

# **Appendix E – Dipole Calibration Data Sheets**

## RF Exposure Lab, LLC

Calibration File No: CAL.20060202

## CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated at RF Exposure Lab, LLC by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

## **Validation Dipole**

Manufacturer: APREL Laboratories

Part Number: ALS-D-835-S-2

Frequency: 835 MHz

Serial No: RFE-274

Manufactured: 20 February 2004 Calibrated: 16 February 2006

Calibrated By: Signature on File

Jay Moulton - Technical Manager

Approved By: Signature on File

Tamara Moulton – Quality Manager

Measurement Uncertainty:

Repeatability: 23% Tissue Uncertainty: 3.2% Network Analyzer: 25%

Tel: (760) 737-3131

FAX: (760) 737-9131



2867 Progress Place, Suite 4D Escondido, CA 92029



## **Calibration Results Summary**

The following results relate to the Calibrated Dipole and should be used as a quick reference for the user.

#### **Mechanical Dimensions**

Length: 161.8 mm Height: 91.1 mm

## **Electrical Specifications**

#### **Head**

**SWR:** 1.1357 U **Return Loss:** -25.165 dB **Impedance:** 49.691 Ω

## **System Validation Results**

| Frequency | 1 Gram | 10 Gram |
|-----------|--------|---------|
| 835 MHz   | 9.820  | 6.360   |

## **Body**

**SWR:** 1.1539 U **Return Loss:** -23.122 dB **Impedance:** 51.514 Ω

#### **System Validation Results**

| Frequency | 1 Gram | 10 Gram |
|-----------|--------|---------|
| 835 MHz   | 9.072  | 5.944   |



#### **Head Measurement Conditions**

The measurements were performed in the Uni-Phantom filled with head simulating liquid of the following electrical parameters at 835 MHz:

| Relative Dielectricity | 40.88      | ± 5% |
|------------------------|------------|------|
| Conductivity           | 0.88 mho/m | ± 5% |

The APREL Laboratories ALSAS system with a dosimetric E-field probe E-020 (SN:215, Conversion factor 5.49 at 835 MHz) was used for the measurements.

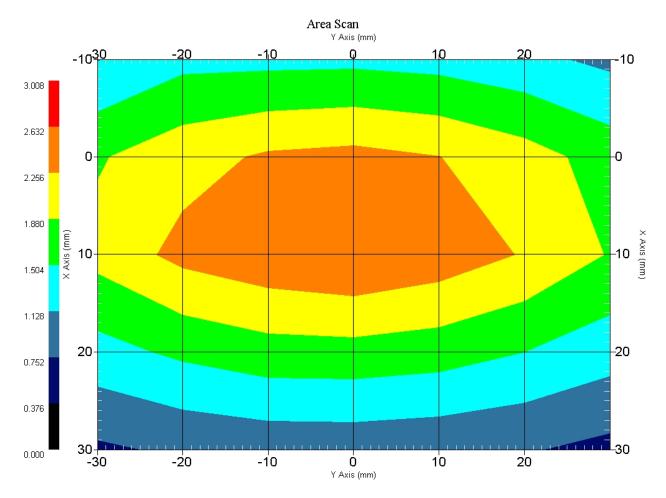
The dipole was mounted so that the dipole feed point was positioned below the center marking of the flat phantom and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15mm from the dipole center to the solution surface.

The coarse grid with a grid spacing of 10mm was aligned with the dipole. The 5x5x8 fine cube was chosen for cube integration. The dipole input power (forward power) was  $250mW \pm 3\%$ . The results are normalized to 1W input power.

The laboratories environmental conditions were as follows during the calibration sequence.

Ambient Temperature of the Laboratory: 21 °C  $\pm$  1.0 °C Temperature of the Tissue: 20 °C  $\pm$  1.0 °C

Relative Humidity: 42%




#### **SAR Measurement**

Standard SAR measurements were performed according to the measurement conditions described above. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR values measured with the dosimetric probe E-020 SN:215 and applying the advanced extrapolation are:

Averaged over 1 cm<sup>3</sup> (1 g) of tissue:  $9.820 \text{ mW/g} \pm 19.0\% \text{ (k=2)}^{1}$ 

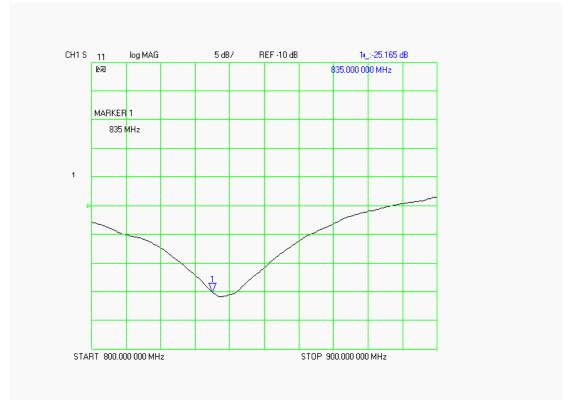
Averaged over 10 cm<sup>3</sup> (10 g) of tissue:  $6.360 \text{ mW/g} \pm 18.5\% \text{ (k=2)}^{1}$ 



1 gram SAR value : 2.455 W/kg 10 gram SAR value : 1.590 W/kg Area Scan Peak SAR : 2.632 W/kg Zoom Scan Peak SAR : 3.693 W/kg

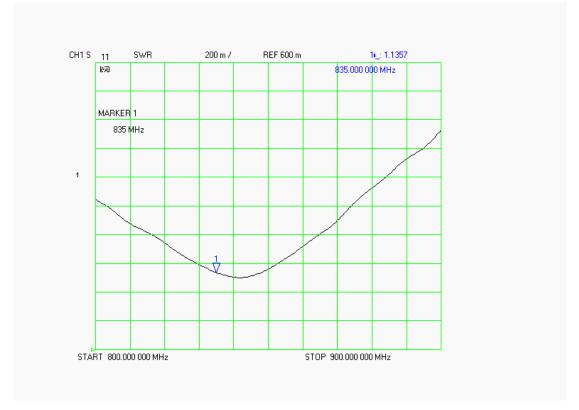
<sup>&</sup>lt;sup>1</sup> validation uncertainty



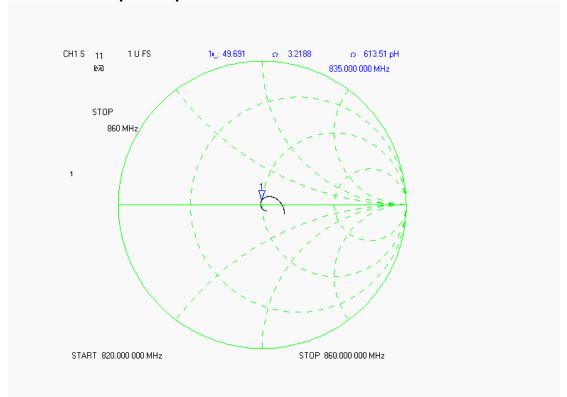

## **Dipole Impedance and Return Loss**

The impedance was measured at the SMA connector with a network analyzer. The dipole was positioned at the flat phantom sections according to measurement conditions stated above during impedance measurements.

| Test      | Result     |
|-----------|------------|
| S11 R/L   | -25.165 dB |
| SWR       | 1.1357 U   |
| Impedance | 49.691 Ω   |


The following graphs are the results as displayed on the Vector Network Analyzer.

#### **S11 Parameter Return Loss**






## **SWR**



## **Smith Chart Dipole Impedance**





#### **Body Measurement Conditions**

The measurements were performed in the Uni-Phantom filled with body simulating liquid of the following electrical parameters at 835 MHz:

| Relative Dielectricity | 54.03      | ± 5% |
|------------------------|------------|------|
| Conductivity           | 0.96 mho/m | ± 5% |

The APREL Laboratories ALSAS system with a dosimetric E-field probe E-020 (SN:215, Conversion factor 6.07 at 835 MHz) was used for the measurements.

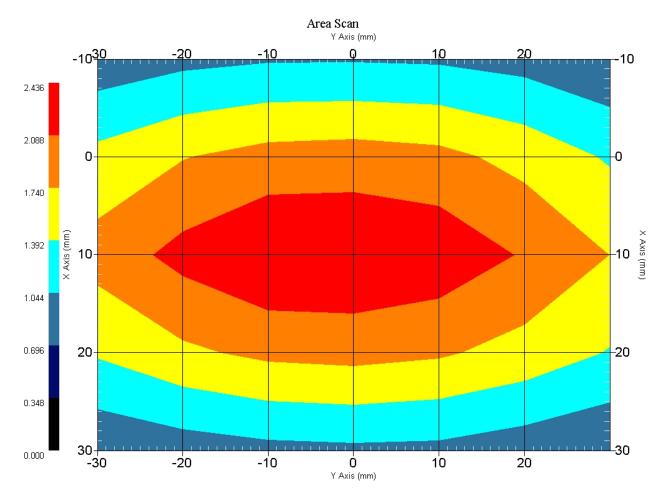
The dipole was mounted so that the dipole feed point was positioned below the center marking of the flat phantom and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 15mm from the dipole center to the solution surface.

The coarse grid with a grid spacing of 10mm was aligned with the dipole. The 5x5x8 fine cube was chosen for cube integration. The dipole input power (forward power) was  $250mW \pm 3\%$ . The results are normalized to 1W input power.

The laboratories environmental conditions were as follows during the calibration sequence.

Ambient Temperature of the Laboratory: 22 °C  $\pm$  1.0 °C Temperature of the Tissue: 20 °C  $\pm$  1.0 °C

Relative Humidity: 42%




#### **SAR Measurement**

Standard SAR measurements were performed according to the measurement conditions described above. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR values measured with the dosimetric probe E-020 SN:215 and applying the advanced extrapolation are:

Averaged over 1 cm<sup>3</sup> (1 g) of tissue:  $9.072 \text{ mW/g} \pm 19.1\% \text{ (k=2)}^1$ 

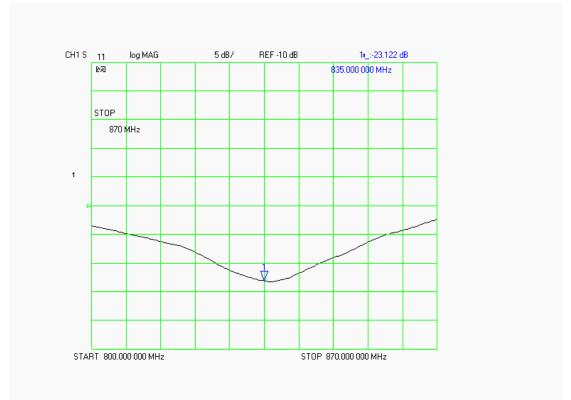
Averaged over 10 cm<sup>3</sup> (10 g) of tissue:  $5.944 \text{ mW/g} \pm 18.6\% \text{ (k=2)}^1$ 



1 gram SAR value : 2.268 W/kg 10 gram SAR value : 1.486 W/kg Area Scan Peak SAR : 2.435 W/kg Zoom Scan Peak SAR : 3.413 W/kg

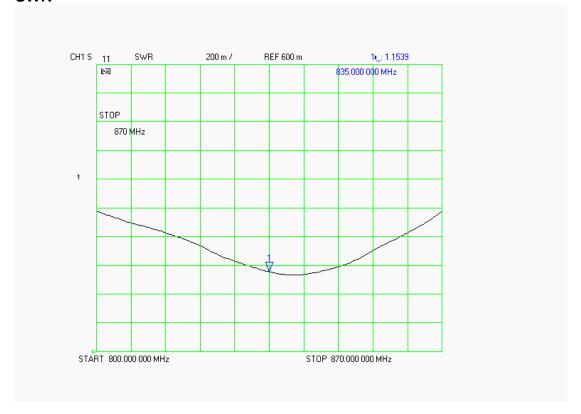
<sup>&</sup>lt;sup>1</sup> validation uncertainty



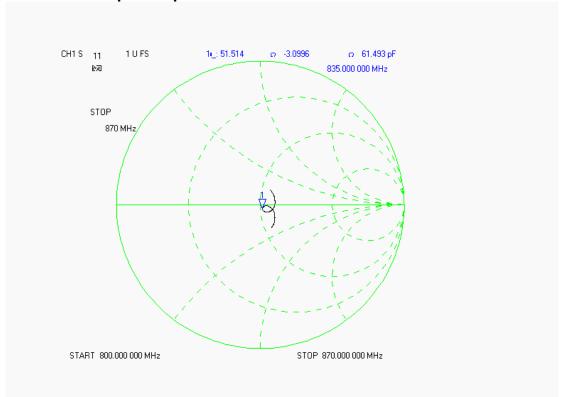

## **Dipole Impedance and Return Loss**

The impedance was measured at the SMA connector with a network analyzer. The dipole was positioned at the flat phantom sections according to measurement conditions stated above during impedance measurements.

| Test      | Result     |
|-----------|------------|
| S11 R/L   | -23.122 dB |
| SWR       | 1.1539 U   |
| Impedance | 51.514 Ω   |


The following graphs are the results as displayed on the Vector Network Analyzer.

#### **S11 Parameter Return Loss**






## **SWR**



## **Smith Chart Dipole Impedance**





## **Test Equipment List**

The test equipment used during Dipole Calibration, manufacturer, model number and, current calibration status are listed and located on the RF Exposure Lab, LLC system computer C:\Test Equipment\Calibration Equipment\Instrument List February 2006.

## RF Exposure Lab, LLC

Calibration File No: CAL.20060201

## CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated at RF Exposure Lab, LLC by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

## **Validation Dipole**

Manufacturer: APREL Laboratories

Part Number: ALS-D-1900-S-2

Frequency: 1.9 GHz

Serial No: RFE-277

Manufactured: 20 February 2004 Calibrated: 15 February 2006

Calibrated By: Signature on File

Jay Moulton - Technical Manager

Approved By: Signature on File

Tamara Moulton – Quality Manager

Measurement Uncertainty:

Repeatability: 23% Tissue Uncertainty: 3.2% Network Analyzer: 25%

Tel: (760) 737-3131

FAX: (760) 737-9131



2867 Progress Place, Suite 4D Escondido, CA 92029



## **Calibration Results Summary**

The following results relate to the Calibrated Dipole and should be used as a quick reference for the user.

#### **Mechanical Dimensions**

**Length:** 68.0 mm **Height:** 37.5 mm

## **Electrical Specifications**

#### **Head**

SWR: 1.0776 U Return Loss: -30.532 dB Impedance:  $49.666 \Omega$ 

## **System Validation Results**

| Frequency | 1 Gram | 10 Gram |
|-----------|--------|---------|
| 1.9 GHz   | 40.636 | 20.424  |

## **Body**

**SWR:** 1.0927 U **Return Loss:** -33.755 dB **Impedance:** 53.652 Ω

#### **System Validation Results**

| Frequency | 1 Gram | 10 Gram |
|-----------|--------|---------|
| 1.9 GHz   | 41.336 | 21.464  |



#### **Head Measurement Conditions**

The measurements were performed in the Uni-Phantom filled with head simulating liquid of the following electrical parameters at 1900 MHz:

| Relative Dielectricity | 39.24      | ± 5% |
|------------------------|------------|------|
| Conductivity           | 1.43 mho/m | ± 5% |

The APREL Laboratories ALSAS system with a dosimetric E-field probe E-020 (SN:215, Conversion factor 4.5 at 1900 MHz) was used for the measurements.

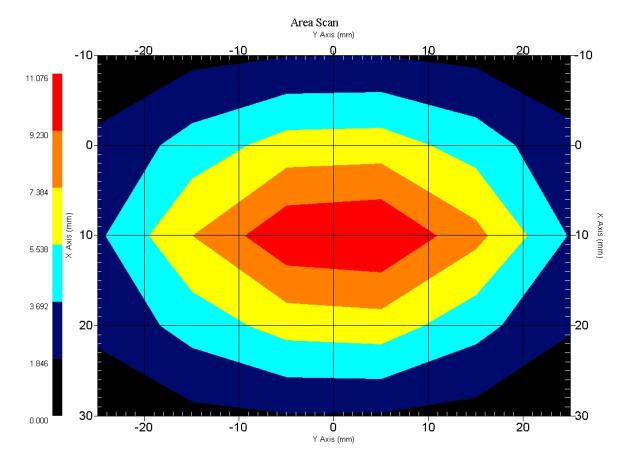
The dipole was mounted so that the dipole feed point was positioned below the center marking of the flat phantom and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from the dipole center to the solution surface.

The coarse grid with a grid spacing of 10mm was aligned with the dipole. The 5x5x8 fine cube was chosen for cube integration. The dipole input power (forward power) was  $250mW \pm 3\%$ . The results are normalized to 1W input power.

The laboratories environmental conditions were as follows during the calibration sequence.

Ambient Temperature of the Laboratory: 22 °C  $\pm$  1.0 °C Temperature of the Tissue: 20 °C  $\pm$  1.0 °C

Relative Humidity: 41%




#### **SAR Measurement**

Standard SAR measurements were performed according to the measurement conditions described above. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR values measured with the dosimetric probe E-020 SN:215 and applying the advanced extrapolation are:

Averaged over 1 cm $^{3}$  (1 g) of tissue: 40.636 mW/g ± 19.2% (k=2) $^{1}$ 

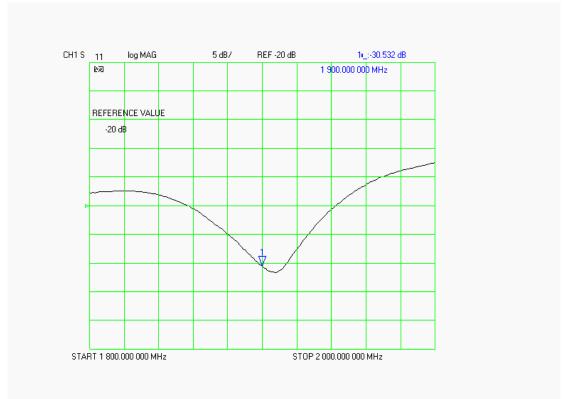
Averaged over 10 cm $^{3}$  (10 g) of tissue: 20.424 mW/g ± 18.8% (k=2) $^{1}$ 



1 gram SAR value : 10.159 W/kg 10 gram SAR value : 5.106 W/kg Area Scan Peak SAR : 11.075 W/kg Zoom Scan Peak SAR : 17.815 W/kg

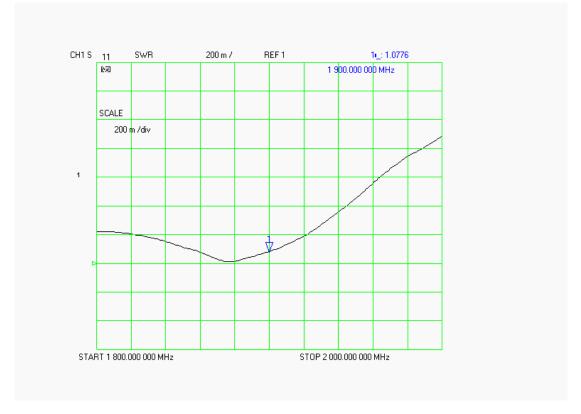
<sup>&</sup>lt;sup>1</sup> validation uncertainty



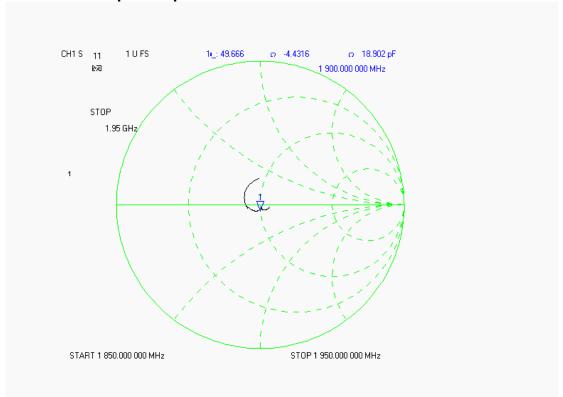

## **Dipole Impedance and Return Loss**

The impedance was measured at the SMA connector with a network analyzer. The dipole was positioned at the flat phantom sections according to measurement conditions stated above during impedance measurements.

| Test      | Result     |
|-----------|------------|
| S11 R/L   | -30.532 dB |
| SWR       | 1.0776 U   |
| Impedance | 49.666 Ω   |


The following graphs are the results as displayed on the Vector Network Analyzer.

#### **S11 Parameter Return Loss**






## **SWR**



## **Smith Chart Dipole Impedance**





## **Body Measurement Conditions**

The measurements were performed in the Uni-Phantom filled with body simulating liquid of the following electrical parameters at 1900 MHz:

| Relative Dielectricity | 52.91      | ± 5% |
|------------------------|------------|------|
| Conductivity           | 1.49 mho/m | ± 5% |

The APREL Laboratories ALSAS system with a dosimetric E-field probe E-020 (SN:215, Conversion factor 3.8 at 1900 MHz) was used for the measurements.

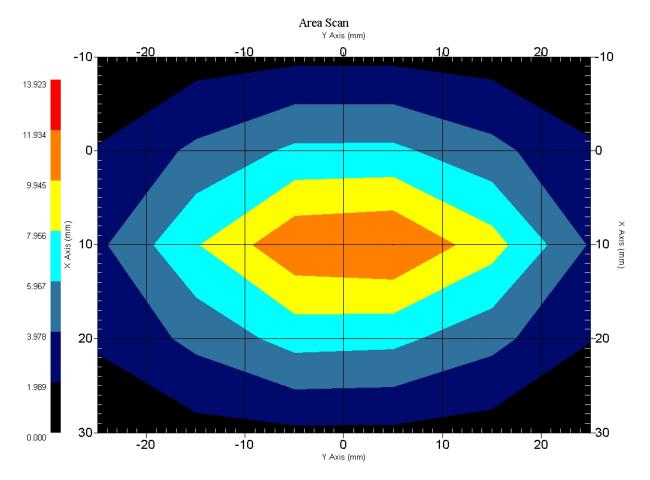
The dipole was mounted so that the dipole feed point was positioned below the center marking of the flat phantom and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from the dipole center to the solution surface.

The coarse grid with a grid spacing of 10mm was aligned with the dipole. The 5x5x8 fine cube was chosen for cube integration. The dipole input power (forward power) was  $250mW \pm 3\%$ . The results are normalized to 1W input power.

The laboratories environmental conditions were as follows during the calibration sequence.

Ambient Temperature of the Laboratory: 23 °C  $\pm$  1.0 °C Temperature of the Tissue: 20 °C  $\pm$  1.0 °C

Relative Humidity: 44%




#### **SAR Measurement**

Standard SAR measurements were performed according to the measurement conditions described above. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR values measured with the dosimetric probe E-020 SN:215 and applying the advanced extrapolation are:

Averaged over 1 cm<sup>3</sup> (1 g) of tissue:  $41.336 \text{ mW/g} \pm 18.9\% \text{ (k=2)}^{1}$ 

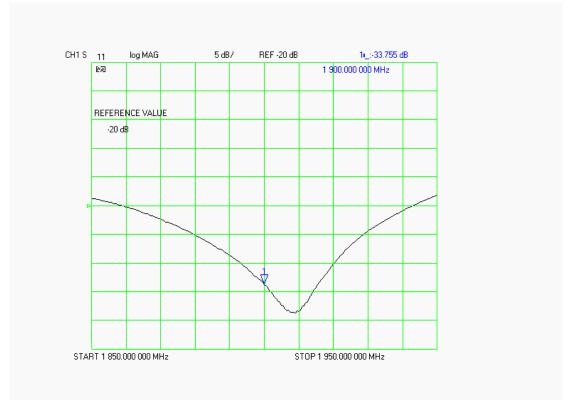
Averaged over 10 cm<sup>3</sup> (10 g) of tissue:  $21.464 \text{ mW/g} \pm 18.5\% \text{ (k=2)}^1$ 



1 gram SAR value : 10.334 W/kg 10 gram SAR value : 5.366 W/kg Area Scan Peak SAR : 11.936 W/kg Zoom Scan Peak SAR : 18.616 W/kg

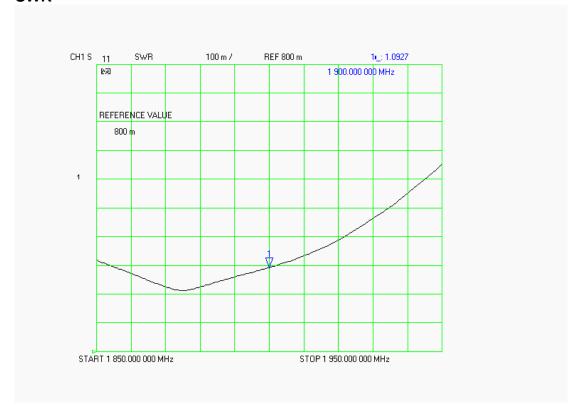
<sup>&</sup>lt;sup>1</sup> validation uncertainty



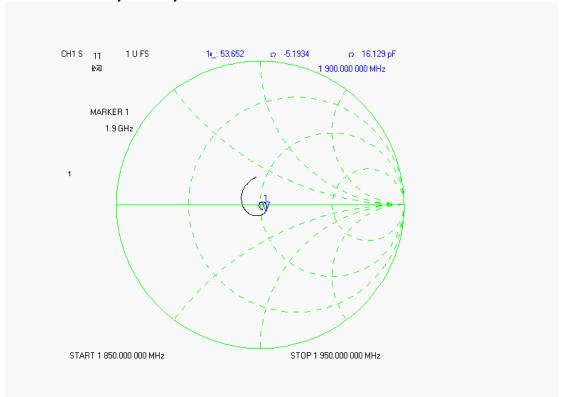

## **Dipole Impedance and Return Loss**

The impedance was measured at the SMA connector with a network analyzer. The dipole was positioned at the flat phantom sections according to measurement conditions stated above during impedance measurements.

| Test      | Result     |
|-----------|------------|
| S11 R/L   | -33.755 dB |
| SWR       | 1.0927 U   |
| Impedance | 53.652 Ω   |


The following graphs are the results as displayed on the Vector Network Analyzer.

#### **S11 Parameter Return Loss**






## **SWR**



## **Smith Chart Dipole Impedance**





## **Test Equipment List**

The test equipment used during Dipole Calibration, manufacturer, model number and, current calibration status are listed and located on the RF Exposure Lab, LLC system computer C:\Test Equipment\Calibration Equipment\Instrument List February 2006.

## RF Exposure Lab, LLC

Calibration File No: CAL.20060203

## CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated at RF Exposure Lab, LLC by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

## **Validation Dipole**

Manufacturer: APREL Laboratories

Part Number: ALS-D-2450-S-2

Frequency: 2.4 GHz

Serial No: RFE-278

Manufactured: 20 February 2004 Calibrated: 17 February 2006

Calibrated By: Signature on File

Jay Moulton - Technical Manager

Approved By: Signature on File

Tamara Moulton – Quality Manager

Measurement Uncertainty:

Repeatability: 23% Tissue Uncertainty: 3.2% Network Analyzer: 25%

Tel: (760) 737-3131

FAX: (760) 737-9131



2867 Progress Place, Suite 4D Escondido, CA 92029



## **Calibration Results Summary**

The following results relate to the Calibrated Dipole and should be used as a quick reference for the user.

#### **Mechanical Dimensions**

**Length:** 51.5 mm **Height:** 30.5 mm

## **Electrical Specifications**

#### **Head**

SWR: 1.0994 U Return Loss: -28.139 dB Impedance:  $53.471 \Omega$ 

## **System Validation Results**

| Frequency | 1 Gram | 10 Gram |
|-----------|--------|---------|
| 2.45 GHz  | 52.920 | 26.370  |

## **Body**

**SWR:** 1.1373 U **Return Loss:** -31.923 dB **Impedance:** 53.338 Ω

## **System Validation Results**

| Frequency | 1 Gram | 10 Gram |
|-----------|--------|---------|
| 2.45 GHz  | 54.230 | 24.880  |



#### **Head Measurement Conditions**

The measurements were performed in the Uni-Phantom filled with head simulating liquid of the following electrical parameters at 2450 MHz:

| Relative Dielectricity | 39.63      | ± 5% |
|------------------------|------------|------|
| Conductivity           | 1.82 mho/m | ± 5% |

The APREL Laboratories ALSAS system with a dosimetric E-field probe E-020 (SN:215, Conversion factor 4.6 at 2450 MHz) was used for the measurements.

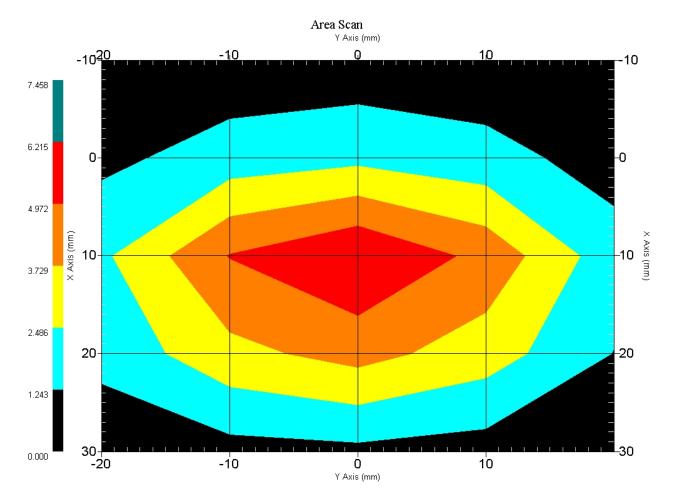
The dipole was mounted so that the dipole feed point was positioned below the center marking of the flat phantom and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from the dipole center to the solution surface.

The coarse grid with a grid spacing of 10mm was aligned with the dipole. The 5x5x8 fine cube was chosen for cube integration. The dipole input power (forward power) was  $100mW \pm 3\%$ . The results are normalized to 1W input power.

The laboratories environmental conditions were as follows during the calibration sequence.

Ambient Temperature of the Laboratory: 23 °C  $\pm$  1.0 °C Temperature of the Tissue: 20 °C  $\pm$  1.0 °C

Relative Humidity: 42%




#### **SAR Measurement**

Standard SAR measurements were performed according to the measurement conditions described above. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR values measured with the dosimetric probe E-020 SN:215 and applying the advanced extrapolation are:

Averaged over 1 cm<sup>3</sup> (1 g) of tissue:  $52.920 \text{ mW/g} \pm 19.7\% \text{ (k=2)}^{1}$ 

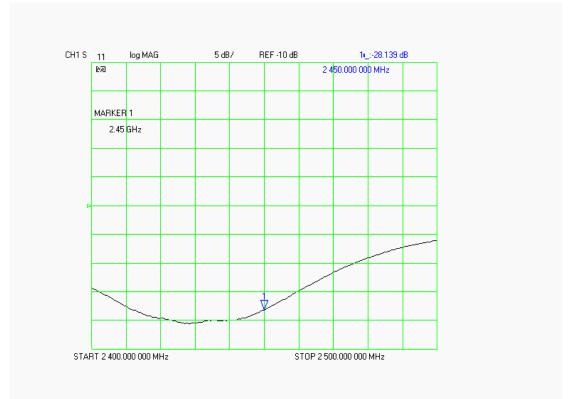
Averaged over 10 cm<sup>3</sup> (10 g) of tissue:  $26.370 \text{ mW/g} \pm 19.4\% \text{ (k=2)}^1$ 



1 gram SAR value : 5.292 W/kg 10 gram SAR value : 2.637 W/kg Area Scan Peak SAR : 6.215 W/kg Zoom Scan Peak SAR : 10.080 W/kg

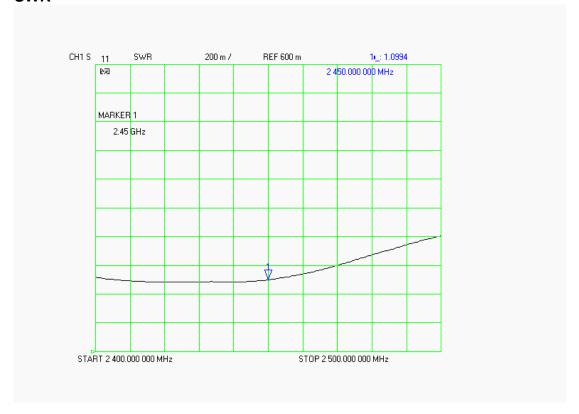
<sup>&</sup>lt;sup>1</sup> validation uncertainty



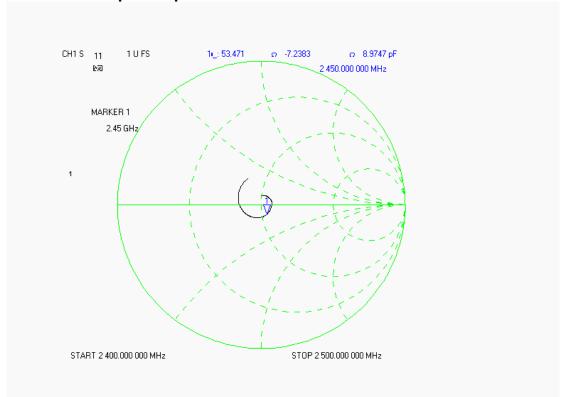

## **Dipole Impedance and Return Loss**

The impedance was measured at the SMA connector with a network analyzer. The dipole was positioned at the flat phantom sections according to measurement conditions stated above during impedance measurements.

| Test      | Result     |
|-----------|------------|
| S11 R/L   | -28.139 dB |
| SWR       | 1.0994 U   |
| Impedance | 53.471 Ω   |


The following graphs are the results as displayed on the Vector Network Analyzer.

#### **S11 Parameter Return Loss**






## **SWR**



## **Smith Chart Dipole Impedance**





#### **Body Measurement Conditions**

The measurements were performed in the Uni-Phantom filled with body simulating liquid of the following electrical parameters at 2450 MHz:

| Relative Dielectricity | 51.09      | ± 5% |
|------------------------|------------|------|
| Conductivity           | 1.96 mho/m | ± 5% |

The APREL Laboratories ALSAS system with a dosimetric E-field probe E-020 (SN:215, Conversion factor 4.6 at 2450 MHz) was used for the measurements.

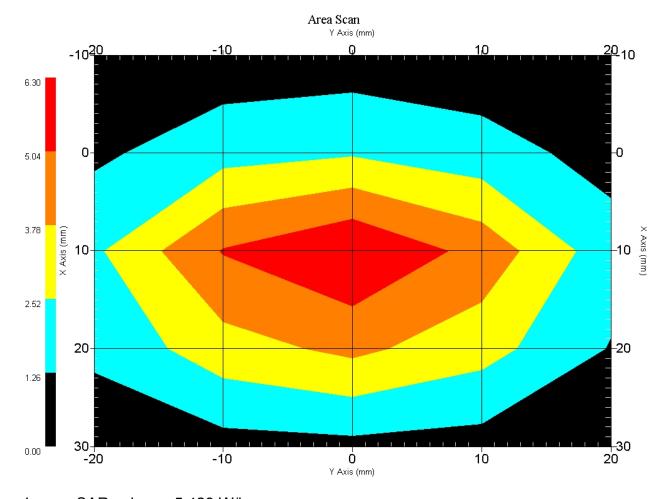
The dipole was mounted so that the dipole feed point was positioned below the center marking of the flat phantom and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from the dipole center to the solution surface.

The coarse grid with a grid spacing of 10mm was aligned with the dipole. The 5x5x8 fine cube was chosen for cube integration. The dipole input power (forward power) was  $100mW \pm 3\%$ . The results are normalized to 1W input power.

The laboratories environmental conditions were as follows during the calibration sequence.

Ambient Temperature of the Laboratory: 20 °C  $\pm$  1.0 °C Temperature of the Tissue: 20 °C  $\pm$  1.0 °C

Relative Humidity: 43%




#### **SAR Measurement**

Standard SAR measurements were performed according to the measurement conditions described above. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR values measured with the dosimetric probe E-020 SN:215 and applying the advanced extrapolation are:

Averaged over 1 cm<sup>3</sup> (1 g) of tissue:  $54.230 \text{ mW/g} \pm 18.8\% \text{ (k=2)}^1$ 

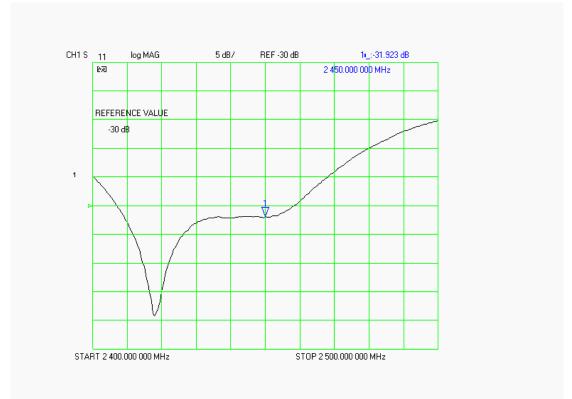
Averaged over 10 cm $^{3}$  (10 g) of tissue: 24.880 mW/g ± 18.4% (k=2) $^{1}$ 



1 gram SAR value : 5.423 W/kg 10 gram SAR value : 2.488 W/kg Area Scan Peak SAR : 6.298 W/kg Zoom Scan Peak SAR : 11.090 W/kg

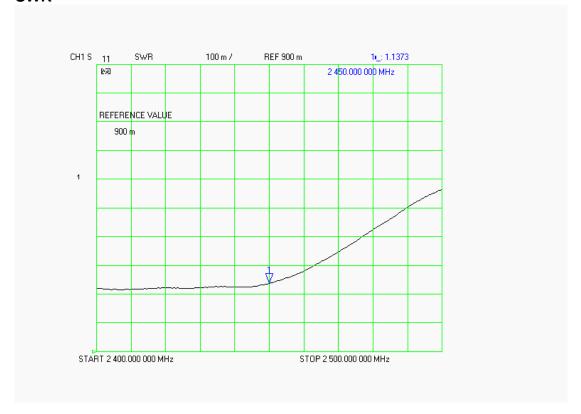
<sup>&</sup>lt;sup>1</sup> validation uncertainty




## **Dipole Impedance and Return Loss**

The impedance was measured at the SMA connector with a network analyzer. The dipole was positioned at the flat phantom sections according to measurement conditions stated above during impedance measurements.

| Test      | Result     |
|-----------|------------|
| S11 R/L   | -31.923 dB |
| SWR       | 1.1373 U   |
| Impedance | 53.338 Ω   |


The following graphs are the results as displayed on the Vector Network Analyzer.

#### **S11 Parameter Return Loss**






## **SWR**



## **Smith Chart Dipole Impedance**





## **Test Equipment List**

The test equipment used during Dipole Calibration, manufacturer, model number and, current calibration status are listed and located on the RF Exposure Lab, LLC system computer C:\Test Equipment\Calibration Equipment\Instrument List February 2006.

## RF Exposure Lab, LLC

Calibration File No: CAL.20070501

## CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated at RF Exposure Lab, LLC by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

## **Validation Dipole**

Manufacturer: APREL Laboratories

Part Number: ALS-D-BB-S-2

Frequency: 5.2 GHz to 5.8 GHz

Serial No: 235-00801

Manufactured: 22 May 2005 Calibrated: 23 May 2007

Calibrated By: Signature on File

Jay Moulton - Technical Manager

Approved By: Signature on File

Tamara Moulton – Quality Manager

Measurement Uncertainty:

Repeatability: 23% Tissue Uncertainty: 3.2% Network Analyzer: 25%

Tel: (760) 737-3131

FAX: (760) 737-9131



2867 Progress Place, Suite 4D Escondido, CA 92029



## **Calibration Results Summary**

The following results relate to the Calibrated Dipole and should be used as a quick reference for the user.

#### **Mechanical Dimensions**

Length: 23.3 mm Height: 20.3 mm

## **Electrical Specifications**

## 5.2 GHz Body

**SWR:** 1.8749 U **Return Loss:** -17.057 dB **Impedance:** 54.252 Ω

## **System Validation Results**

| Frequency | 1 Gram | 10 Gram |
|-----------|--------|---------|
| 5.2 GHz   | 62.98  | 15.44   |

## 5.6 GHz Body

**SWR:** 1.2178 U **Return Loss:** -18.513 dB **Impedance:** 45.365 Ω

## **System Validation Results**

| Frequency | 1 Gram | 10 Gram |
|-----------|--------|---------|
| 5.6 GHz   | 59.92  | 15.30   |

#### 5.8 GHz Body

SWR: 1.8551 U Return Loss: -10.237 dB Impedance: 45.014  $\Omega$ 

#### **System Validation Results**

| Frequency | 1 Gram | 10 Gram |
|-----------|--------|---------|
| 5.8 GHz   | 58.92  | 15.05   |



## **5.2 GHz Body Measurement Conditions**

The measurements were performed in the Uni-Phantom filled with body simulating liquid of the following electrical parameters at 5.2 GHz:

| Relative Dielectricity | 49.19      | ± 5% |
|------------------------|------------|------|
| Conductivity           | 5.40 mho/m | ± 5% |

The APREL Laboratories ALSAS system with a dosimetric E-field probe E-030 (SN:AL-E3P1, Conversion factor 13.0 at 5.2 GHz) was used for the measurements.

The dipole was mounted so that the dipole feed point was positioned below the center marking of the flat phantom and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from the dipole center to the solution surface.

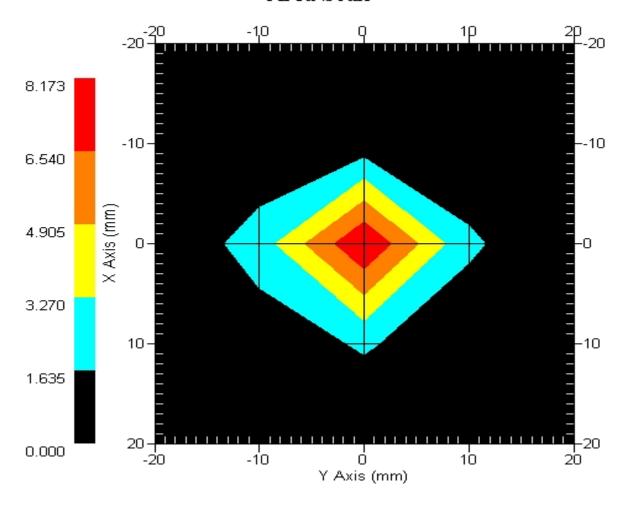
The coarse grid with a grid spacing of 10mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration. The dipole input power (forward power) was 100mW ± 3%. The results are normalized to 1W input power.

The laboratories environmental conditions were as follows during the calibration sequence.

> 23 °C ± 1.0 °C Ambient Temperature of the Laboratory: Temperature of the Tissue: 20 °C ± 1.0 °C

Relative Humidity: 52%




#### **SAR Measurement**

Standard SAR measurements were performed according to the measurement conditions described above. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR values measured with the dosimetric probe E-030 SN:AL-E3P1 and applying the advanced extrapolation are:

Averaged over 1 cm<sup>3</sup> (1 g) of tissue:  $62.98 \text{ mW/g} \pm 19.1\% \text{ (k=2)}^{1}$ 

Averaged over 10 cm<sup>3</sup> (10 g) of tissue:  $15.44 \text{ mW/g} \pm 18.8\% \text{ (k=2)}^1$ 

## Area Scan



1 gram SAR value : 6.298 W/kg 10 gram SAR value : 1.544 W/kg Area Scan Peak SAR : 8.173 W/kg Zoom Scan Peak SAR : 21.817 W/kg

<sup>&</sup>lt;sup>1</sup> validation uncertainty



#### **5.6 GHz Body Measurement Conditions**

The measurements were performed in the Uni-Phantom filled with body simulating liquid of the following electrical parameters at 5.6 GHz:

| Relative Dielectricity | 48.22      | ± 5% |
|------------------------|------------|------|
| Conductivity           | 5.68 mho/m | ± 5% |

The APREL Laboratories ALSAS system with a dosimetric E-field probe E-030 (SN:AL-E3P1, Conversion factor 13.5 at 5.6 GHz) was used for the measurements.

The dipole was mounted so that the dipole feed point was positioned below the center marking of the flat phantom and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from the dipole center to the solution surface.

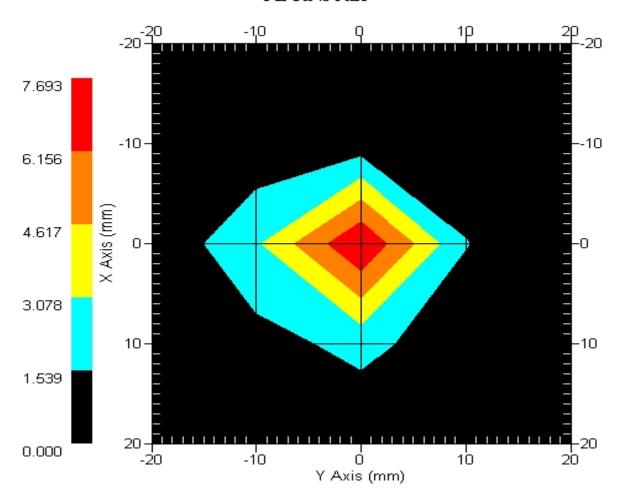
The coarse grid with a grid spacing of 10mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration. The dipole input power (forward power) was  $100\text{mW} \pm 3\%$ . The results are normalized to 1W input power.

The laboratories environmental conditions were as follows during the calibration sequence.

Ambient Temperature of the Laboratory: 23 °C  $\pm$  1.0 °C Temperature of the Tissue: 20 °C  $\pm$  1.0 °C

Relative Humidity: 52%




#### **SAR Measurement**

Standard SAR measurements were performed according to the measurement conditions described above. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR values measured with the dosimetric probe E-030 SN:AL-E3P1 and applying the advanced extrapolation are:

Averaged over 1 cm<sup>3</sup> (1 g) of tissue:  $59.92 \text{ mW/g} \pm 19.1\% \text{ (k=2)}^1$ 

Averaged over 10 cm<sup>3</sup> (10 g) of tissue:  $15.30 \text{ mW/g} \pm 18.8\% \text{ (k=2)}^1$ 

## Area Scan



1 gram SAR value : 5.992 W/kg 10 gram SAR value : 1.530 W/kg Area Scan Peak SAR : 7.693 W/kg Zoom Scan Peak SAR : 19.415 W/kg

<sup>&</sup>lt;sup>1</sup> validation uncertainty



#### **5.8 GHz Body Measurement Conditions**

The measurements were performed in the Uni-Phantom filled with body simulating liquid of the following electrical parameters at 5.8 GHz:

| Relative Dielectricity | 48.53      | ± 5% |
|------------------------|------------|------|
| Conductivity           | 5.95 mho/m | ± 5% |

The APREL Laboratories ALSAS system with a dosimetric E-field probe E-030 (SN:AL-E3P1, Conversion factor 14.0 at 5.8 GHz) was used for the measurements.

The dipole was mounted so that the dipole feed point was positioned below the center marking of the flat phantom and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10mm from the dipole center to the solution surface.

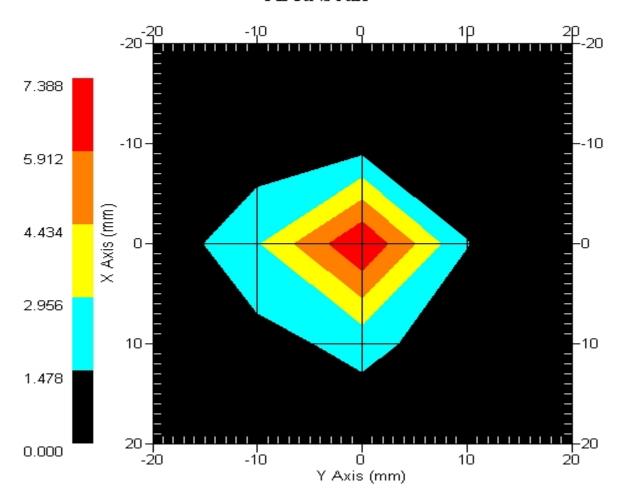
The coarse grid with a grid spacing of 10mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration. The dipole input power (forward power) was  $100mW \pm 3\%$ . The results are normalized to 1W input power.

The laboratories environmental conditions were as follows during the calibration sequence.

Ambient Temperature of the Laboratory: 23 °C  $\pm$  1.0 °C Temperature of the Tissue: 20 °C  $\pm$  1.0 °C

Relative Humidity: 52%




#### **SAR Measurement**

Standard SAR measurements were performed according to the measurement conditions described above. The results have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR values measured with the dosimetric probe E-030 SN:AL-E3P1 and applying the advanced extrapolation are:

Averaged over 1 cm<sup>3</sup> (1 g) of tissue:  $58.92 \text{ mW/g} \pm 19.1\% \text{ (k=2)}^1$ 

Averaged over 10 cm<sup>3</sup> (10 g) of tissue:  $15.05 \text{ mW/g} \pm 18.8\% \text{ (k=2)}^1$ 

## Area Scan



1 gram SAR value : 5.892 W/kg 10 gram SAR value : 1.505 W/kg Area Scan Peak SAR : 7.388 W/kg Zoom Scan Peak SAR : 19.315 W/kg

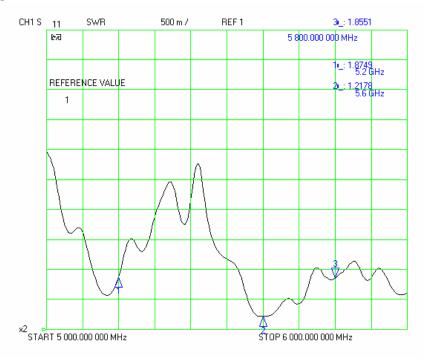
<sup>&</sup>lt;sup>1</sup> validation uncertainty

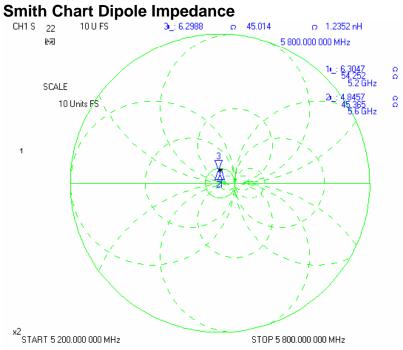


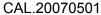
## **Dipole Impedance and Return Loss**

The impedance was measured at the SMA connector with a network analyzer. The dipole was positioned at the flat phantom sections according to measurement conditions stated above during impedance measurements.

| Test      | Result – 5.2 GHz | Result – 5.6 GHz | Result – 5.8 GHz |
|-----------|------------------|------------------|------------------|
| S11 R/L   | -17.057 dB       | -18.513 dB       | -10.237 dB       |
| SWR       | 1.8749 U         | 1.2178 U         | 1.8551 U         |
| Impedance | 54.252 Ω         | 45.365 Ω         | 45.014 Ω         |


The following graphs are the results as displayed on the Vector Network Analyzer.


#### **S11 Parameter Return Loss**






## **SWR**









## **Test Equipment List**

The test equipment used during Dipole Calibration, manufacturer, model number and, current calibration status are listed and located on the RF Exposure Lab, LLC system computer C:\Test Equipment\Calibration Equipment\Instrument List May 2007.



# **Appendix F – Phantom Calibration Data Sheets**

## NCL CALIBRATION LABORATORIES

Calibration File No.: RFE-273

# CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to National Standards.

Thickness of the UniPhantom is 2 mm ± 10% Pinna thickness is 6 mm ± 10%

Resolution:

0.01 mm

Calibrated to: 0.0 mm

Stability:

OK

Accuracy:

< 0.1 mm

Calibrated By: Raven K Feb 17/04.



51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E6

Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4161