRS 1-Slot
Model : MC547
Frequency : 1900.00 MHz

Max. Transmit Pwr : 1 W Drift Time : 0 min(s)

Length : 80 mm

Width : 30 mm

Depth : 9 mm

Antenna Type : Internal

Orientation : Bottom Power Drift-Start : 0.265 W/kg Power Drift-Finish: 0.260 W/kg Power Drift (%) : -1.923

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 22-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 36.00 RH%

Epsilon : 53.06 F/m

Sigma : 1.53 S/m

Density : 1000.00 kg/cu. m

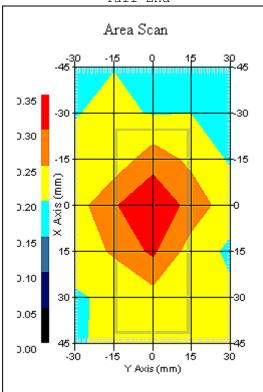
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 21-Oct-2009 Frequency : 1900.00 MHz

Duty Cycle Factor: 8 Conversion Factor: 4.85

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2010
Set-up Time : 1:33:25 PM

Area Scan : 7x5x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=4mm, y=4mm, z=4mm

Other Data

DUT Position : Bottom Separation : 5 mm Channel : Low

Tail End

Connector End

1 gram SAR value : 0.333 W/kg 10 gram SAR value : 0.254 W/kg Area Scan Peak SAR : 0.349 W/kg Zoom Scan Peak SAR : 0.440 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 22-Sep-2010

Starting Time : 22-Sep-2010 09:17:25 AM End Time : 22-Sep-2010 09:32:22 AM Scanning Time : 897 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : Unit 27
Mode : GPRS 1-Slot
Model : MC547
Frequency : 1900.00 MHz

Max. Transmit Pwr : 1 W Drift Time : 0 min(s)
Length : 80 mm
Width : 9 mm
Depth : 30 mm
Antenna Type : Internal
Orientation : Right Power Drift-Start : 0.394 W/kg Power Drift-Finish: 0.409 W/kg Power Drift (%) : 3.806

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 22-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 36.00 RH%

Epsilon : 53.06 F/m

Sigma : 1.53 S/m

Density : 1000.00 kg/cu. m

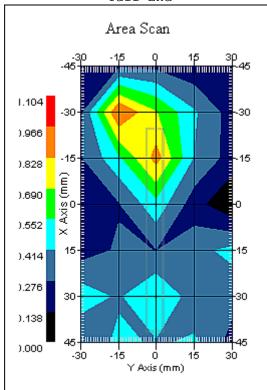
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 21-Oct-2009 Frequency : 1900.00 MHz

Duty Cycle Factor: 8 Conversion Factor: 4.85

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2010
Set-up Time : 1:33:25 PM

Area Scan : 7x5x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=4mm, y=4mm, z=4mm

Other Data

DUT Position : Right
Separation : 5 mm
Channel : Low

Tail End

Connector End

1 gram SAR value : 0.670 W/kg 10 gram SAR value : 0.333 W/kg Area Scan Peak SAR : 0.969 W/kg Zoom Scan Peak SAR : 1.200 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 22-Sep-2010

Starting Time : 22-Sep-2010 11:17:07 AM End Time : 22-Sep-2010 11:32:03 AM Scanning Time : 896 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : Unit 27
Mode : GPRS 1-Slot
Model : MC547
Frequency : 1900.00 MHz

Max. Transmit Pwr : 1 W Drift Time : 0 min(s)
Length : 80 mm
Width : 9 mm
Depth : 30 mm
Antenna Type : Internal
Orientation : Left Power Drift-Start : 0.547 W/kg

Power Drift-Finish: 0.560 W/kg

Power Drift (%) : 2.376

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 22-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 36.00 RH%

Epsilon : 53.06 F/m

Sigma : 1.53 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 21-Oct-2009 Frequency : 1900.00 MHz

Duty Cycle Factor: 8 Conversion Factor: 4.85

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2010
Set-up Time : 1:33:25 PM

Area Scan : 7x5x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=4mm, y=4mm, z=4mm

Other Data

DUT Position : Left Separation : 5 mm Channel : Low

Tail End

Connector End

1 gram SAR value : 0.676 W/kg 10 gram SAR value : 0.478 W/kg Area Scan Peak SAR : 0.629 W/kg Zoom Scan Peak SAR : 0.900 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 22-Sep-2010

Starting Time : 22-Sep-2010 03:42:08 PM End Time : 22-Sep-2010 03:56:58 PM Scanning Time : 890 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : Unit 27
Mode : GPRS 1-Slot
Model : MC547
Frequency : 1900.00 MHz

Max. Transmit Pwr : 1 W Drift Time : 0 min(s)

Length : 80 mm

Width : 30 mm

Depth : 9 mm

Antenna Type : Internal

Orientation : Tip

Power Drift-Start : 0.234 W/kg Power Drift-Finish: 0.235 W/kg

Power Drift (%) : 0.485

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 22-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 36.00 RH%

Epsilon : 53.06 F/m

Sigma : 1.53 S/m

Density : 1000.00 kg/cu. m

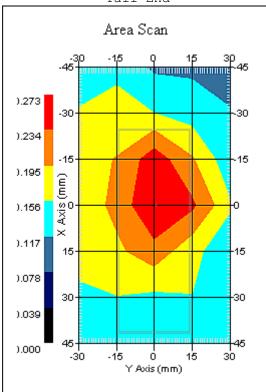
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 21-Oct-2009 Frequency : 1900.00 MHz

Duty Cycle Factor: 8 Conversion Factor: 4.85

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2010
Set-up Time : 1:33:25 PM

Area Scan : 7x5x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=4mm, y=4mm, z=4mm

Other Data

DUT Position : Tip Separation : 5 mm Channel : Low

Tail End

Connector End

1 gram SAR value : 0.265 W/kg 10 gram SAR value : 0.187 W/kg Area Scan Peak SAR : 0.272 W/kg Zoom Scan Peak SAR : 0.430 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 21-Sep-2010

Starting Time : 21-Sep-2010 06:10:02 PM End Time : 21-Sep-2010 06:25:14 PM Scanning Time : 912 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : Unit 27
Mode : WCDMA
Model : MC547
Frequency : 1900.00 MHz

Max. Transmit Pwr : 0.25 W Drift Time : 0 min(s)
Length : 80 mm
Width : 30 mm
Depth : 9 mm
Antenna Type : Internal
Orientation : Top

Power Drift-Start : 0.898 W/kg Power Drift-Finish: 0.938 W/kg

Power Drift (%) : 4.470

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 21-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 36.00 RH%

Epsilon : 53.24 F/m

Sigma : 1.55 S/m

Density : 1000.00 kg/cu. m

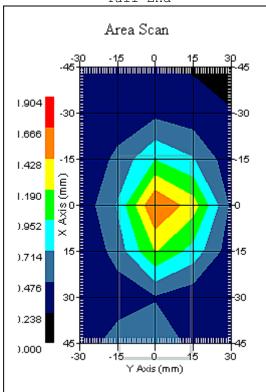
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 21-Oct-2009 Frequency : 1900.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 4.85

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 21-Sep-2010
Set-up Time : 1:33:25 PM

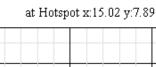
Area Scan : 7x5x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=4mm, y=4mm, z=4mm

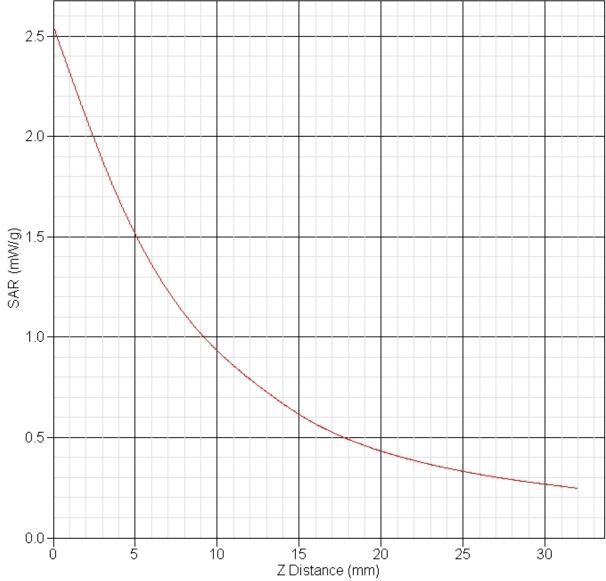
Other Data

DUT Position : Top Separation : 5 mm Channel : Low

Tail End

Connector End


1 gram SAR value : 1.534 W/kg 10 gram SAR value : 0.876 W/kg Area Scan Peak SAR : 1.667 W/kg Zoom Scan Peak SAR : 2.552 W/kg



RF Exposure Lab

FCC ID: NBZNRM-MC547

SAR-Z Axis

SAR Test Report

By Operator : Jay

Measurement Date : 21-Sep-2010

Starting Time : 21-Sep-2010 05:09:38 PM End Time : 21-Sep-2010 05:24:55 PM Scanning Time : 917 secs

Product Data

Product Data

Device Name : Novatel Wireless
Serial No. : Unit 27

Mode : WCDMA Mode : WCDMA
Model : MC547
Frequency : 1900.00 MHz

Max. Transmit Pwr : 0.25 W Drift Time : 0 min(s)
Length : 80 mm
Width : 30 mm
Depth : 9 mm
Antenna Type : Internal
Orientation : Top

Power Drift-Start : 0.757 W/kg Power Drift-Finish: 0.757 W/kg

Power Drift (%) : 0.020

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 21-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 36.00 RH%

Epsilon : 53.24 F/m

Sigma : 1.55 S/m

Density : 1000.00 kg/cu. m

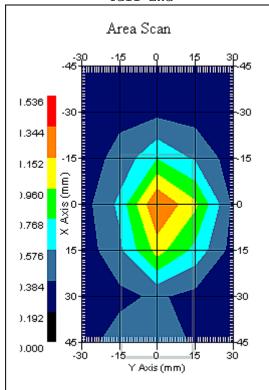
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 21-Oct-2009 Frequency : 1900.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 4.85

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 21-Sep-2010
Set-up Time : 1:33:25 PM

Area Scan : 7x5x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=4mm, y=4mm, z=4mm

Other Data

DUT Position : Top Separation : 5 mm Channel : Mid

Tail End

Connector End

1 gram SAR value : 1.239 W/kg 10 gram SAR value : 0.726 W/kg Area Scan Peak SAR : 1.347 W/kg Zoom Scan Peak SAR : 2.051 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 21-Sep-2010

Starting Time : 21-Sep-2010 06:27:20 PM End Time : 21-Sep-2010 06:42:38 PM Scanning Time : 918 secs

Product Data

Product Data

Device Name : Novatel Wireless
Serial No. : Unit 27

Mode : WCDMA Mode : WCDMA
Model : MC547
Frequency : 1900.00 MHz

Max. Transmit Pwr : 0.25 W Drift Time : 0 min(s)
Length : 80 mm
Width : 30 mm
Depth : 9 mm
Antenna Type : Internal
Orientation : Top

Power Drift-Start : 0.699 W/kg Power Drift-Finish: 0.728 W/kg

Power Drift (%) : 4.141

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 21-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 36.00 RH%

Epsilon : 53.24 F/m

Sigma : 1.55 S/m

Density : 1000.00 kg/cu. m

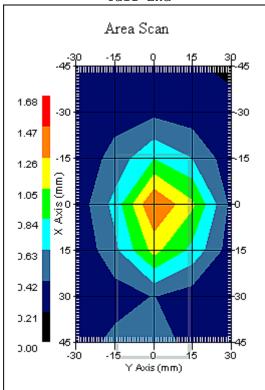
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 21-Oct-2009 Frequency : 1900.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 4.85

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 21-Sep-2010
Set-up Time : 1:33:25 PM

Area Scan : 7x5x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=4mm, y=4mm, z=4mm

Other Data

DUT Position : Top Separation : 5 mm Channel : High

Tail End

Connector End

1 gram SAR value : 1.339 W/kg 10 gram SAR value : 0.774 W/kg Area Scan Peak SAR : 1.471 W/kg Zoom Scan Peak SAR : 2.151 W/kg

SAR Test Report

By Operator : Jay

Measurement Date : 22-Sep-2010

Starting Time : 22-Sep-2010 12:12:32 PM End Time : 22-Sep-2010 12:27:17 PM Scanning Time : 885 secs

Product Data

Product Data

Device Name : Novatel Wireless
Serial No. : Unit 27

Mode : WCDMA Mode : WCDMA
Model : MC547
Frequency : 1900.00 MHz

Max. Transmit Pwr : 0.25 W Drift Time : 0 min(s)
Length : 80 mm
Width : 30 mm
Depth : 9 mm
Antenna Type : Internal
Orientation : Bottom

Power Drift-Start: 0.314 W/kg Power Drift-Finish: 0.317 W/kg

Power Drift (%) : 0.919

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 22-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 36.00 RH%

Epsilon : 53.06 F/m

Sigma : 1.53 S/m

Density : 1000.00 kg/cu. m

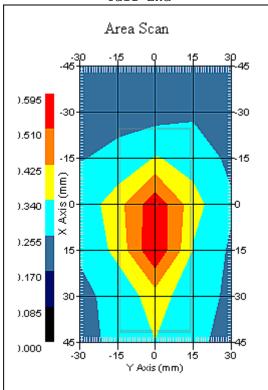
Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

Last Calib. Date: 21-Oct-2009 Frequency : 1900.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 4.85

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2010
Set-up Time : 1:33:25 PM

Area Scan : 7x5x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=4mm, y=4mm, z=4mm

Other Data

DUT Position : Bottom Separation : 5 mm Channel : Low

Tail End

Connector End

1 gram SAR value : 0.592 W/kg 10 gram SAR value : 0.394 W/kg Area Scan Peak SAR : 0.595 W/kg Zoom Scan Peak SAR : 0.980 W/kg

FCC ID: NBZNRM-MC547

SAR Test Report

By Operator : Jay

Measurement Date : 22-Sep-2010

Starting Time : 22-Sep-2010 07:38:17 AM End Time : 22-Sep-2010 07:53:04 AM Scanning Time : 887 secs

Product Data

Product Data

Device Name : Novatel Wireless
Serial No. : Unit 27

Mode : WCDMA Mode : WCDMA
Model : MC547
Frequency : 1900.00 MHz

Max. Transmit Pwr : 0.25 W Drift Time : 0 min(s)
Length : 80 mm
Width : 9 mm
Depth : 30 mm
Antenna Type : Internal
Orientation : Right Power Drift-Start : 0.698 W/kg

Power Drift-Finish: 0.721 W/kg

Power Drift (%) : 3.290

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 22-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 36.00 RH%

Epsilon : 53.06 F/m

Sigma : 1.53 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

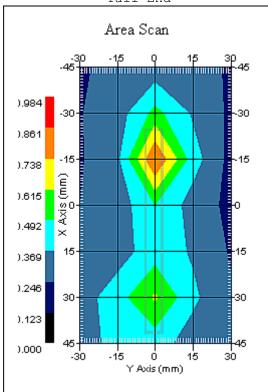
Last Calib. Date : 21-Oct-2009 Frequency : 1900.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 4.85

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Compression Point: 95.00 mV : 1.56 mm Offset

Measurement Data Crest Factor : 1


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2010
Set-up Time : 1:33:25 PM

Area Scan : 7x5x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=4mm, y=4mm, z=4mm

Other Data

DUT Position : Right Separation : 5 mm Channel : Low

Tail End

Connector End

1 gram SAR value : 0.809 W/kg 10 gram SAR value : 0.484 W/kg Area Scan Peak SAR : 0.864 W/kg Zoom Scan Peak SAR : 1.421 W/kg

FCC ID: NBZNRM-MC547

SAR Test Report

By Operator : Jay

Measurement Date : 22-Sep-2010

Starting Time : 22-Sep-2010 07:55:17 AM End Time : 22-Sep-2010 08:10:01 AM Scanning Time : 884 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : Unit 27
Mode : WCDMA
Model : MC547
Frequency : 1900.00 MHz

Max. Transmit Pwr : 0.25 W Drift Time : 0 min(s)
Length : 80 mm
Width : 9 mm
Depth : 30 mm
Antenna Type : Internal
Orientation : Right Power Drift-Start : 0.863 W/kg Power Drift-Finish: 0.873 W/kg

Power Drift (%) : 1.246

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 22-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 36.00 RH%

Epsilon : 53.06 F/m

Sigma : 1.53 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

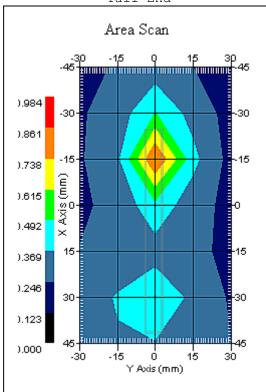
Last Calib. Date : 21-Oct-2009 Frequency : 1900.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 4.85

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Compression Point: 95.00 mV : 1.56 mm Offset

Measurement Data Crest Factor : 1


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2010
Set-up Time : 1:33:25 PM

Area Scan : 7x5x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=4mm, y=4mm, z=4mm

Other Data

DUT Position : Right Separation : 5 mm Channel : Mid

Tail End

Connector End

1 gram SAR value : 0.744 W/kg 10 gram SAR value : 0.446 W/kg Area Scan Peak SAR : 0.863 W/kg Zoom Scan Peak SAR : 1.331 W/kg

FCC ID: NBZNRM-MC547

SAR Test Report

By Operator : Jay

Measurement Date : 22-Sep-2010

Starting Time : 22-Sep-2010 08:11:23 AM End Time : 22-Sep-2010 08:26:03 AM Scanning Time : 880 secs

Product Data

Product Data

Device Name : Novatel Wireless
Serial No. : Unit 27

Mode : WCDMA Mode : WCDMA
Model : MC547
Frequency : 1900.00 MHz

Max. Transmit Pwr : 0.25 W Drift Time : 0 min(s)
Length : 80 mm
Width : 9 mm
Depth : 30 mm
Antenna Type : Internal
Orientation : Right Power Drift-Start : 0.831 W/kg Power Drift-Finish: 0.831 W/kg Power Drift (%) : -0.532

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 22-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 36.00 RH%

Epsilon : 53.06 F/m

Sigma : 1.53 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

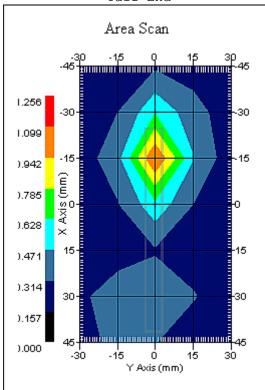
Last Calib. Date : 21-Oct-2009 Frequency : 1900.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 4.85

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Compression Point: 95.00 mV : 1.56 mm Offset

Measurement Data Crest Factor : 1


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2010
Set-up Time : 1:33:25 PM

Area Scan : 7x5x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=4mm, y=4mm, z=4mm

Other Data

DUT Position : Right
Separation : 5 mm
Channel : High

Tail End

Connector End

1 gram SAR value : 0.726 W/kg 10 gram SAR value : 0.445 W/kg Area Scan Peak SAR : 1.102 W/kg Zoom Scan Peak SAR : 1.201 W/kg

FCC ID: NBZNRM-MC547

SAR Test Report

By Operator : Jay

Measurement Date : 22-Sep-2010

Starting Time : 22-Sep-2010 10:11:57 AM End Time : 22-Sep-2010 10:26:30 AM Scanning Time : 873 secs

Product Data

Product Data

Device Name : Novatel Wireless
Serial No. : Unit 27

Mode : WCDMA Mode : WCDMA
Model : MC547
Frequency : 1900.00 MHz

Max. Transmit Pwr : 0.25 W Drift Time : 0 min(s)

Length : 80 mm

Width : 9 mm

Depth : 30 mm

Antenna Type : Internal

Orientation : Left Power Drift-Start: 0.517 W/kg

Power Drift-Finish: 0.495 W/kg Power Drift (%) : -4.252

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 22-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 36.00 RH%

Epsilon : 53.06 F/m

Sigma : 1.53 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

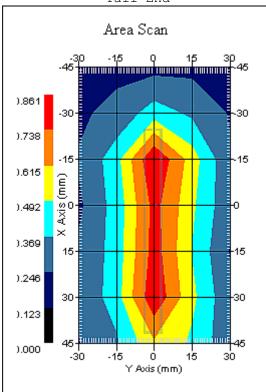
Last Calib. Date : 21-Oct-2009 Frequency : 1900.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 4.85

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Compression Point: 95.00 mV : 1.56 mm Offset

Measurement Data Crest Factor : 1


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2010
Set-up Time : 1:33:25 PM

Area Scan : 7x5x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=4mm, y=4mm, z=4mm

Other Data

DUT Position : Left Separation : 5 mm Channel : Low

Tail End

Connector End

1 gram SAR value : 0.758 W/kg 10 gram SAR value : 0.445 W/kg Area Scan Peak SAR : 0.861 W/kg Zoom Scan Peak SAR : 1.341 W/kg

FCC ID: NBZNRM-MC547

SAR Test Report

By Operator : Jay

Measurement Date : 22-Sep-2010

Starting Time : 22-Sep-2010 03:05:29 PM End Time : 22-Sep-2010 03:20:17 PM Scanning Time : 888 secs

Product Data

Product Data
Device Name : Novatel Wireless
Serial No. : Unit 27
Mode : WCDMA
Model : MC547
Frequency : 1900.00 MHz

Max. Transmit Pwr : 0.25 W Drift Time : 0 min(s)
Length : 80 mm
Width : 30 mm
Depth : 9 mm
Antenna Type : Internal
Orientation : Tip

Power Drift-Start : 0.378 W/kg Power Drift-Finish: 0.365 W/kg Power Drift (%) : -3.435

Phantom Data
Name : APREL-Uni
Type : Uni-Phantom
Size (mm) : 280 x 280 x 200
Serial No. : System Default
Location : Center
Description : Uni-Phantom

Tissue Data
Type : BODY
Serial No. : 1900
Frequency : 1900.00 MHz
Last Calib. Date : 22-Sep-2010 Temperature : 20.00°C Ambient Temp. : 23.00 °C

Humidity : 36.00 RH%

Epsilon : 53.06 F/m

Sigma : 1.53 S/m

Density : 1000.00 kg/cu. m

Probe Data
Name : RFEL 217
Model : E020
Type : E-Field Triangle

Type : E-Fi Serial No. : 217

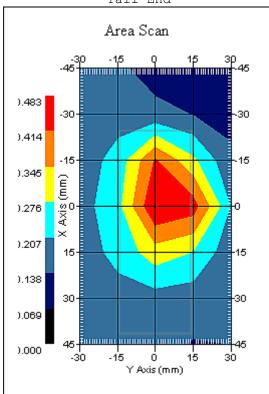
Last Calib. Date : 21-Oct-2009 Frequency : 1900.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 4.85

Probe Sensitivity: 1.20 1.20 1.20 $\mu V/(V/m)^2$

Compression Point: 95.00 mV : 1.56 mm Offset

Measurement Data
Crest Factor : 1


Scan Type : Complete
Tissue Temp. : 20.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 22-Sep-2010
Set-up Time : 1:33:25 PM

Area Scan : 7x5x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 7x7x7 : Measurement x=4mm, y=4mm, z=4mm

Other Data

DUT Position : Tip Separation : 5 mm Channel : Low

Tail End

Connector End

1 gram SAR value : 0.464 W/kg 10 gram SAR value : 0.293 W/kg Area Scan Peak SAR : 0.483 W/kg Zoom Scan Peak SAR : 0.740 W/kg

Appendix D – Probe Calibration Data Sheets

NCL CALIBRATION LABORATORIES

Calibration File No.: CP-1079

Client.: RFEL

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the **NCL CALIBRATION LABORATORIES** by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Equipment: Miniature Isotropic RF Probe 835 MHz

BODY Calibration

Manufacturer: APREL Laboratories

Model No.: E-020 Serial No.: 217

Calibration Procedure: SSI/DRB-TP-D01-032-E020-V2

Project No: RFEL-E020-CAL-5477

Calibrated: 21st October 2009 Released on: 28th October 2009

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary
This calibration has been conducted in line with the SOC SO-IEC 17025 Scope of Accreditation
Accredited Laboratory Number 48

Released By:

NCL CALIBRATION LABORATORIES

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6 Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4161

Introduction

This Calibration Report reproduces the results of the calibration performed in line with the SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure. The results contained within this report are for APREL E-Field Probe E-020 217.

References

SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure

IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques"

SSI-TP-011 Tissue Calibration Procedure

IEC 62209 "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1 & 2: Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity of the ear (frequency range of 300 MHz to 3 GHz)"

IEEE 1309 Draft Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, from 9kHz to 40GHz

Conditions

Probe 217 was a re-calibration.

Ambient Temperature of the Laboratory:

22 °C +/- 0.5°C

Temperature of the Tissue:

21 °C +/- 0.5°C

We the undersigned attest that to the best of our knowledge the calibration of this probe has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

Stuart Nicol

Jesse Hones

Calibration Results Summary

Probe Type: E-Field Probe E-020

Serial Number: 217

Frequency: 835 MHz

Sensor Offset: 1.56 mm

Sensor Length: 2.5 mm

Tip Enclosure: Ertalyte*

Tip Diameter: <5 mm

Tip Length: 60 mm

Total Length: 290 mm

Sensitivity in Air

Diode Compression Point: 95 mV

^{*}Resistive to recommended tissue recipes per IEEE-1528

Sensitivity in Body Tissue Measured

Frequency: 835 MHz

Epsilon: 54.9 (+/-5%) **Sigma:** 1.04 S/m (+/-5%)

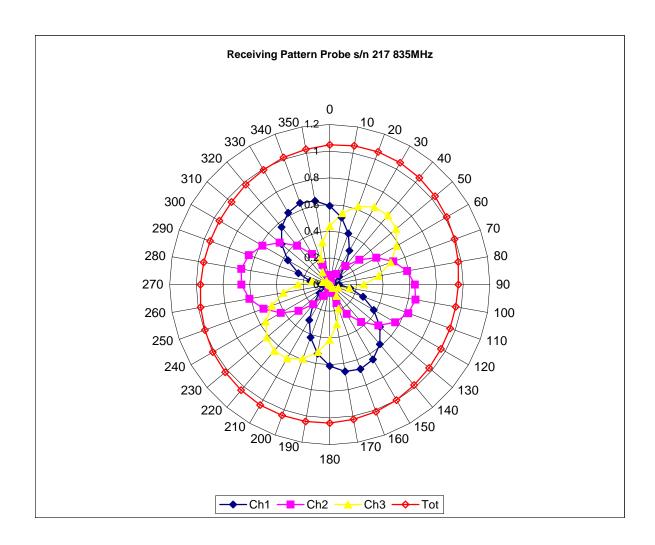
ConvF

Channel X: 6.1

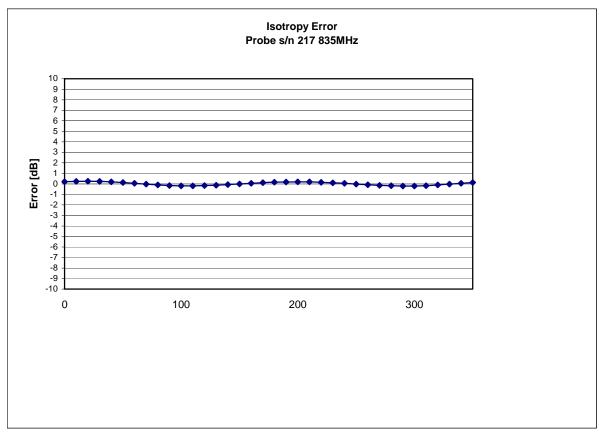
Channel Y: 6.1

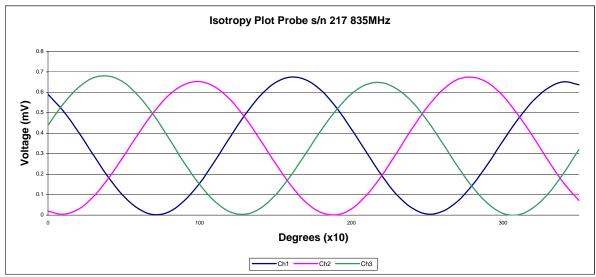
Channel Z: 6.1

Tissue sensitivity values were calculated using the load impedance of the APREL Laboratories Daq-Paq.


Boundary Effect:

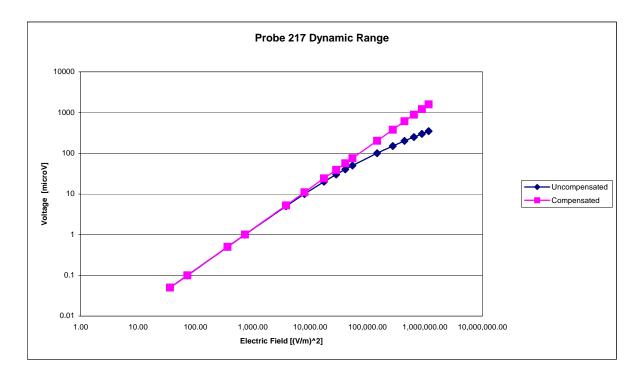
Uncertainty resulting from the boundary effect is less than 2% for the distance between the tip of the probe and the tissue boundary, when less than 2.44mm.


Spatial Resolution:

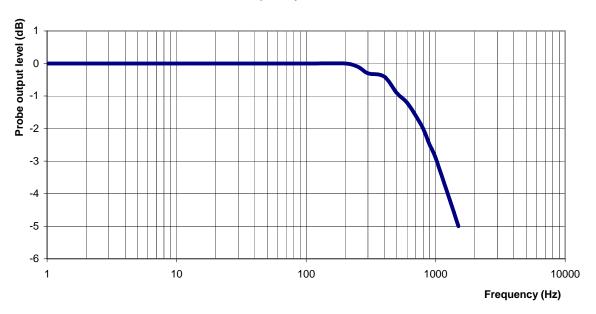

The measured probe tip diameter is 5 mm (+/- 0.01 mm) and therefore meets the requirements of SSI/DRB-TP-D01-032 for spatial resolution.

Receiving Pattern 835 MHz (Air)

Isotropy Error 835 MHz (Air)



Isotropicity Tissue:


0.10 dB

Dynamic Range

Video Bandwidth

Probe Frequency Characteristics

Video Bandwidth at 500 Hz 1 dB Video Bandwidth at 1.02 KHz: 3 dB

Conversion Factor Uncertainty Assessment Measured

Sensitivity in Body Tissue

Frequency: 835 MHz

Epsilon: 54.9 (+/-5%) **Sigma:** 1.04 S/m (+/-5%)

ConvF

Channel X: 6.1 7%(K=2)

Channel Y: 6.1 7%(K=2)

Channel Z: 6.1 7%(K=2)

To minimize the uncertainty calculation all tissue sensitivity values were calculated using a load impedance of 5 M Ω .

Boundary Effect:

For a distance of 2.5mm the evaluated uncertainty (increase in the probe sensitivity) is less than 2%.

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2009.

NCL CALIBRATION LABORATORIES

Calibration File No.: CP-1084

Client.: RFEL

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Equipment: Miniature Isotropic RF Probe 1900 MHz

BODY Calibration

Manufacturer: APREL Laboratories

Model No.: E-020 Serial No.: 217

Calibration Procedure: SSI/DRB-TP-D01-032-E020-V2

Project No: RFEL-E020-CAL-5477

Calibrated: 21st October 2009 Released on: 28th October 2009

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary
This calibration has been conducted in line with the SOC SO-IEC 17025 Scope of Accreditation
Accredited Laboratory Number 48

Released By:

NCL CALIBRATION LABORATORIES

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6 Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4161

Introduction

This Calibration Report reproduces the results of the calibration performed in line with the SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure. The results contained within this report are for APREL E-Field Probe E-020 217.

References

SSI/DRB-TP-D01-032-E020-V2 E-Field Probe Calibration Procedure

IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques"

SSI-TP-011 Tissue Calibration Procedure

IEC 62209 "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices – Human models, instrumentation, and procedures –Part 1 & 2: Procedure to determine the Specific Absorption Rate (SAR) for hand-held devices used in close proximity of the ear (frequency range of 300 MHz to 3 GHz)"

IEEE 1309 Draft Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, from 9kHz to 40GHz

Conditions

Probe 217 was a re-calibration.

Ambient Temperature of the Laboratory:

22 °C +/- 0.5°C

Temperature of the Tissue:

21 °C +/- 0.5°C

We the undersigned attest that to the best of our knowledge the calibration of this probe has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

Stuart Nicol

Jesse Hones

Calibration Results Summary

Probe Type: E-Field Probe E-020

Serial Number: 217

Frequency: 1900 MHz

Sensor Offset: 1.56 mm

Sensor Length: 2.5 mm

Tip Enclosure: Ertalyte*

Tip Diameter: <5 mm

Tip Length: 60 mm

Total Length: 290 mm

Sensitivity in Air

Diode Compression Point: 95 mV

^{*}Resistive to recommended tissue recipes per IEEE-1528

Sensitivity in Body Tissue Measured

Frequency: 1900 MHz

Epsilon: 54.6 (+/-5%) **Sigma:** 1.55 S/m (+/-5%)

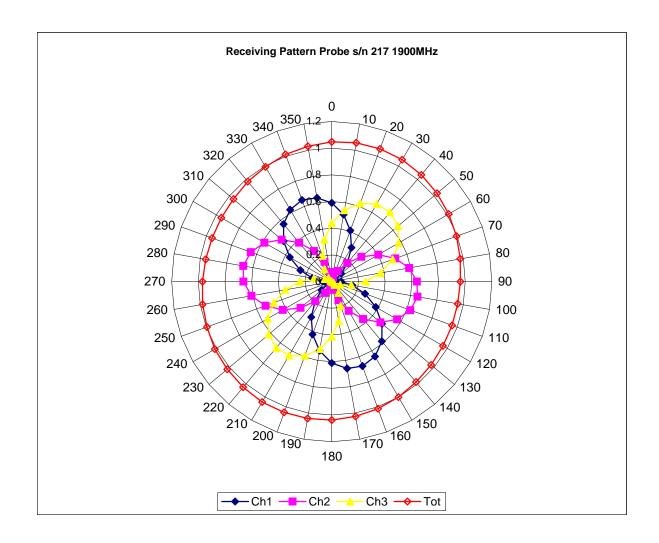
ConvF

Channel X: 4.85

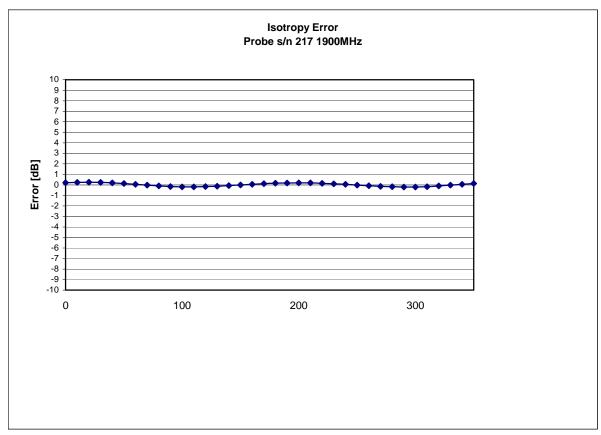
Channel Y: 4.85

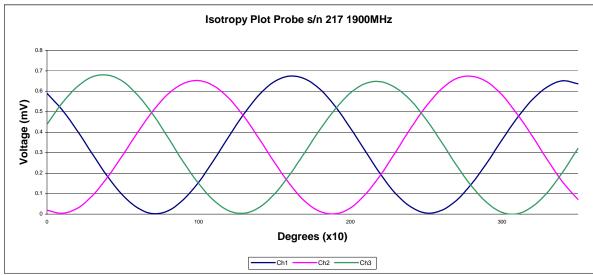
Channel Z: 4.85

Tissue sensitivity values were calculated using the load impedance of the APREL Laboratories Daq-Paq.


Boundary Effect:

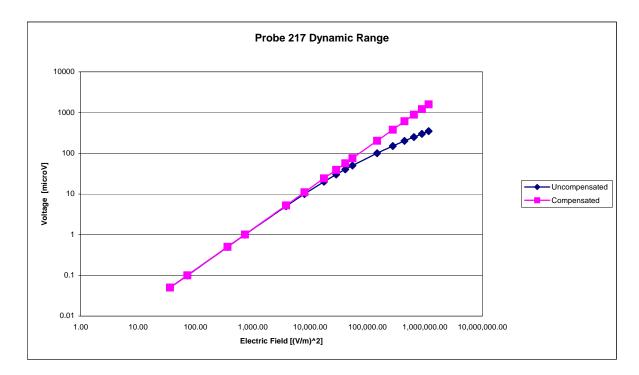
Uncertainty resulting from the boundary effect is less than 2% for the distance between the tip of the probe and the tissue boundary, when less than 2.44mm.


Spatial Resolution:

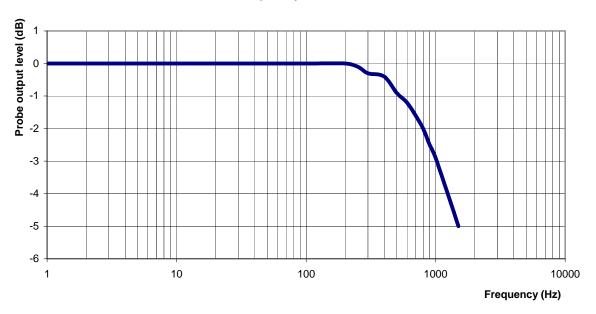

The measured probe tip diameter is 5 mm (+/- 0.01 mm) and therefore meets the requirements of SSI/DRB-TP-D01-032 for spatial resolution.

Receiving Pattern 1900 MHz (Air)

Isotropy Error 1900 MHz (Air)



Isotropicity Tissue:


0.10 dB

Dynamic Range

Video Bandwidth

Probe Frequency Characteristics

Video Bandwidth at 500 Hz 1 dB Video Bandwidth at 1.02 KHz: 3 dB

Conversion Factor Uncertainty Assessment Measured

Sensitivity in Body Tissue

Frequency: 1900 MHz

Epsilon: 54.6 (+/-5%) **Sigma:** 1.55 S/m (+/-5%)

ConvF

Channel X: 4.85 7%(K=2)

Channel Y: 4.85 7%(K=2)

Channel Z: 4.85 7%(K=2)

To minimize the uncertainty calculation all tissue sensitivity values were calculated using a load impedance of 5 M Ω .

Boundary Effect:

For a distance of 2.5mm the evaluated uncertainty (increase in the probe sensitivity) is less than 2%.

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2009.

Appendix E – Dipole Calibration Data Sheets

NCL CALIBRATION LABORATORIES

Calibration File No: DC-1114
Project Number: RFEL-835-Dipole-5480

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the **NCL CALIBRATION LABORATORIES** by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Validation Dipole

Manufacturer: APREL Laboratories
Part number: ALS-D-835-S-2
Frequency: 835 MHz

Serial No: 180-00561

Customer: RFEL

Calibrated: 14th January 2010 Released on: 19th January 2010

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By:

NCL CALIBRATION LABORATORIES

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6

Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4162

Conditions

Dipole 180-00561 was a new calibration.

Ambient Temperature of the Laboratory: 22
Temperature of the Tissue: 22

22 °C +/- 0.5°C

21 °C +/- 0.5°C

We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

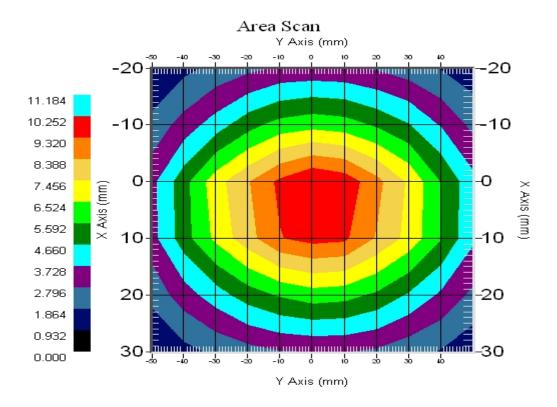
Stuart Nicol

C. Teodorian

Calibration Results Summary

The following results relate the Calibrated Dipole and should be used as a quick reference for the user.

Mechanical Dimensions


Length: 161.0 mm **Height:** 89.8 mm

Electrical Specification

SWR: 1.009U Return Loss: -47.751 dB Impedance: 50.065 Ω

System Validation Results

Frequency	1 Gram	10 Gram	Peak
835 MHz	9.49	6.1	14.21

Introduction

This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole 180-00561. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-020 130 MHz to 26 GHz E-Field Probe Serial Number 2225.

References

SSI-TP-018-ALSAS Dipole Calibration Procedure
SSI-TP-016 Tissue Calibration Procedure
IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average
Specific Absorption Rate (SAR) in the Human Body Due to Wireless
Communications Devices: Experimental Techniques"

Conditions

Dipole 180-00561 was a new calibration.

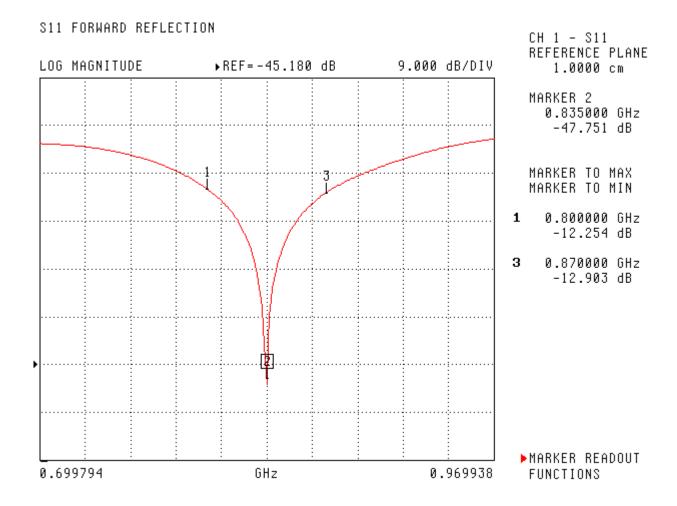
Ambient Temperature of the Laboratory: $22 \,^{\circ}\text{C} + /- 0.5 \,^{\circ}\text{C}$ Temperature of the Tissue: $20 \,^{\circ}\text{C} + /- 0.5 \,^{\circ}\text{C}$

Dipole Calibration Results

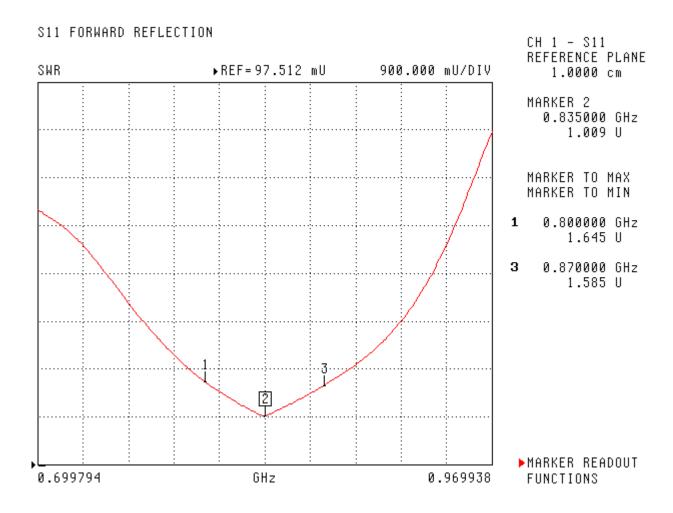
Mechanical Verification

APREL	APREL	Measured	Measured
Length	Height	Length	Height
161.0 mm	89.8 mm	162.1 mm	89.8 mm

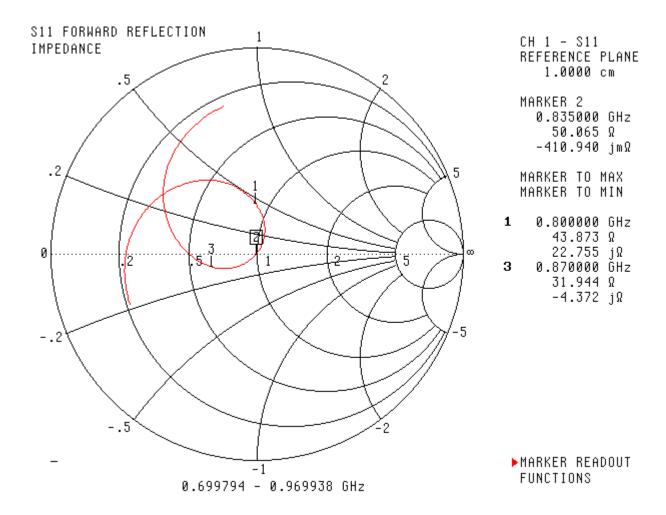
Tissue Validation


Head Tissue 835MHz	Measured
Dielectric constant, ε _r	41.54
Conductivity, σ [S/m]	0.91

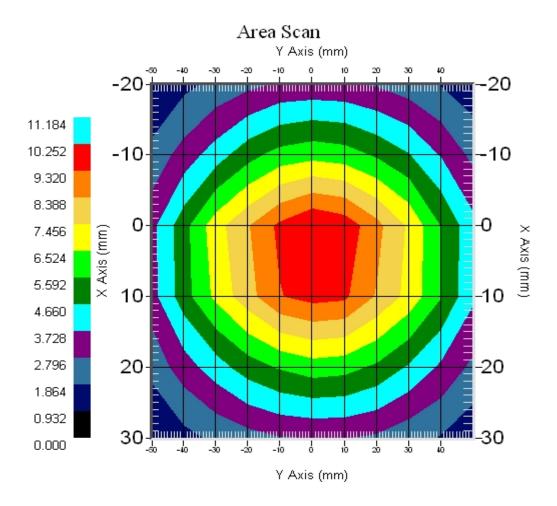
Electrical Calibration


Test	Result	
S11 RL	-47.751dB	
SWR	1.009U	
Impedance	$50.065~\Omega$	

The Following Graphs are the results as displayed on the Vector Network Analyzer.


S11 Parameter Return Loss

SWR



Smith Chart Dipole Impedance

System Validation Results Using the Electrically Calibrated Dipole

Head Tissue Frequency	1 Gram	10 Gram	Peak Above Feed Point
835 MHz	9.49	6.1	14.21

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2009.

NCL CALIBRATION LABORATORIES

Calibration File No: DC-1115
Project Number: RFEL-1900-Dipole-5481

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the **NCL CALIBRATION LABORATORIES** by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

Validation Dipole

Manufacturer: APREL Laboratories Part number: ALS-D-1900-S-2 Frequency: 1900 MHz

Serial No: 210-00713

Customer: RFEL

Calibrated: 15th January 2010 Released on: 19th January 2010

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Released By:

NCL CALIBRATION LABORATORIES

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6 Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4162

Conditions

Dipole 210-00713 was new and taken from stock prior to calibration.

Ambient Temperature of the Laboratory: $22 \,^{\circ}\text{C} +/- 0.5 \,^{\circ}\text{C}$ Temperature of the Tissue: $21 \,^{\circ}\text{C} +/- 0.5 \,^{\circ}\text{C}$

We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

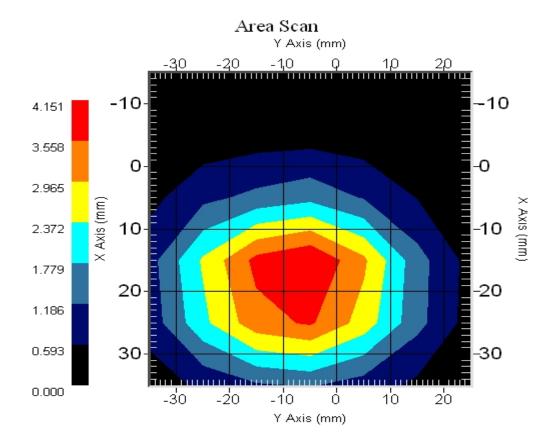
Stuart Nicol

C. Teodorian

Calibration Results Summary

The following results relate the Calibrated Dipole and should be used as a quick reference for the user.

Mechanical Dimensions


Length: 67.1 mm **Height:** 38.9 mm

Electrical Specification

SWR:1.011UReturn Loss:-45.642dBImpedance: 50.194Ω

System Validation Results

Frequency	1 Gram	10 Gram	Peak
1900 MHz	38.7	20.5	69.7

Introduction

This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole 210-00713. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-020 130 MHz to 26 GHz E-Field Probe Serial Number 226.

References

SSI-TP-018-ALSAS Dipole Calibration Procedure
SSI-TP-016 Tissue Calibration Procedure
IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average
Specific Absorption Rate (SAR) in the Human Body Due to Wireless
Communications Devices: Experimental Techniques"

Conditions

Dipole 210-00713 was new taken from stock.

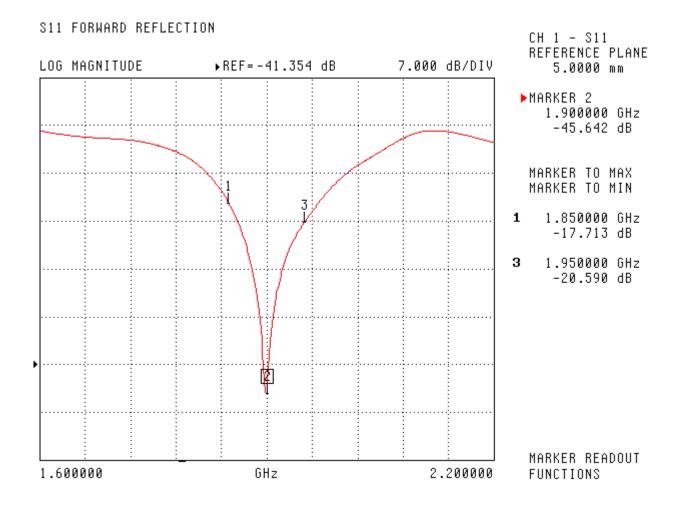
Ambient Temperature of the Laboratory: $22 \,^{\circ}\text{C} +/- 0.5 \,^{\circ}\text{C}$ Temperature of the Tissue: $20 \,^{\circ}\text{C} +/- 0.5 \,^{\circ}\text{C}$

Dipole Calibration Results

Mechanical Verification

APREL	APREL	Measured	Measured
Length	Height	Length	Height
68.0 mm	39.5 mm	67.1mm	38.9 mm

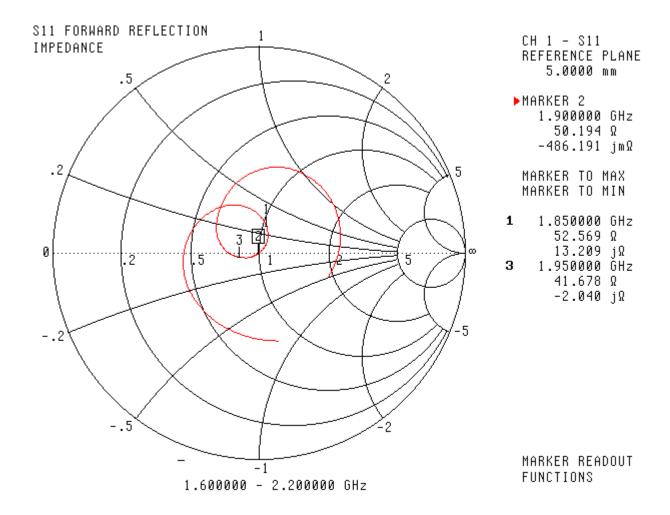
Tissue Validation


Head Tissue 1900 MHz	Measured
Dielectric constant, ε _r	40.03
Conductivity, σ [S/m]	1.38

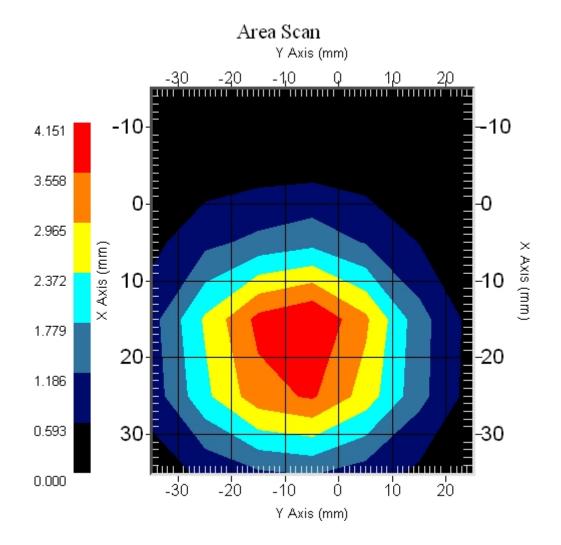
Electrical Calibration

Test	Result	
S11 R/L	-45.642dB	
SWR	1.011U	
Impedance	50.194 Ω	

The Following Graphs are the results as displayed on the Vector Network Analyzer.


S11 Parameter Return Loss

SWR



Smith Chart Dipole Impedance

System Validation Results Using the Electrically Calibrated Dipole

Head Tissue Frequency	1 Gram	10 Gram	Peak Above Feed Point
1900 MHz	38.7	20.5	69.7

Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List 2009.

Appendix F – Phantom Calibration Data Sheets

NCL CALIBRATION LABORATORIES

Calibration File No.: RFE-273

CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to National Standards.

Thickness of the UniPhantom is 2 mm ± 10% Pinna thickness is 6 mm ± 10%

Resolution:

0.01 mm

Calibrated to: 0.0 mm

Stability:

OK

Accuracy:

< 0.1 mm

Calibrated By: Raven K Feb 17/04.

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6

Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4161