

TABLE OF CONTENTS

APPLICANT: HELLA KG HUECK & CO.

FCC ID: NBG8137T

TEST REPORT CONTAINING:

PAGE 1-2.....TEST PROCEDURE
PAGE 3.....RADIATION INTERFERENCE TEST DATA
PAGE 4.....CALCULATION OF DUTY CYCLE
PAGE 5.....OCCUPIED BANDWIDTH

EXHIBIT ATTACHMENTS:

EXHIBIT 1.....POWER OF ATTORNEY LETTER
EXHIBIT 2.....BLOCK DIAGRAM
EXHIBIT 3.....CIRCUIT DESCRIPTION
EXHIBIT 4-5.....SCHEMATICS
EXHIBIT 6-8.....PARTS LIST
EXHIBIT 9.....FCC ID LABEL SAMPLE
EXHIBIT 10.....SKETCH OF FCC ID LABEL LOCATION
EXHIBIT 11.....DUTY CYCLE PLOT
EXHIBIT 12.....DUTY CYCLE PLOT
EXHIBIT 13.....OCCUPIED BANDWIDTH PLOT
EXHIBIT 14.....FRONT VIEW EXTERNAL PHOTO
EXHIBIT 15.....REAR VIEW EXTERNAL PHOTO
EXHIBIT 16.....SIDE VIEW EXTERNAL PHOTO
EXHIBIT 17.....LABEL VIEW EXTERNAL PHOTO
EXHIBIT 18.....COMPONENT SIDE INTERNAL PHOTO
EXHIBIT 19.....COPPER SIDE INTERNAL PHOTO

APPLICANT: HELLA KG HUECK & CO.

FCC ID: NBG8137T

REPORT #: F:\CUS\H\HELLA\HEL152A8.RPT

PAGE: TABLE OF CONTENTS LIST

APPLICANT: HELLA KG HUECK & CO.
FCC ID: NBG8137T

TEST EQUIPMENT LIST

1. Spectrum Analyzer: Hewlett Packard 8566B, with preselector HP 85685A, & Quasi-Peak Adapter HP 85650A, & HP 8449B OPT H02 Cal. 9/30/97
2. Eaton Biconical Antenna Model 94455-1 20-200 MHz Serial No. 0997 Cal. 9/17/97
3. Electro-Metric Dipole Kit, 20-1000 MHz, Model TDA 25 cal. 5/15/97
4. Electro-Metric Horn 1-18 GHz, Model RGA-180, Cal. 9/24/97
5. Electro-Metric Antennas Model TDS-25-1, TDS-25-2, 9/3/97
6. Electro-Metric Line Impedance Stabilization Network Model No. EM-7821, Serial No. 101; 100KHz-30MHz 50uH. 9/30/97
7. Electro-Metric Line Impedance Stabilization Network Model No. EM-7820, Serial No. 2682; 10KHz-30MHz 50uH. 9/30/97
8. Special low loss cable was used above 1 GHz.

TEST PROCEDURE

GENERAL: This report shall NOT be reproduced except in full without the written approval of TIMCO ENGINEERING, INC.

RADIATION INTERFERENCE: The test procedure used was ANSI STANDARD C63.4-1992 using a HEWLETT PACKARD spectrum analyzer with a preselector. The bandwidth of the spectrum analyzer was 100 kHz with an appropriate sweep speed. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The resolution bandwidth was 100KHz and the video bandwidth was 300KHz. The ambient temperature of the UUT was 98.3oF with a humidity of 40%.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of dBuV) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB. The gain of the Preselector was accounted for in the Spectrum Analyzer Meter Reading.

Example:

Freq (MHz) METER READING + ACF = FS
33 20 dBuV + 10.36 dB = 30.36 dBuV/m @ 3m

APPLICANT: HELLA KG HUECK & CO.
FCC ID: NBG8137T
REPORT #: F:\CUS\H\HELLA\HEL152A8.RPT
PAGE #: 1

TEST PROCEDURES CONTD.

ANSI STANDARD C63.4-1992 10.1.7 MEASUREMENT PROCEDURES: The UUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m. The UUT was placed in the center of the table. The table used for radiated measurements is capable of continuous rotation. The spectrum was scanned from 30 MHz to 10th harmonic of the fundamental.

Peak readings were taken in three (3) orthogonal planes and the highest readings were converted to average readings based on the duration of "ON" time.

Measurements were made by TIMCO ENGINEERING INC. at the registered open field test site located at 6051 N.W. 19th Lane, Gainesville, Fl 32605.

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

APPLICANT: HELLA KG HUECK & CO.
FCC ID: NBG8137T
REPORT #: F:\CUS\H\HELLA\HEL152A8.RPT
PAGE #: 2

APPLICANT: HELLA KG HUECK & CO.

FCC ID: NBG8137T

NAME OF TEST: RADIATION INTERFERENCE

RULES PART NO.: 15.231

REQUIREMENTS:

Fundamental Frequency	Field Strength of Fundamental	Field Strength of Harmonics and Spurious Emissions (dBuV/m @ 3m)
MHz	dBuV	
40.66 to 40.70	67.04	47.04
70 to 130	61.94	41.94
130 to 174	61.94 to 71.48	41.94 to 51.48
174 to 260	71.48	51.48
260 to 470	71.48 to 81.94	51.48 to 61.94
470 and above	81.94	61.94

THE LIMIT FOR AVERAGE FIELD STRENGTH dBuV/m FOR THE FUNDAMENTAL FREQUENCY= 75.62 dBuV/m dBuV/m.

THE LIMIT FOR AVERAGE FIELD STRENGTH dBuV/m FOR THE HARMONICS AND SPURIOUS FREQUENCIES = 55.62 dBuV/m dBuV/m

TEST DATA:

EMISSION FREQ. MHz	METER READING @ 3m dBuV	COAX LOSS dB	ACF dB	PEAK	AVERAGE		
				FIELD STRNGTH dBuV/m	FIELD STRNGTH dBuV/m	MARGIN dB	ANT.
315.01	58.44	1.40	15.16	75.00	68.89	6.73	V
630.01	16.63	1.60	20.76	38.99	32.88	22.74	V
945.02	8.83	2.90	24.26	35.99	29.88	25.74	V

SAMPLE CALCULATION OF LIMIT @ 303 MHz:

$$(470 - 260) \text{ MHz} = 210 \text{ MHz}$$

$$(12500 - 3750) \mu\text{V/m} = 8750 \mu\text{V/m}$$

$$8750 \mu\text{V/m} / 210 \text{ MHz} = 41.67 \mu\text{V/m/MHz}$$

$$(303 - 260) \text{ MHz} = 43 \text{ MHz}$$

$$43 \text{ MHz} * 41.67 \mu\text{V/m/MHz} = 1791.81 \mu\text{V/m}$$

$$(1791.81 + 3750) \mu\text{V/m} = 5541.81 \mu\text{V/m limit @ 303 MHz}$$

The transmitter ceases transmitting when the button is released.

TEST RESULTS: The unit DOES meet the FCC requirements.

PERFORMED BY: S. S. SANDERS

DATE TESTED: 8/10/98

APPLICANT: HELLA KG HUECK & CO.

FCC ID: NBG8137T

REPORT #: F:\CUS\H\HELLA\HEL152A8.RPT

PAGE #: 3

APPLICANT: HELLA KG HUECK & CO.

FCC ID: NBG8137T

CALCULATION OF DUTY CYCLE:

The period of the pulse train is determined by observing it on an oscilloscope or a spectrum analyzer with zero(0) frequency span. A plot is then made of the pulse train with a sweep time of 100milliseconds. This sweep determines the duration of the pulse train, which in this case is 47.12 milliseconds. This sweep allows the determination of the number of and type of pulses, i.e. long & short. Plots are then made showing the duration of each type of pulse and its duration. From the 100millisecond Plot the number of a given type of pulse is then multiplied by the duration of that type pulse. This allows the calculation of the amount of time the UUT is on within 100milliseconds. If the pulse train is longer than 100milliseconds then this number is multiplied by 100 to determine the percentage ON TIME. If the pulse train is less than 100milliseconds the total on-time is divided by the length of the pulse train and then multiplied by 100 to determine the percentage ON TIME. In this case there were 2 pulses 1.12milliseconds long and 27pulses .44milliseconds long and 33 medium pulses 1.0 mS long for a total of 49.5milliseconds on time within either the 100milliseconds or the pulse train. The average field strength is determined by multiplying the peak field strength by the percent on time. In this case the percentage ON time was 49.5%percent.

APPLICANT: HELLA KG HUECK & CO.

FCC ID: NBG8137T

REPORT #: F:\CUS\H\HELLA\HEL152A8.RPT

PAGE #: 4

APPLICANT: HELLA KG HUECK & CO.

FCC ID: NBG8137T

NAME OF TEST: Occupied Bandwidth

RULES PART NO.: 15.231(C)

REQUIREMENTS: The bandwidth of the emission shall be no wider than .25% of the center frequency for devices operating between 70 and 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

$$315.01 \text{ MHz} * .0025 = .787525 \text{ MHz}$$
$$.787525 \text{ MHz}/2 = +/- 393.76$$

THE GRAPH ON THE FOLLOWING PAGE REPRESENTS THE EMISSIONS TAKEN FOR THE DEVICE.

METHOD OF MEASUREMENT: A small sample of the transmitter output was fed into the spectrum analyzer and the above photo was taken. The vertical scale is set to 10 dB per division: the horizontal scale is set to 100 kHz per division.

TEST RESULTS: The unit meets the FCC requirements.

PERFORMED BY: S. S. SANDERS DATE: 8/10/98

APPLICANT: HELLA KG HUECK & CO.
FCC ID: NBG8137T
REPORT #: F:\CUS\H\HELLA\HEL152A8.RPT
PAGE #: 5