

Novatel Wireless Expedite EU740 module MPE Calculations

Calculated at 20cm distance

GSM 850 (GPRS) – Bottom Channel – 824MHz, Top Channel – 849MHz

Calculation of Far Field Distance

The far field is calculated as > λ /2 π , where λ is the wavelength at the transmission frequency.

at 824MHz the far field is beyond a distance from the antenna 849MHz the far field is beyond a distance from the antenna

5.80cm.

5.63cm

Calculation of power density at 20cm:

The RF power density at an operational distance R from the antenna is calculated by the following expression $S = (P.G)/4\pi.R^2$

where $S = power density in mW/cm^2$

P = power output in mW = 2000mW (33dBm) G = antenna gain (numeric gain value) = 2 (3dB) R = operating distance from antenna in cm. (20)

 $S = \frac{2000 \times 2}{4\pi \times 400}$

 $S = 0.796 \text{ mW/cm}^2$

The Power Density Limit is 1.0mW/cm²

PCS 1900 (GPRS) – Bottom Channel – 1850MHz, Top Channel – 1910MHz

Calculation of Far Field Distance

The far field is calculated as > λ /2 π , where λ is the wavelength at the transmission frequency.

at 1850MHz the far field is beyond a distance from the antenna 1910MHz the far field is beyond a distance from the antenna

2.50cm.

2.58cm

Calculation of power density at 20cm:

The RF power density at an operational distance R from the antenna is calculated by the following expression $S = (P.G)/4\pi.R^2$

where $S = power density in mW/cm^2$

P = power output in mW = 1000mW (30dBm) G = antenna gain (numeric gain value) = 2 (3dB) R = operating distance from antenna in cm. (20)

 $S = \frac{1000 \times 2}{4\pi \times 400}$

 $S = 0.398 \text{ mW/cm}^2$

The Power Density Limit is 1.0mW/cm²