

BivesA-CAB-21(21-21

Partial Test Report

Test report no.: 22097768-28470-1 Date of issue: 2023-01-24

Test result: The test item - passed - and complies with below listed standards.

Applicant HELLA GmbH & Co. KGaA

Manufacturer HELLA GmbH & Co. KGaA

Test Item

RS5.3A

RF-Spectrum Testing according to:

FCC 47 CFR Part 95 Personal radio services, Subpart M - The 76-81 GHz Band Radar Service

Tested by (name, function, signature)

Karsten Geraldy Lab Manager RF

Approved by (name, function, signature) Andreas Bender Deputy Managing Director

signature

Company: IBL-Lab GmbH - Heinrich-Hertz-Allee 7 • 66386 St. Ingbert • Germany • Tel: +49 6894 38938-0 • Fax: +49 6894 38938-99 Company Register: 105151, Amtsgericht Saarbrücken URL: www.ib-lenhardt.de • E-Mail: info@ib-lenhardt.de

2023-01-24

Applicant and Test item details		
ApplicantHELLA GmbH & Co. KGaARixbecker Strasse 7559552, Lippstadt, GermanyPhone: +49 2941 380Fax: +49 2941 387133		
Manufacturer	HELLA GmbH & Co. KGaA Rixbecker Strasse 75 59552, Lippstadt, Germany	
Test item description	Advanced Driver Assistance System	
Model/Type reference	Nodel/Type reference RS5.3A	
FCC ID	NBG01RS53A	
Frequency	76.0 GHz to 77.0 GHz	
Antenna	Microstrip patch array	
Power supply	9.0 to 18.0 V DC	
emperature range-40 °C to +85 °C		

Disclaimer and Notes

The content of this test report relates to the mentioned test sample(s) only. Without a written permit of IBL-Lab GmbH, this test report shall not be reproduced, except in full.

The last valid version is available at TAMSys®.

Copyright ©: All rights reserved by IBL-Lab GmbH

Within this test report, a ⊠ point / □ comma is used as a decimal separator. If otherwise, a detailed note is added adjected to its use.

IBL-Lab GmbH does not take test samples. The samples used for testing are provided by the applicant.

Decision rule:

Decision rule based on simple acceptance without guard bands, binary statement, based on mutually agreed uncertainty tolerances with expansion factor k=2 according to ILAC-G8:09/2019

1 TABLE OF CONTENTS

1	TABLE OF CONTENTS	
2	GENERAL INFORMATION	4
2.1	Administrative details	4
2.2	Possible test case verdicts	4
2.3	Observations	5
2.4	Opinions and interpretations	5
2.5	Revision history	5
2.6	Further documents	5
3	ENVIRONMENTAL & TEST CONDITIONS	6
3.1	Environmental conditions	6
3.2	Normal and extreme test conditions	6
4	TEST STANDARDS AND REFERENCES	6
5	EQUIPMENT UNDER TEST (EUT)	7
5.1	Product description	7
5.2	Description of test item	7
5.3	Technical data of test item	7
5.4	Additional information	7
5.5	Operating conditions	8
5.6	Test modes	9
5.7	Antenna characteristics	10
6	SUMMARY OF TEST RESULTS	11
7	TEST RESULTS	12
7.1	RF power output (§2.1046 & §95.3367)	12
7.2	Modulation characteristics (§2.1047 & KDB 653005 D01 76-81 GHz Radars)	17
7.3	Occupied bandwidth (§2.1049 & §95.3379)	
7.4	Field strength of spurious radiation (§2.1053 & §95.3379)	23
8	Test Setup Description	33
8.1	Semi Anechoic Chamber with Ground Plane	
8.2	Fully Anechoic Chamber	36
8.3	Radiated measurements > 18 GHz	38
8.4	Radiated measurements > 50 GHz	38
8.5	Radiated measurements under extreme conditions	38
9	Measurement procedures	40
9.1	Radiated spurious emissions from 9 kHz to 30 MHz	40
9.2	Radiated spurious emissions from 30 MHz to 1 GHz	41
9.3	Radiated spurious emissions from 1 GHz to 18 GHz	42
9.4	Radiated spurious emissions above 18 GHz	43
10	MEASUREMENT UNCERTAINTIES	44

2 GENERAL INFORMATION

2.1 Administrative details		
Testing laboratory	IBL-Lab GmbH Heinrich-Hertz-Allee 7 66386 St. Ingbert / Germany Fon: +49 6894 38938-0 Fax: +49 6894 38938-99 URL: <u>www.ib-lenhardt.de</u> E-Mail: <u>info@ib-lenhardt.de</u>	
Accreditation The testing laboratory is accredited by Deutsche Akkreditierungsst GmbH (DAkkS) in compliance with DIN EN ISO/IEC 17025:2018. Scope of testing and registration number:		
	 Electronics, EMC, Radio Electromagnetic Compatibility and Telecommunication (FCC requirements) Testing Laboratory Designation Number Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian Standards ISED Company Number Testing Laboratory CAB Identifier 	D-PL-21375-01-01 D-PL-21375-01-02 DE0024 D-PL-21375-01-03 27156 DE0020
	Website DAkkS: <u>https://www.dakks.de/</u> The Deutsche Akkreditierungsstelle GmbH (DA the <u>ILAC Mutual Recognition Arrangement</u>	AkkS) is also a signatory to
Testing location	IBL-Lab GmbH Heinrich-Hertz-Allee 7 66386 St. Ingbert / Germany	
Date of receipt of test samples Start – End of tests	2022-09-13 2022-10-17 – 2022-10-20	

2023-01-24

2.2 Possible test case verdicts Test sample meets the requirements P (PASS) Test sample does not meet the requirements F (FAIL) Test case does not apply to the test sample N/A (Not applicable) Test case not performed N/P (Not performed)

2.3 Observations

No additional observations other than the reported observations within this test report have been made.

2.4 Opinions and interpretations

No appropriate opinions or interpretations according ISO/IEC 17025:2017 clause 7.8.7 are within this test report.

2.5 Revision history

-0 Initial Version

-1 Revision:

Chapter 5.4: tested variant added

This test report 22097768-28470-1 replaces the previous test report 22097768-28470-0. Utilisation, publication and control of previous report editions is under responsibility of the applicant.

2.6 Further documents

List of further applicable documents belonging to the present test report:External photographs of EUT:TR-Annex-EP_22097768-28470-0_Hella_RS5.3A_FCC95M.pdfInternal photographs of EUT:TR-Annex-IP_22097768-28470-0_Hella_RS5.3A_FCC95M.pdfTest setup photographs:TR-Annex-TSP_22097768-28470-0_Hella_RS5.3A_FCC95M.pdf

3 ENVIRONMENTAL & TEST CONDITIONS

3.1 Environmental conditions

Temperature	20°C ± 5°C
Relative humidity	25-75% r.H.
Barometric Pressure	860-1060 mbar
Power supply	230 V AC ± 5%

2023-01-24

3.2 Normal and extreme test conditions

	minimum	normal	maximum
Temperature	-/-	20 °C	-/-
Relative humidity	-/-	45 % r.h.	-/-
Power supply	-/-	13.5 V DC	-/-

4 TEST STANDARDS AND REFERENCES

Test standard (accredited)	Description
FCC 47 CFR Part 95	Personal radio services,
	Subpart M - The 76-81 GHz Band Radar Service

Reference	Description	
ANSI C63.4-2014	American National Standard for Methods of Measurement of Radio- Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz	
ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices	
ANSI C63.26-2015	American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services	
KDB 653005 D01, V01, R02	Equipment Authorization Guidance for 76-81 GHz Radar Devices	

5 EQUIPMENT UNDER TEST (EUT)

5.1 **Product description**

Advanced Driver Assistance System

5.2 Description of test item

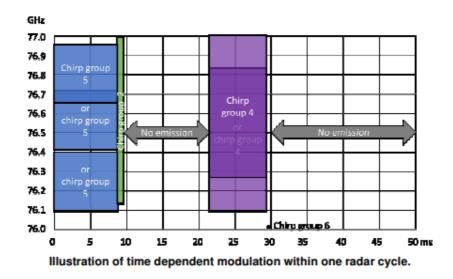
•	
Model name*	RS5.3A
Serial number*	6D22173002B00000
PCB identifier*	N/A
Hardware status*	C1.0
Software status*	X072
* I I II II /	

*: as declared by applicant

5.3 Technical data of test item		
Operational frequency band*	76.0 GHz to 77.0 GHz	
Type of radio transmission*	modulated carrier	
Modulation type*	FMCW	
Number of channels*	1	
Channel bandwidth*	< 1 GHz	
Channel spacing*	N/A	
Receiver category*	N/A	
Receiver bandwidth*	N/A	
Duty cycle*	~35%	
Antenna*	Microstrip patch array	
Antenna gain*	15 dBi	
Rated RF output power*	< 50 dBm	
Power supply*	9.0 to 18.0 V DC	
Temperature range*	-40 °C to +85 °C	

*: as declared by applicant

5.4 Additional information	
Tested variant	SRR ETH
Model differences	none
Ancillaries tested with	none
Additional equipment used for testing	notebook, special test software and CAN interface for Mode 1 to Mode 6

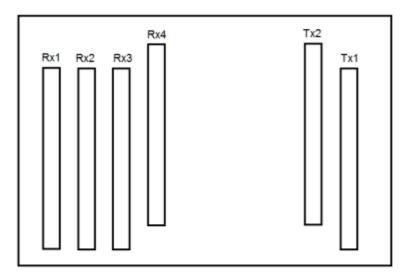

5.5 Operating conditions

Following information is derived from document "**RS5.3A technical_description_revAJ3_with_SBZA-1654610750.pdf**", provided by applicant.

Chirp Modulation Data

Start of a radar cycle	
Chirp group 5: Antenna	Tx1
Chirp group 5: Chirp center frequency	76.256 GHz or 76.586 GHz or 76.804 GHz (*)
Chirp group 5: Bandwidth	300 MHz
Chirp group 5: No of chirps	256
Chirp group 5: Duration of a single chirp	34 µs
Chirp group 2: Antenna	Tx1
Chirp group 2: Chirp center frequency	76.586 GHz
Chirp group 2: Bandwidth	870 MHz
Chirp group 2: No of chirps	16
Chirp group 2: Duration of a single chirp	33 µs
Time slot with no emission	12.5 ms
Chrip group 4: Antenna	Tx1 / Tx2 alternating
Chirp group 4: Chirp center frequency	76.481 GHz or 76.679 GHz (*)
Chirp group 4: Bandwidth	720 MHz
Chirp group 4: No of chirps	84 / 84
Chirp group 4: Duration of a single chirp	45 μs
Obria annua (h. Antonna	Test
Chrip group 6: Antenna	Tx1
Chirp group 6: Chirp center frequency	76.040 GHz
Chirp group 6: Bandwidth	0 MHz (CW)
Chirp group 6: No of chirps	1
Chirp group 6: Duration of a single chirp	236 µs
Time slot with no emission	20 ms
End of radar cycle	
Duration of one radar cycle	approx. 50 ms
Duty cycle	approx. 35 %

(*) Center frequency is changed approx. every two minutes or if interference is detected.



5.6 Test modes	
Mode 0	Normal operation mode as described under chapter 5.5 This mode was used only for testing spurious emissions!
Mode 1	Chirp group 5 low with Chirp group 4 low
Mode 2	Chirp group 5 low with Chirp group 4 high
Mode 3	Chirp group 5 mid with Chirp group 4 low
Mode 4	Chirp group 5 mid with Chirp group 4 high
Mode 5	Chirp group 5 high with Chirp group 4 low
Mode 6	Chirp group 5 high with Chirp group 4 high

5.7 Antenna characteristics

Antenna properties:

Illustration of Tx and Rx antennas inside the EUT. Each antenna consists of a linear patch array with horizontal polarisation.

Antenna characteristics in azimuth and in elevation. The peak gain is approx. 15 dBi.

6 SUMMARY OF TEST RESULTS

Test specification

2023-01-24

FCC 47 CFR Part 95 – Subpart M

Clause	Requirement / Test case	Test Conditions	Result / Remark	Verdict
§2.1046 §95.3367 (a) (b)	RF power output	Nominal	19.93 dBm mean 25.76 dBm peak	Р
§2.1047	Modulation characteristics	Nominal	-	Р
§2.1049 §95.3379 (b)	Occupied bandwidth	Nominal	955.95 MHz	Р
§2.1051	Spurious emissions at antenna terminals	Nominal	see note	N/A
§2.1053 §95.3379 (a)(1) §95.3379 (a)(2) §95.3379 (a)(3)	Field strength of spurious radiation	Nominal	< limit	Ρ
§2.1055 §95.3379 (b)	Frequency stability	-	-	N/P

Notes

FCC's Millimeter Wave Test Procedures:

I. A radiated method of measurements in order to demonstrate compliance with the various regulatory requirements has been chosen in consideration of test equipment availability and the limitations of many external harmonic mixers. A conducted method of measurement could be employed if EUT and mixer waveguides both are accessible and of the same type (WG number) and if waveguide sections and transitions can be found. Another potential problem is that the peak power output may exceed the +20 dBm input power limit of many commercially available mixers. For these reasons a radiated method is preferred.

Comments and observations

The present test report documents a partial testing only, based on previous RF-test report evaluated in 12-2021.

7 TEST RESULTS

7.1 RF power output (§2.1046 & §95.3367)

Description

§2.1046 Measurements required: RF power output.

(a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in §2.1033(c)(8). The electrical characteristics of the radio frequency load attached to the output terminals when this test is made shall be stated.

Limits

§95.3367 76-81 GHz Band Radar Service radiated power limits

The fundamental radiated emission limits within the 76-81 GHz band are expressed in terms of Equivalent Isotropically Radiated Power (EIRP) and are as follows:

(a) The maximum power (EIRP) within the 76-81 GHz band shall not exceed 50 dBm based on measurements employing a power averaging detector with a 1 MHz Resolution Bandwidth (RBW).

(b) The maximum peak power (EIRP) within the 76-81 GHz band shall not exceed 55 dBm based on measurements employing a peak detector with a 1 MHz RBW.

Test procedure Mean Power

Method with spectrum analyser

- A spectrum analyser with the following settings is used as measuring receiver in the test set-up:
- Start frequency: lower than the lower edge of the operating frequency range.
- Stop frequency: higher than the upper edge of the operating frequency range.
- Resolution bandwidth: 1 MHz.
- Video bandwidth: 3 MHz.
- Detector mode: RMS.
- Display mode: clear write.
- Averaging time: larger than one EUT cycle time.

• Sweep time: averaging time × number of sweep points.

Channel Power function needs to be used to calculate the average power. Boundaries for the calculation needs to be defined. This is typically the operating frequency range.

Method with power meter

The power meter shall be connected to the measurement antenna. The frequency correction factor shall be taken into account. The power meter shall be a true RMS power meter. The measurement time shall be equal or longer than the EUT cycle time.

KDB 653005 D01 76-81 GHz Radars v01r02, 4. b)

The maximum fundamental emission power (EIRP) shall be measured using a power averaging (rms) detector with a 1 MHz resolution bandwidth (RBW) and integrated over the full 99% occupied bandwidth (OBW) to obtain the data necessary to demonstrate compliance to the 50 dBm limit.

Test procedure

Peak Power

Method with a spectrum analyser

A spectrum analyser with the following settings is used as measuring receiver in the test set-up:

- Start frequency: lower than the lower edge of the operating frequency range.
- Stop frequency: higher than the upper edge of the operating frequency range.
- Resolution bandwidth: 1 MHz.
- Video bandwidth: 3 MHz.
- Detector mode: Peak detector.
- Display mode: Maxhold.

• Sweep time: EUT cycle time x number of sweep points.

• Measurement is done until trace is stabilised.

The peak power to be considered is the maximum value recorded.

KDB 653005 D01 76-81 GHz Radars v01r02, 4. c)

The maximum peak fundamental emission power (EIRP) measurement shall be performed by sweeping over the transmitted occupied bandwidth using a positive peak power detector with peak hold activated, and a 1 MHz RBW. Power integration is not to be used in performing this measurement. The resultant peak power spectral density (maximum in any 1 MHz) data shall be used to demonstrate compliance to the 55 dBm/MHz limit.

Peak power measurements of swept frequency radar implementations (e.g., high sweep rate FMCW) may require a desensitization correction factor to be applied to the measurement results. See relevant Application Note(s) from the measurement instrumentation vendor for details.

Test procedure used: Method with Spectrum Analyzer

Test setup: 8.3

Test results

EUT mode	Test distance	Radiated Mean Power (EIRP)	Radiated Peak Power (EIRP)
		[dBm]	[dBm]
Mode 1	1 m	17.14	25.76
Mode 2	1 m	19.92	25.66
Mode 3	1 m	19.93	25.67
Mode 4	1 m	19.82	25.72
Mode 5	1 m	19.59	25.62
Mode 6	1 m	19.82	25.71

Note: Measurement plots of Peak EIRP see chapter 7.3 Occupied bandwidth

2023-01-24

Plot no. 1: Mean Power EIRP, RMS detector / Channel Power, EUT Mode 1

Plot no. 2: Mean Power EIRP, RMS detector / Channel Power, EUT Mode 2

11:29:12 10/19/2022

2023-01-24

Plot no. 3: Mean Power EIRP, RMS detector / Channel Power, EUT Mode 3

Plot no. 4: Mean Power EIRP, RMS detector / Channel Power, EUT Mode 4

11:40:42 10/19/2022

2023-01-24

Plot no. 5: Mean Power EIRP, RMS detector / Channel Power, EUT Mode 5

Plot no. 6: Mean Power EIRP, RMS detector / Channel Power, EUT Mode 6

11:50:01 10/19/2022

7.2 Modulation characteristics (§2.1047 & KDB 653005 D01 76-81 GHz Radars)

Description

§2.1047 Modulation characteristics

(d) Other types of equipment. A curve or equivalent data which shows that the equipment will meet the modulation requirements of the rules under which the equipment is to be licensed.

KDB 653005 D01 76-81 GHz Radars v01r02, 3. g)

Concerning the Section 2.1047 modulation characteristics requirement, the following information should be provided:

1) Pulsed radar: pulse width and pulse repetition frequency (if PRF is variable, then report maximum and minimum values).

2) Non-pulsed radar (*e.g.*, FMCW): modulation type (i.e., sawtooth, sinusoid, triangle, or square wave) and sweep characteristics (sweep bandwidth, sweep rate, sweep time).

Statement of applicant / manufacturer concerning modulation characteristics of EUT

See section 5.5

7.3 Occupied bandwidth (§2.1049 & §95.3379)

Description

§2.1049 Measurements required: Occupied bandwidth.

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.

Limits

§95.3379 (b)

Fundamental emissions (i.e. 99% emission bandwidth) must be contained within the frequency bands specified in this section during all conditions of operation.

Test procedure

ANSI C63.26, 5.4.4

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

The following procedure shall be used for measuring 99% power bandwidth:

- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
 Netro: Step a) through step a) may require iteration to adjust within the specified telepaper.
 - Note: Step a) through step c) may require iteration to adjust within the specified tolerances.
- d) Set the detection mode to peak, and the trace mode to max-hold.
- e) If the instrument does not have a 99% OBW function, recover the trace data points and sum directly in linear power terms. Place the recovered amplitude data points, beginning at the lowest frequency, in a running sum until 0.5% of the total is reached. Record that frequency as the lower OBW frequency. Repeat the process until 99.5% of the total is reached and record that frequency as the upper OBW frequency. The 99% power OBW can be determined by computing the difference these two frequencies.
- f) The OBW shall be reported and plot(s) of the measuring instrument display shall be provided with the test report. The frequency and amplitude axis and scale shall be clearly labeled. Tabular data can be reported in addition to the plot(s)

KDB 653005 D01 76-81 GHz Radars v01r02, 4. d)

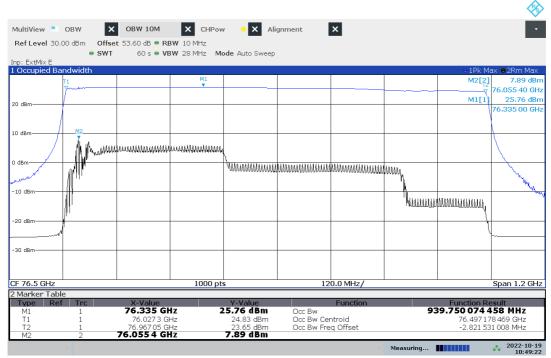
The occupied bandwidth of the radar device shall be measured, reported, and shown to be fully contained within the designated 76-81 GHz frequency band under normal operating conditions as well as under those extreme ambient temperature and input voltage conditions as described in Section 2.1057.

The OBW measurement of an FMCW radar shall be performed with the transmitter operating in normal mode (i.e., with frequency sweep or step active).

Note

Measurements with the peak detector are also suitable to demonstrate compliance of an EUT, as long as the required resolution bandwidth is used, because peak detection will yield amplitudes equal to or greater than amplitudes measured with RMS detector. The measurement data from a spectrum analyser peak detector will represent the worst-case results (see ANSI C63.26, chapter D2: general considerations).

Test setup: 8.3, 8.4


EUT mode	Test conditions	f∟ [GHz]	f _H [GHz]	99% OBW [MHz
Mode 1	Normal	76.027	76.967	939.750
Mode 2	Normal	76.027	76.983	955.951
Mode 3	Normal	76.027	76.967	940.112
Mode 4	Normal	76.027	76.981	954.249
Mode 5	Normal	76.027	76.967	940.008
Mode 6	Normal	76.027	76.982	955.075

2023-01-24

2023-01-24

Plot no. 7: OBW, Peak detector, Mode 1

10:49:22 10/19/2022

Plot no. 8: OBW, Peak detector, Mode 2

Multi¥iew 📒 O	BW X 08	W 10M X CH	Pow	Alignment	K OBW EN	×			
Ref Level 30	0.00 dBm Offse	t 53.60 dB 🖷 RBV	V 10 MHz		_				
	● SWT	60 s 👄 VBV	V 28 MHz Md	de Auto Sweep					
Inp: ExtMix E									
1 Occupied B	andwidth								ax 🛛 2Rm Max
	Т1		M1					M2[2].	., 9.17 dBm
	7								76.252 20 GHz
20 dBm								M1[1]	25.66 dBm
20 ubii									76.33500 GHz
	1								
10 dBm	/	M2							
10 dBm	/	Ň.	,						
/	s addition	peroversa and the second second	Non the destandant in the						$\langle \rangle$
L	le-Mitanata	ACAN ANANANININANA	- Manual Constant of P						
0 dBm	1.1			White we wanted which the second states of the seco	ana ana ang kana ang	en server and the server of	สมักโตยการและสาวที่เป็นได้	មើមសារសារសាមាម	h.
and the second second	(Dec.)				1.0.1.1.1.1.1.1.0.0000111111	I COMPANYARYARY IN TRAD	ANTIMARIS (ALL) ANTIMAR	ANIMALA LANAMINDOMIND	me
www	110w								Manan
-10 dBm	1								1
	1/1								1
	1								
-20 dBm	-								
	1								
-30 dBm									
CF 76.5 GHz			1000 pts		19	20.0 MHz/			Span 1.2 GHz
	-1-		1000 pt	5	12				span 1.2 GHZ
2 Marker Tal		V Value		V Value		E ati a		E D.	and the
Type Re M1	ef Trc	X-Value 76.335 GHz	, 7	Y-Value 5.66 dBm	Occ Bw	Function	91	Function Re 55.951 391 5	
T1	1	76.02717 GH		24.14 dBm	Occ Bw Ce	ntroid	3.		4812 GHz
T2	ĩ	76.98312 GH	z	23.92 dBm	Occ Bw Fre				2 329 MHz
M2	2	76.252 2 GH	Z	9.17 dBm					
							Measuring		2022-10-19
							mousaning		11:24:40

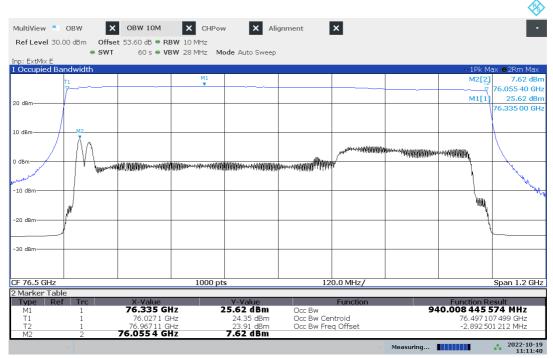
11:24:41 10/19/2022

Plot no. 9: OBW, Peak detector, Mode 3

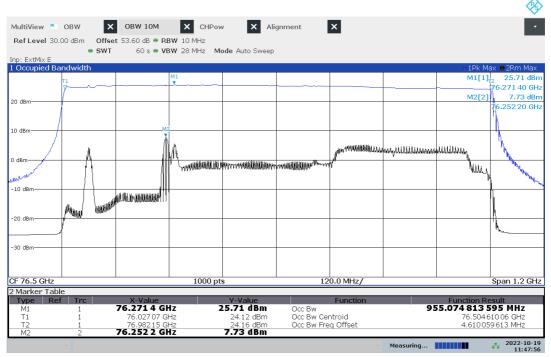
2023-01-24

10:59:07 10/19/2022

Plot no. 10: OBW, Peak detector, Mode 4


Ref Level 30.00 dB Offset 53.60 dB RBW 10 MHz SWT 60 s SWT SUBW 28 MHz Mode Auto Sweep Inp: ExtWix E SUP 00 s SUP 00 s <th colspan="2" su<="" th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>× ×</th></th>	<th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>× ×</th>									× ×
• SWT 0 s • VBW 28 MHz Mode Auto Sweep Inp: ExtMix E Imp: ExtMix E Imp: ExtMix E Imp: ExtMix E Imp: ExtMix E 20 dbm Imp: ExtMix E Imp: ExtMix E Imp: ExtMix E Imp: ExtMix E 20 dbm Imp: ExtMix E Imp: ExtMix E Imp: ExtMix E Imp: ExtMix E 20 dbm Imp: ExtMix E Imp: ExtMix E Imp: ExtMix E Imp: ExtMix E 20 dbm Imp: ExtMix E Imp: ExtMix E Imp: ExtMix E Imp: ExtMix E 10 dbm Imp: ExtMix E Imp: ExtMix E Imp: ExtMix E Imp: ExtMix E 20 dbm Imp: ExtMix E Imp: ExtMix E Imp: ExtMix E Imp: ExtMix E 20 dbm Imp: ExtMix E Imp: ExtMix E Imp: ExtMix E Imp: ExtMix E 20 dbm Imp: ExtMix E Imp: ExtMix E Imp: ExtMix E Imp: ExtMix E 20 dbm Imp: ExtMix E Imp: ExtMix E Imp: ExtMix E Imp: ExtMix E 20 dbm Imp: ExtMix E Imp: ExtMix E Imp: ExtMix E Imp: ExtMix E 20 dbm Imp: ExtMix E Imp: ExtMix E Imp: ExtMix E Imp: ExtMix E 20 dbm <td< td=""><td>MultiView 🗧 OBW</td><td>× OBW 10M × CH</td><td>IPow 🗙 Alig</td><td>nment</td><td>×</td><td></td><td></td><td>-</td></td<>	MultiView 🗧 OBW	× OBW 10M × CH	IPow 🗙 Alig	nment	×			-		
Inp: ExtMix E C:TPk Max 0/2Rm Max I Occupied Bandwidth M1(11), 25:72 dBm 76.271 40 GHz 76.271 40 GHz 20 dBm M2(2), 7:75 dBm 10 dBm M2(2), 7:75 dBm 0 dBm M2(2), 7:75 dBm 10 dBm M2(2), 7:75 dBm 0 dBm M2(2), 7:75 dBm -20 dBm M2(2), 7:75 dBm -30 dBm M1 -30 dBm 1000 pts -30 dBm 1000 pts -30 dBm 1000 pts -30 dBm 0 ct BW -30 dBm 1 76.2714 GHz -20 dBm 0 ct BW -30 dBm 0 ct BW -30 dBm 0 ct BW -30 dBm 0 ct BW -20 dBm 0 ct BW -20 dBm 0 ct BW	Ref Level 30.00 dBm	Offset 53.60 dB • RBW 10 MHz		_						
Inp: ExtMix E • 1Pk Max © 2Rm Max I Occupied Bandwidth • 1Pk Max © 2Rm Max I Occupied Bandwidth Mi[11] 25.72 dBm 76.271 40 GHz 20 dBm MI[11] 25.72 dBm 0 dBm MI[11] 25.22 0 GHz 10 dBm MI 76.252 20 GHz -0 dBm MI 76.252 20 GHz -10 dBm MI 10 dBm -20 dBm MI 1000 pts -20 dBm ID00 pts 120.0 MHz/ -20 dBm Span 1.2 GHz 2 Marker Table Y-Value V-Value TI 1 76.271 4 GHz 25.72 dBm Occ BW 954.248 723 811 MHz TI 1 76.291 4 GHz			Mode Auto Sweep							
Til Mi Milling 25.72 dBm 20 dBm M2[2] 7.75 dBm 76.271 40 GHz 10 dBm M2[2] 7.75 dBm 16.252 20 GHz 10 dBm M2[2] 7.75 dBm 16.252 20 GHz 10 dBm M2[2] 7.75 dBm 16.252 20 GHz -10 dBm M2 10.000 pts 120.00 MHz/ -20 dBm 10.000 pts 120.00 MHz/ Span 1.2 GHz -20 dBm 10.000 pts 120.00 MHz/ Span 1.2 GHz -20 dBm 10.000 pts 120.00 MHz/ Span 1.2 GHz -20 dBm -20.00 pts 120.00 MHz/ Span 1.2 GHz -20 dBm -20.00 pts 120.00 MHz/ Span 1.2 GHz	Inp: ExtMix E									
20 dbm 76.271 40 GHz 20 dbm 76.252 20 GHz 10 dbm 76.252 20 GHz 0 dbm 76.252 20 GHz 10 dbm 76.252 20 GHz 20 dbm 76.252 20 GHz 10 dbm 76.252 20 GHz 20 dbm 76.251 4 GHz 20 dbm 76.271 4 GHz 25.72 dbm 0 cc Bw 954.248 723 811 MHz 76.2273 6Hz 24.19 dBm 0 cc Bw 954.248 723 811 MHz 76.50 Hz 24.19 dBm 0 cc Bw 76.40 51 491 GHz 76.50 Hz	1 Occupied Bandwidth						o 1Pk Ma	ax 🛛 2Rm Max		
20 dBm 76.271 40 GHz 10 dBm M2[2] 0 dBm 76.252 20 GHz 0 dBm 76.252 20 GHz -10 dBm 76.252 20 GHz -20 dBm 76.252 20 GHz -30 dBm 76.252 20 GHz -30 dBm 1000 pts 11 1 1 76.252 20 GHz 1000 pts 120.0 MHz/ Span 1.2 GHz 20 dBm 0cc Bw 954.248 723 811 MHz 71 1 1 76.2571 4 GHz 24.19 dBm 0cc Bw 954.248 723 811 MHz 76.50 GHz 24.19 dBm 0cc Bw Centroid 76.50 dHz	Τ1						M1[1]	25.72 dBm		
20 dBm 0 dBm 0 dBm -10 dBm -20 dBm -20 dBm -10 dBm								76.271 40 GHz		
10 dbm 76.25220 GHz 10 dbm 77.25220 GHz 0 dbm 77.25220 GHz 10 dbm 77.2520 GHz 10 dbm 1 10 dbm 1 11 1 76.2521 4 GHz 24.19 dbm 0cc Bw 954.248 723 811 MHz 77.527 4 Bm 0cc Bw 954.248 723 811 MHz 77.520 0GHz 24.19 dBm 0cc Bw 954.248 723 811 MHz							M2[2]	7.75 dBm		
0 dBm 0 dBm <td< td=""><td>20 uBm</td><td></td><td></td><td></td><td></td><td></td><td></td><td>76.252 20 GHz</td></td<>	20 uBm							76.252 20 GHz		
0 dBm 0 dBm <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>¶ </td></td<>								¶		
0 dBm 0 dBm <td< td=""><td>10.40-0</td><td>MS</td><td></td><td></td><td></td><td></td><td></td><td>1</td></td<>	10.40-0	MS						1		
0 dBm -10 dBm -20 d	10 dBm	T						N I		
0 dBm -10 dBm -20 d		Al A	with the server	ANARANNARABARETERARA	0HMM0HAmerican			N. I		
-10 dem		11111						. J.V.		
-10 dBm -20	U dBm	A Managerry	YN WYWY		Vires	nonthing this is a second of	dilikita ka sa	N.		
Indicating Indicating -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -20 dBm		III Diministree			.11	A A A A A A A A A A A A A A A A A A A	analiana a ta ta a a analan a a a a a a a a a a a a a a	m		
Indicating Indicating -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -20 dBm	and the second s						ľ	, m		
-20 dBm -20 dBm <t< td=""><td>-10 dBm</td><td>att in neareanne^{(†††}</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	-10 dBm	att in neareanne ^{(†††}								
-20 dBm -20 dBm <t< td=""><td> n []</td><td>ANNAN MANANANANANANANANANANANANANANANANA</td><td></td><td></td><td></td><td></td><td></td><td>l,</td></t<>	n []	ANNAN MANANANANANANANANANANANANANANANANA						l,		
CE 76.5 GHz 1000 pts 120.0 MHz/ Span 1.2 GHz -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm CF 76.5 GHz 1000 pts 120.0 MHz/ Span 1.2 GHz 2 Marker Table	P ^{ritkant} N	(AMARAN)						1		
CF 76.5 GHz 1000 pts 120.0 MHz/ Span 1.2 GHz 2 Marker Table Type Ref Trc X-Value Y-Value Function Function Result M1 1 76.271 4 GHz 25.72 dBm Occ Bw 954.248 723 811 MHz T1 1 76.026 93 GHz 24.19 dBm Occ Bw Centroid 76.604051 491 GHz	-20 dBm									
CF 76.5 GHz 1000 pts 120.0 MHz/ Span 1.2 GHz 2 Marker Table Type Ref Trc X-Value Function Result M1 1 76.271 4 GHz 25.72 dBm Occ Bw 954.248 723 811 MHz T1 1 76.026 93 GHz 24.19 dBm Occ Bw Centroid 76.504051 491 GHz								· M		
CF 76.5 GHz 1000 pts 120.0 MHz/ Span 1.2 GHz 2 Marker Table Type Ref Trc X-Value Y-Value Function Function Result M1 1 76.271 4 GHz 25.72 dBm Occ Bw 954.248 723 811 MHz T1 1 76.026 93 GHz 24.19 dBm Occ Bw Centroid 76.604051 491 GHz										
Warker Table Y-Value Y-Value Function Function Result M1 1 76.271 4 GHz 25.72 dBm Occ Bw 954.248 723 811 MHz T1 1 76.026 93 GHz 24.19 dBm Occ Bw Centroid 76.604 051 491 GHz	-30 dBm									
Warker Table Y-Value Y-Value Function Function Result M1 1 76.271 4 GHz 25.72 dBm Occ Bw 954.248 723 811 MHz T1 1 76.026 93 GHz 24.19 dBm Occ Bw Centroid 76.604 051 491 GHz										
Warker Table Y-Value Y-Value Function Function Result M1 1 76.271 4 GHz 25.72 dBm Occ Bw 954.248 723 811 MHz T1 1 76.026 93 GHz 24.19 dBm Occ Bw Centroid 76.604 051 491 GHz										
Warker Table Y-Value Function Function Result M1 1 76.271 4 GHz 25.72 dBm Occ Bw 954.248 723 811 MHz T1 1 76.026 93 GHz 24.19 dBm Occ Bw Centroid 76.504 051 491 GHz	CE 76.5 GHz	100	Onts	120	1.0 MHz/			Snan 1.2 GHz		
Type Ref Trc X-Value Y-Value Function Function Result M1 1 76.2714 GHz 25.72 dBm Occ Bw 954.248 723.811 MHz T1 1 76.02693 GHz 24.19 dBm Occ Bw 76.504051491 GHz		100	- I	11.	/			Span the one		
M1 1 76.271 4 GHz 25.72 dBm Occ Bw 954.248 723 811 MHz T1 1 76.026 93 GHz 24.19 dBm Occ Bw Centroid 76.504051 491 GHz		X-Value	V-Value		Eunction		Eunction Re	sult		
T1 1 76.026 93 GHz 24.19 dBm Occ Bw Centroid 76.504 051 491 GHz				Occ Bw		95				
	T1 1			Occ Bw Cen						
	T2 1	76.98118 GHz	24.17 dBm	Occ Bw Free	q Offset		4.051 4	90.62 MHz		
M2 2 76.252 2 GHz 7.75 dBm	<u>M2 2</u>	76.252 2 GHZ	7.75 dBm							
Measuring 2022-10-19						Measuring		2022-10-19 11:38:24		

11:38:25 10/19/2022


2023-01-24

Plot no. 11: OBW, Peak detector, Mode 5

11:11:41 10/19/2022

Plot no. 12: OBW, Peak detector, Mode 6

11:47:57 10/19/2022

7.4 Field strength of spurious radiation (§2.1053 & §95.3379)

Description

§2.1053 Measurements required: Field strength of spurious radiation.

(a) Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of §2.1049, as appropriate. For equipment operating on frequencies below 890 MHz, an open field test is normally required, with the measuring instrument antenna located in the far-field at all test frequencies. In the event it is either impractical or impossible to make open field measurements (e.g. a broadcast transmitter installed in a building) measurements will be accepted of the equipment as installed. Such measurements must be accompanied by a description of the site where the measurements were made showing the location of any possible source of reflections which might distort the field strength measurements. Information submitted shall include the relative radiated power of each spurious emission with reference to the rated power output of the transmitter, assuming all emissions are radiated from halfwave dipole antennas.

Limits

§95.3379 76-81 GHz Band Radar Service unwanted emissions limits.

- (a) The power density of any emissions outside the 76-81 GHz band shall consist solely of spurious emissions and shall not exceed the following:
- (1) Radiated emissions below 40 GHz shall not exceed the field strength as shown in the following emissions table.

Frequency [MHz]	Field Strength [µV/m] / [dBµV/m]	Measurement distance [m]
0.009 - 0.490	2400/F[kHz]	300
0.490 - 1.705	24000/F[kHz]	30
1.705 – 30.0	30.0 / 29.5	30
30 - 88	100 / 40.0	3
88 – 216	150 / 43.5	3
216 - 960	200 / 46.0	3
960 - 40 000	500 / 54.0	3

(2) The power density of radiated emissions outside the 76-81 GHz band above 40.0 GHz shall not exceed the following, based on measurements employing an average detector with a 1 MHz RBW:

Power Density / EIRP	Measurement distance [m]
600 pW/cm² → -1.7 dBm	3
1000 pW/cm ² → +0.5 dBm	3
	600 pW/cm² → -1.7 dBm

Note

Measurements with the peak detector are also suitable to demonstrate compliance of an EUT, as long as the required resolution bandwidth is used, because peak detection will yield amplitudes equal to or greater than amplitudes measured with RMS detector. The measurement data from a spectrum analyser peak detector will represent the worst-case results (see ANSI C63.26, chapter D2: general considerations).

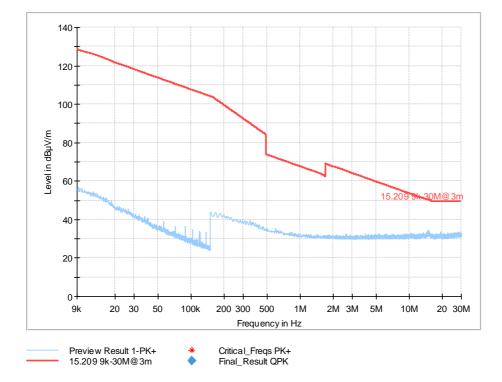
Calculation of the far field distance (Rayleigh distance):

The aperture dimensions of these horn antennas shall be small enough so that the measurement distance in meters is equal to or greater than the Rayleigh distance (i.e. $R_m = 2D^2 / \lambda$), where *D* is the largest linear dimension (i.e. width or height) of the antenna aperture in m and λ is the free-space wavelength in meters at the frequency of measurement.

Antenna type	Frequency range [GHz]	D [m]	Highest frequency in use [GHz]	Far field distance R _m [m]
20240-20	18.0 – 26.5	0.0520	26.5	0.478
22240-20	26.5 - 40.0	0.0342	40	0.312
23240-20	33.0 - 50.0	0.0280	50	0.261
24240-20	40.0 - 60.0	0.0230	60	0.212
25240-20	50.0 - 75.0	0.0185	75	0.171
26240-20	60.0 - 90.0	0.0150	90	0.135
27240-20	75.0 – 110	0.0124	110	0.113
28240-20	90.0 - 140	0.0100	140	0.093
29240-20	110 – 170	0.0085	170	0.082
30240-20	140 – 220	0.0068	220	0.068
32240-20	220 – 325	0.00446	243	0.032

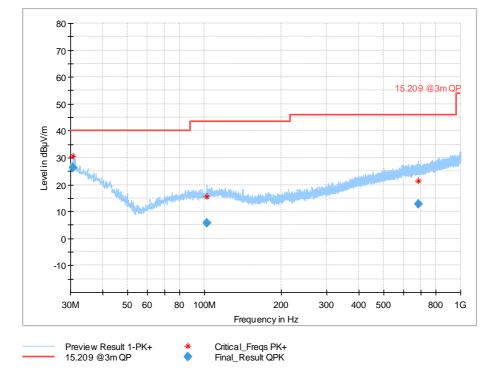
Used test distances

Up to 18 GHz:	3.00 m
18 – 75 GHz:	0.50 m
75 – 78 GHz:	1.00 m
78 – 110 GHz:	0.50 m
110 – 170 GHz:	0.50 m
In-band / OOB:	1.00 m


Test setup: 8.1 – 8.4 (in case of field strength measurements below 40 GHz: test distance correction factor of 20dB/decade is already considered in the plots / test result table)

Test results

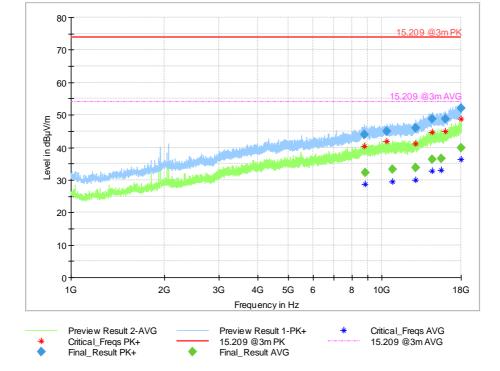
rectrectite						
Channel /	Frequency	Detector	Test distance	Level	Limit	Margin
Mode	[GHz]		[m]	[dBµV/dBm]	[dBµV/dBm]	[dB]
No critical peaks found. Please refer to plots.						


2023-01-24

2023-01-24

Plot no. 14: radiated emissions 30 MHz - 1 GHz, polarization vertical / horizontal, mode 0

Final_Result


Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
30.773000	26.37	40.00	13.63	100.0	120.000	103.0	V	-20.0
102.335500	5.70	43.50	37.80	100.0	120.000	335.0	н	42.0
686.202000	12.96	46.00	33.04	100.0	120.000	246.0	Н	227.0

(continuation of the "Final_Result" table from column 15 ...)

Frequency (MHz)	Corr. (dB/m)	Comment
30.773000	20.0	-
102.335500	12.3	-
686.202000	20.7	-

2023-01-24

Plot no. 15: radiated emissions 1 GHz - 18 GHz, polarization vertical / horizontal, mode 0

Final_Result

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol
8800.286111	43.96		74.00	30.04	100.0	1000.000	150.0	V
8839.938889		32.38	54.00	21.62	100.0	1000.000	150.0	v
10370.883333	44.85		74.00	29.15	100.0	1000.000	150.0	Η
10823.722222		33.22	54.00	20.78	100.0	1000.000	150.0	V
12866.480556		33.65	54.00	20.35	100.0	1000.000	150.0	н
12872.716667	45.96		74.00	28.04	100.0	1000.000	150.0	V
14492.288889		36.27	54.00	17.73	100.0	1000.000	150.0	V
14559.000000	48.83		74.00	25.17	100.0	1000.000	150.0	V
15518.613889		36.58	54.00	17.42	100.0	1000.000	150.0	V
16048.013889	48.72		74.00	25.28	100.0	1000.000	150.0	Н
17968.444444		39.80	54.00	14.20	100.0	1000.000	150.0	V
17974.394444	52.10		74.00	21.90	100.0	1000.000	150.0	V

(continuation of the "Final_Result" table from column 14 ...)

Frequency (MHz)	Azimuth (deg)	Elevation (deg)	Corr. (dB/m)	Comment
8800.286111	148.0	96.0	11.9	-
8839.938889	74.0	70.0	12.1	-
10370.883333	334.0	5.0	15.0	-
10823.722222	132.0	6.0	15.4	-
12866.480556	43.0	25.0	14.9	-
12872.716667	-2.0	62.0	14.9	-
14492.288889	355.0	91.0	17.9	-
14559.000000	259.0	15.0	18.0	-
15518.613889	201.0	101.0	17.8	-
16048.013889	69.0	105.0	17.8	-
17968.444444	209.0	15.0	22.6	-
17974.394444	255.0	6.0	22.6	-

Plot no.	16: radiated	emissions ?	18 GHz –	26.5 GHz,	polarization	vertical /	horizontal,	mode 0

1ultiView 📲 Sp	ectrum	Spectrum 2	× Spect	rum 3	×			
Ref Level 90.00 dB								
Att 0	dB 🖷 SWT 🛛 🕅	Ss ⊜VBW 3 MHz M	Node Auto Sweep					
Frequency Sweep							o1Pk Max	●2Av MaxLi
Limit Check			ASS				M2[2]	33.78 dB
Line 74 DBUV Line 54 DBUV			ASS					5.359 500 G
			433					53.24 dE
							2	5.359 500 6
DBUV								
I dBµ∨								
DBUV							M1	
dBµV								
							Junit 1	
deleter and the second second	بالمناوية بالمأملة أيتغر فيتجمعهم	gesting and planter label starting	<u>مروالد البالية المراجع المراجع</u>					in the second
							M2	
dBµV_								
				**************************************			,	
dBµV								
dBµV								
dBh∧ ————————————————————————————————————								
3.0 GHz		8500 p	1		50.0 MHz/			26.5 0
5.0 GHZ		8500 p	us	85	0.0 MHZ/	Measuring		2022-10

Plot no. 17: radiated emissions 26.5 GHz – 40 GHz, polarization vertical / horizontal, mode 0

	Spectrum		pectrum 2	× Spect	trum 3	×			
tt level 90.	00 dBµV Offs 0 dB ● SWT			1ode Auto Sweep)				
equency S	weep							o 1Pk Max	●2Av Max
Limit Che Line 74 D	ck			ASS			M2[[2]	36.63
Line 74 L Line 54 D	BUV			ASS ASS					9.714500
3μV							M1[49,21
300								3	8.540 500
30V 3μV									
3µV									
,µ т									
SUV								M1	
3µV				احاته المعدولية ومعاولته وعدارات	in an an an t		wikite and a factor structure	at the second shakes a second	بالمعرية والمعالي
		hand the state of the					diamanana ang atang an	a for a second	And Anglassian
3µγ									
	the second s								
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~									
Эрү — —									
ЗµV									
ЗµV									
зµv									
ЗµV									
944 — — — — — — — — — — — — — — — — — —									



2023-01-24



Plot no. 18: radiated emissions 40 GHz - 60 GHz, polarization vertical / horizontal, mode 0

Plot no. 19: radiated emissions 60 GHz - 75 GHz, polarization vertical / horizontal, mode 0

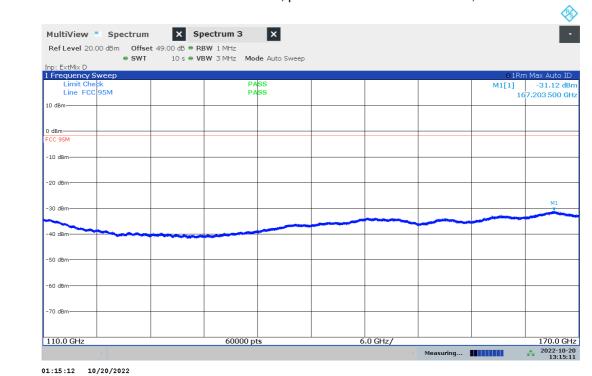
Ref Level 20.00 dBm Offset 4			
• SWT np: ExtMix E	10 s 🖷 VBW 3 MHz 🛛 Mode Auto Sweep		
Frequency Sweep			o 1 Rm Max Auto ID
Limit Check Line FCC 95M	PASS PASS		M1[1] -42.41 dB 60.109 500 G
0 dBm			
dBm			
10 dBm			
20 dBm			
30 dBm			
40 dBm			
50 dBm			
60 dBm			
70 dBm			
50.0 GHz	15000 pts	1.5 GHz/	75.0 GF



Plot no. 20: radiated emissions 75 GHz - 78 GHz, BEC, polarization aligned with radar sensor, mode 0

 $\bigotimes$ MultiView Spectrum × Spectrum 3 × 
 Ref Level
 25.00 dB
 Offset
 50.00 dB
 RBW
 1 MHz

 SWT
 300 s
 VBW
 3 MHz
 Mode
 Audo Sweep
 : ExtMix E 1 Frequency Swe 01R n ID Limit Che 20 dBnLine TSM PASS M1[1] -39.76 dB ECC OFM .000 000 GHz 10 dBm--10 dBm L -20 dBm V -30 dBm 40-dB -50 dBm -60 dBm -70 dBm 75.0 GHz 3000 pts 300.0 MHz/ 78.0 GHz 2022-10-20 14:27:53 Measuring... 02:27:54 10/20/2022


Plot no. 21: radiated emissions 78 GHz - 110 GHz, polarization vertical / horizontal, mode 0

AultiView 📑 Spectrum	X Spectrum 3 X			
Ref Level 20.00 dBm Offset 45 SWT	5.80 dB • RBW 1 MHz 10 s • VBW 3 MHz Mode Auto Swe			
p: ExtMix W	TO S - VEYY STAILS MODE AUTO SWE	ep		
Frequency Sweep M - EGG 95Mheck	PASS			Rm Max Auto II
Line TSM - FCC 95M	PASS		M1[1	] -37.54 dE 92.819 500 G
l dBm				92.819 300 0
dBm				
0 dBm				
u u u u u u u u u u u u u u u u u u u				
:0 dBm-				
30 dBm				
	MI			
0 dBm				
0 dBm				
0 dBm				
0 dBm				
8.0 GHz	32000 pts	3.2 GHz/		110.0 G
'8.0 GHz	32000 pts	3.2 GHz/	Measuring	2022-10 14:3

IBL-Lab GmbH



2023-01-24



Plot no. 22: radiated emissions 110 GHz - 170 GHz, polarization vertical / horizontal, mode 0

Plot no. 23: radiated emissions 170 GHz - 220 GHz, polarization vertical / horizontal, mode 0

AultiView 🎫 Spectrum	× Spectrum 3 ×		
- Ref Level 20.00 dBm Offset 45.00			-
e SWT 1 Ip: ExtMix G	0 s 🗢 VBW 3 MHz 🛛 Mode Auto Sweep		
Frequency Sweep			⊙1Rm Max Auto II
Limit Check	PASS		M1[1] -27.25 dE
Line TSM - FCC 95M	PASS		192.018 500 G
I dBm			
dBm			
M - FCC 95M		1 1	
0 dBm			
0 dBm			
	Mi		
30 dBm			
		I I T	
0 dBm			
50 dBm			
D dBm			
and a second sec			
0 dBm			
70.0 GHz	50000 pts	5.0 GHz/	220.0 G
7010 0112	50000 pts		Measuring

# INGENIEURBÜRO

#### TR no.: 22097768-28470-1

#### 2023-01-24

#### Plot no. 24: radiated emissions 220 GHz – 231 GHz, polarization vertical / horizontal, mode 0

			· · · · · · · · · · · · · · · · · · ·
MultiView 📒 Spectrum	× Spectrum 3 ×		•
	60 dB • RBW 1 MHz 10 s • VBW 3 MHz Mode Auto Sweep		
Inp: ExtMix J 1 Frequency Sweep			• 1Rm Max Auto ID
Limit Check Line FCC 95M	PASS PASS		M1[1] -22.90 dBm 224.370 500 GHz
10 dBm			
FCE ^R 98M			
-10 dBm			
-20 dBm	мі		
-30 dBm-			
-40 dBm			
-50 dBm-			
-60 dBm			
-70 dBm			
-70 UBM			
220.0 GHz	11000 pts	1.1 GHz/	231.0 GHz
~			Measuring

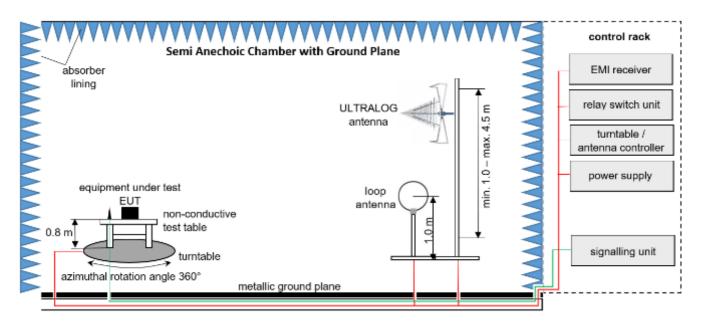
02:42:27 10/20/2022



# 8 Test Setup Description

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Cyclic chamber inspections and range calibrations are performed. Where possible, RF generating and signalling equipment as well as measuring receivers and analysers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).


#### Kind of calibration (abbreviations):

- C = calibrated
- CM = cyclic maintenance
- NR = not required
- L = locked



#### 8.1 Semi Anechoic Chamber with Ground Plane

Radiated measurements are performed in vertical and horizontal plane in the frequency range 30 MHz to 1 GHz in a Semi Anechoic Chamber with a metallic ground plane. The EUT is positioned on a non-conductive test table with a height of 0.80 m above the metallic ground plane that covers the whole chamber. The receiving antennas conform to specification ANSI C63.26-2015, American National Standard for Testing Unlicensed Wireless Devices. These antennas can be moved over the height range between 1.0 m and 4.5 m in order to search for maximum field strength emitted from the EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by a spectrum analyzer where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.



Measurement distance: ULTRALOG antenna at 3 m; loop antenna at 3 m EMC32 software version: 11.20.00

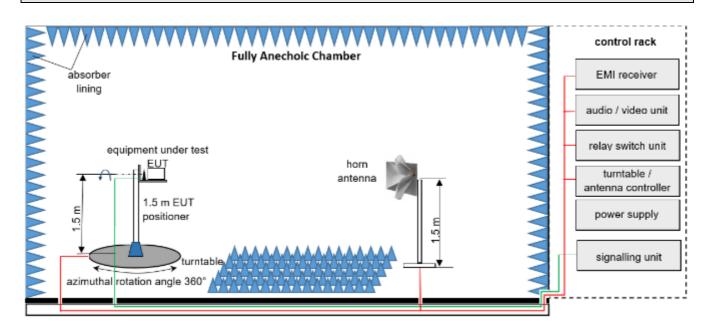
#### FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

#### Example calculation:

FS  $[dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$ 




#### List of test equipment used:

No.	Equipment	Manufacturer	Туре	Serial No.	IBL No.	Kind of Calibration	Last / Next Calibration
1	Power Supply	Elektro-Automatik GmbH & Co. KG	EA-PSI 9080-40 T	2000230001	LAB000313	NR	_
2	Test table	innco systems GmbH	PT1208-080-RH	-	LAB000306	NR	-
3	Power Supply	Chroma	61604	616040005416	LAB000285	NR	-
4	Positioner	maturo GmbH	TD 1.5-10KG		LAB000258	NR	-
5	Compressed Air	Implotex	1-850-30	-	LAB000256	NR	-
6	EMI Test Receiver	Rohde & Schwarz	ESW26	101481	LAB000236	С	$2022\text{-}07\text{-}07 \rightarrow 12 M \rightarrow 2023\text{-}07\text{-}07$
7	Semi/Fully Anechoic Chamber (SFAC)	Albatross Projects GmbH	Babylon 5 (SAC 5)	20168.PRB	LAB000235	NR	-
8	Measurement Software	Rohde & Schwarz	EMC32 V11.20		LAB000226	NR	-
9	Turntable	maturo GmbH	TT2.0-2t	TT2.0-2t/921	LAB000225	NR	-
10	Antenna Mast	maturo GmbH	CAM4.0-P	CAM4.0-P/316	LAB000224	NR	-
11	Antenna Mast	maturo GmbH	BAM4.5-P	BAM4.5-P/272	LAB000223	NR	-
12	Controller	maturo GmbH	FCU 3.0	10082	LAB000222	NR	-
13	Power Supply	Elektro-Automatik GmbH & Co. KG	EA-PS 2042-10 B	2878350292	LAB000191	NR	-
14	Pre-Amplifier	Schwarzbeck Mess- Elektronik OHG	BBV 9718 C	84	LAB000169	NR	_
15	Antenna	Rohde & Schwarz	HF907	102899	LAB000151	С	$\texttt{2020-04-23} \rightarrow \texttt{36M} \rightarrow \texttt{2023-04-23}$
16	Antenna	Rohde & Schwarz	HL562E	102005	LAB000150	С	$\textbf{2020-07-05} \rightarrow \textbf{36M} \rightarrow \textbf{2023-07-05}$
17	Open Switch and Control Platform	Rohde & Schwarz	OSP200 Base Unit 2HU	101748	LAB000149	NR	_
18	Antenna	Rohde & Schwarz	HF907	102898	LAB000124	С	$\texttt{2020-04-23} \rightarrow \texttt{36M} \rightarrow \texttt{2023-04-23}$
19	Antenna	Rohde & Schwarz	HL562E	102001	LAB000123	С	$\texttt{2020-07-05} \rightarrow \texttt{36M} \rightarrow \texttt{2023-07-05}$
20	Antenna	Rohde & Schwarz	HFH2-Z2E - Active Loop Antenna	100954	LAB000108	С	$2020\text{-}03\text{-}25 \rightarrow 36\text{M} \rightarrow 2023\text{-}03\text{-}25$

2023-01-24



#### 8.2 Fully Anechoic Chamber



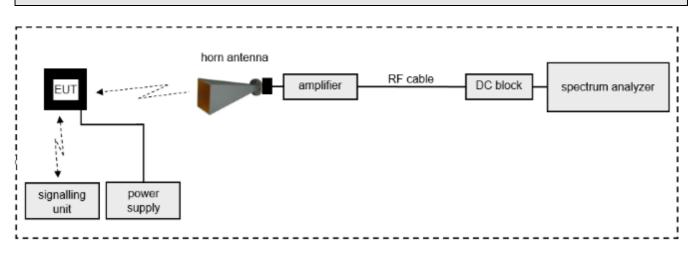
Measurement distance: horn antenna at 3 m EMC32 software version: 11.20.00

FS = UR + CA + AF (FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

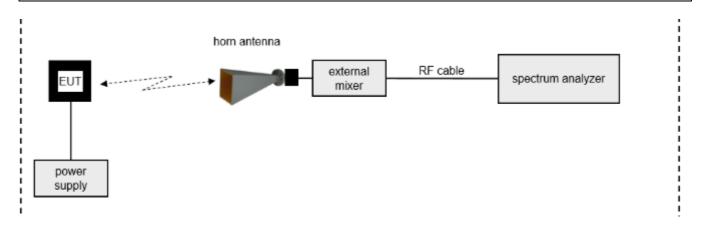
#### Example calculation:

FS  $[dB\mu V/m] = 40.0 [dB\mu V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB\mu V/m] (71.61 \mu V/m)$ 

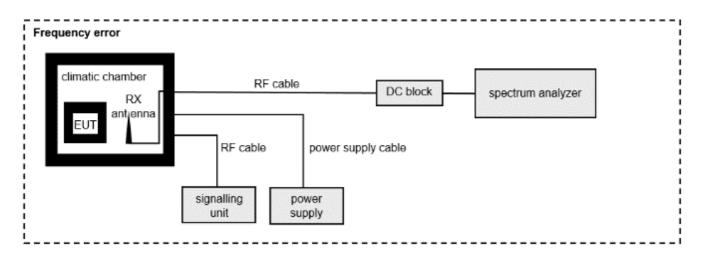



#### List of test equipment used:

No.	Equipment	Manufacturer	Туре	Serial No.	IBL No.	Kind of Calibration	Last / Next Calibration
1	Power Supply	Elektro-Automatik GmbH & Co. KG	EA-PSI 9080-40 T	2000230001	LAB000313	NR	-
2	Test table	innco systems GmbH	PT1208-080-RH	-	LAB000306	NR	-
3	Power Supply	Chroma	61604	616040005416	LAB000285	NR	-
4	Positioner	maturo GmbH	TD 1.5-10KG		LAB000258	NR	-
5	Compressed Air	Implotex	1-850-30	-	LAB000256	NR	-
6	EMI Test Receiver	Rohde & Schwarz	ESW26	101481	LAB000236	С	$2022\text{-}07\text{-}07 \rightarrow 12 \text{M} \rightarrow 2023\text{-}07\text{-}07$
7	Semi/Fully Anechoic Chamber (SFAC)	Albatross Projects GmbH	Babylon 5 (SAC 5)	20168.PRB	LAB000235	NR	-
8	Measurement Software	Rohde & Schwarz	EMC32 V11.20		LAB000226	NR	-
9	Turntable	maturo GmbH	TT2.0-2t	TT2.0-2t/921	LAB000225	NR	-
10	Antenna Mast	maturo GmbH	CAM4.0-P	CAM4.0-P/316	LAB000224	NR	-
11	Antenna Mast	maturo GmbH	BAM4.5-P	BAM4.5-P/272	LAB000223	NR	-
12	Controller	maturo GmbH	FCU 3.0	10082	LAB000222	NR	-
13	Power Supply	Elektro-Automatik GmbH & Co. KG	EA-PS 2042-10 B	2878350292	LAB000191	NR	-
14	Pre-Amplifier	Schwarzbeck Mess- Elektronik OHG	BBV 9718 C	84	LAB000169	NR	_
15	Antenna	Rohde & Schwarz	HF907	102899	LAB000151	С	$\texttt{2020-04-23} \rightarrow \texttt{36M} \rightarrow \texttt{2023-04-23}$
16	Antenna	Rohde & Schwarz	HL562E	102005	LAB000150	С	$\textbf{2020-07-05} \rightarrow \textbf{36M} \rightarrow \textbf{2023-07-05}$
17	Open Switch and Control Platform	Rohde & Schwarz	OSP200 Base Unit 2HU	101748	LAB000149	NR	_
18	Antenna	Rohde & Schwarz	HF907	102898	LAB000124	С	$\texttt{2020-04-23} \rightarrow \texttt{36M} \rightarrow \texttt{2023-04-23}$
19	Antenna	Rohde & Schwarz	HL562E	102001	LAB000123	С	$\texttt{2020-07-05} \rightarrow \texttt{36M} \rightarrow \texttt{2023-07-05}$
20	Antenna	Rohde & Schwarz	HFH2-Z2E - Active Loop Antenna	100954	LAB000108	С	$2020\text{-}03\text{-}25 \rightarrow 36\text{M} \rightarrow 2023\text{-}03\text{-}25$


2023-01-24








#### 8.4 Radiated measurements > 50 GHz



#### 8.5 Radiated measurements under extreme conditions





#### ROP = AV + D - G

(ROP-rad. output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain)

2023-01-24

#### Example calculation:

ROP [dBm] = -54.0 [dBm] + 64.0 [dB] - 20.0 [dBi] = -10 [dBm] (100 µW)

Note: conversion loss of mixer is already included in analyzer value.

#### List of test equipment used:

No.	Equipment	Manufacturer	Туре	Serial No.	IBL No.	Kind of Calibration	Last / Next Calibration
1	Test table	innco systems GmbH	PT0707-RH light	-	LAB000303	-	-
2	Spectrum Analyser	Rohde & Schwarz	FSW43	101391	LAB000289	NR	-
3	Power Supply	Elektro-Automatik GmbH & Co. KG	PS 2042-10 B	2878350263	LAB000190	NR	-
4	WG-Coax-Adapter	Flann Microwave Ltd	23373-TF30 UG383/U	273385	LAB000185	СМ	$2022\text{-}09\text{-}01 \rightarrow 12\text{M} \rightarrow 2023\text{-}09\text{-}01$
5	WG-Coax-Adapter	Flann Microwave Ltd	22093-TF30 UG599/U	273263	LAB000183	СМ	$2022\text{-}09\text{-}01 \to 12\text{M} \to 2023\text{-}09\text{-}01$
6	WG-Coax-Adapter	Flann Microwave Ltd	20093-TF30 UBR220	273374	LAB000181	СМ	$2022-09-01 \rightarrow 12M \rightarrow 2023-09-01$
7	Coaxial Cable	Huber & Suhner	SF101/1.0m	503989/1	LAB000163	СМ	$2022\text{-}05\text{-}31 \to 12 \text{M} \to 2023\text{-}05\text{-}31$
9	Coaxial Cable	Huber & Suhner	ST18/48"	2276454-01	LAB000157	СМ	$2022\text{-}05\text{-}31 \to 12 \text{M} \to 2023\text{-}05\text{-}31$
10	Coaxial Cable	Rosenberger	LU7-022-1000	34	LAB000154	NR	-
11	Coaxial Cable	Rosenberger	LU7-022-1000	33	LAB000153	NR	-
12	Antenna	Flann Microwave Ltd	27240-20	273367	LAB000137	СМ	$2022\text{-}09\text{-}01 \rightarrow 12 M \rightarrow 2023\text{-}09\text{-}01$
13	Antenna	Flann Microwave Ltd	25240-20	272860	LAB000133	CM	$2022\text{-}09\text{-}01 \rightarrow 12 M \rightarrow 2023\text{-}09\text{-}01$
14	Antenna	Flann Microwave Ltd	23240-20	273430	LAB000132	СМ	$2022\text{-}09\text{-}01 \rightarrow 12 M \rightarrow 2023\text{-}09\text{-}01$
15	Antenna	Flann Microwave Ltd	22240-20	270448	LAB000130	С	$\textbf{2020-06-29} \rightarrow \textbf{36M} \rightarrow \textbf{2023-06-29}$
16	Antenna	Flann Microwave Ltd	20240-20	266403	LAB000128	С	$\textbf{2020-06-29} \rightarrow \textbf{36M} \rightarrow \textbf{2023-06-29}$
17	Harmonic Mixer	Rohde & Schwarz	FS-Z110	102000	LAB000114	С	$2022\text{-}04\text{-}14 \rightarrow 12 M \rightarrow 2023\text{-}04\text{-}14$
18	Harmonic Mixer	Rohde & Schwarz	FS-Z75	102015	LAB000112	С	$2022\text{-}04\text{-}20 \rightarrow 12 \text{M} \rightarrow 2023\text{-}04\text{-}20$
19	Harmonic Mixer	Rohde & Schwarz	FS-Z140	101144	LAB000115	С	$2022\text{-}03\text{-}28 \rightarrow 12 M \rightarrow 2023\text{-}03\text{-}28$
20	Harmonic Mixer	Rohde & Schwarz	FS-Z090	102020	LAB000113	С	$2022\text{-}04\text{-}05 \to 12 \text{M} \to 2023\text{-}04\text{-}05$
21	Spectrum Analyser	Rohde & Schwarz	FSW50	101450	LAB000111	С	$\textbf{2022-07-28} \rightarrow \textbf{12M} \rightarrow \textbf{2023-07-28}$
22	Antenna Mast	Schwarzbeck Mess- Elektronik OHG	AM 9104	99	LAB000109	NR	_



### 9 Measurement procedures

#### 9.1 Radiated spurious emissions from 9 kHz to 30 MHz

#### Test setup

- The EUT is set up according to its intended use, as described in the user manual or as defined by the manufacturer.
- In case of floor standing equipment, it is placed in the middle of the turn table.
- In case of tabletop equipment it is placed on a non-conductive table with a height of 80 cm.
- Additional equipment, cables, ... necessary for testing, are positioned like under normal operation.
- Interface cables, e.g. power supply, network, ... are connected to the connection box in the turn table.
- EUT is powered on and set into operation.

#### Pre-scan

- Turntable performs an azimuthal rotation from 0° to 315° in 45° steps.
- For each turntable step the EMI-receiver/spectrum analyser performs a positive-peak/max-hold sweep (=worst-case). Data is transferred to EMI-software and recorded. EMI-software will show the maximum level of all single sweeps as the final result for the pre-scan.

#### **Final measurement**

- Significant emissions found during the pre-scan will be maximized by the EMI-software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated with special 3D adapter set to find maximum level of emissions.
- Plot of the pre-scan with frequencies of identified emissions including levels, correction factors, turn table position and settings of measuring equipment is recorded.

#### **Distance correction (extrapolation)**

- When performing measurements on test distances other than defined in the rules, the results shall be extrapolated to the specified distance by conservatively presuming that the field strength decays at 40 dB/decade of distance in the region closer than  $\lambda$  in m divided by  $2\pi$  (i.e.,  $\lambda/2\pi$ ), and at 20 dB/decade of distance beyond that, using the measurement of a single point at the radial angle that produces the maximum emission.

This correction is already included in the limit line of corresponding measurement plots.



#### 9.2 Radiated spurious emissions from 30 MHz to 1 GHz

#### Test setup

- The EUT is set up according to its intended use, as described in the user manual or as defined by the manufacturer.
- In case of floor standing equipment, it is placed in the middle of the turn table. In case of tabletop equipment it is placed on a non-conductive table with a height of 80 cm.
- Additional equipment, cables, ... necessary for testing, are positioned like under normal operation.
- Interface cables, e.g. power supply, network, ... are connected to the connection box in the turn table.
- EUT is powered on and set into operation.

#### Pre-scan

- Turntable performs an azimuthal rotation from 0° to 315° in 45° steps.
- Antenna polarisation is changed (H-V / V-H) and antenna height is changed from 1 meter to 4 meters.
- For each turntable step / antenna polarisation / antenna height the EMI-receiver/spectrum analyser performs a positive-peak/max-hold sweep (=worst-case). Data is transferred to EMI-software and recorded. EMI-software will show the maximum level of all single sweeps as the final result for the pre-scan.

#### **Final measurement**

- Significant emissions found during the pre-scan will be maximized by the EMI-software based on evaluated data during the pre-scan by rotating the turntable and changing antenna height and polarisation.
- Final measurement will be performed with measuring equipment settings as defined in the applicable test standards (e.g. ANSI C6.4).
- Plot of the pre-scan with frequencies of identified emissions including levels, correction factors, turn table position, antenna polarisation and settings of measuring equipment is recorded.

#### **Distance correction (extrapolation)**

When performing measurements on test distances other than defined in the rules, the results shall be extrapolated to the specified distance by conservatively presuming that the field strength decays at 20 dB/decade of distance beyond the region λ in m divided by 2π (i.e., λ/2π), using the measurement of a single point at the radial angle that produces the maximum emission. This correction is already included in the corresponding measurement plots.



#### 9.3 Radiated spurious emissions from 1 GHz to 18 GHz

#### **Test setup**

- The EUT is set up according to its intended use, as described in the user manual or as defined by the manufacturer.
- In case of floor standing equipment, it is placed in the middle of the turn table. In case of tabletop equipment it is placed on a non-conductive table with a height of 80 cm.
- Additional equipment, cables, ... necessary for testing, are positioned like under normal operation.
- Interface cables, e.g. power supply, network, ... are connected to the connection box in the turn table.
- EUT is powered on and set into operation.

#### Pre-scan

- Turntable performs an azimuthal rotation from 0° to 315° in 45° steps.
- Antenna polarisation is changed (H-V / V-H) and antenna height is changed from 1 meter to 4 meters.
- For each turntable step / antenna polarisation / antenna height the EMI-receiver/spectrum analyser performs a positive-peak/max-hold sweep (=worst-case). Data is transferred to EMI-software and recorded. EMI-software will show the maximum level of all single sweeps as the final result for the pre-scan.

#### **Final measurement**

- Significant emissions found during the pre-scan will be maximized by the EMI-software based on evaluated data during the pre-scan by rotating the turntable and changing antenna height and polarisation.
- Final measurement will be performed with measuring equipment settings as defined in the applicable test standards (e.g. ANSI C6.4).
- Plot of the pre-scan with frequencies of identified emissions including levels, correction factors, turn table position, antenna polarisation and settings of measuring equipment is recorded.

#### **Distance correction (extrapolation)**

When performing measurements on test distances other than defined in the rules, the results shall be extrapolated to the specified distance by conservatively presuming that the field strength decays at 20 dB/decade of distance beyond the region λ in m divided by 2π (i.e., λ/2π), using the measurement of a single point at the radial angle that produces the maximum emission. This correction is already included in the corresponding measurement plots.



#### 9.4 Radiated spurious emissions above 18 GHz

#### Test setup

- The EUT is set up according to its intended use, as described in the user manual or as defined by the manufacturer.
- Additional equipment, cables, ... necessary for testing, are positioned like under normal operation.
- EUT is powered on and set into operation.
- Test distance depends on EUT size and test antenna size (farfield conditions shall be met).

#### Pre-scan

- The test antenna is handheld and moved carefully over the EUT to cover the EUT's whole sphere and for different polarizations of the antenna.

#### **Final measurement**

- Significant emissions found during the pre-scan will be maximized, i.e. position and antenna orientation causing the highest emissions with Peak and RMS detector
- Final measurement will be performed with measuring equipment settings as defined in the applicable test standards (e.g. ANSI C63.4 / C63.26).
- Final plot showing measurement data, levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit is recorded.

#### Note

- In case of measurements with external harmonic mixers (e.g. above 50 GHz) special care is taken to avoid possible overloading of the external mixer's input.
- As external harmonic mixers may generate false images, care is taken to ensure that any emission measured by the spectrum analyzer is indeed radiated from the EUT and not internally generated by the external harmonic mixer. Signal identification feature of spectrum analyzer is used to eliminate/reduce images of the external harmonic mixer.

#### **Distance correction (extrapolation)**

When performing measurements on test distances other than defined in the rules, the results shall be extrapolated to the specified distance by conservatively presuming that the field strength decays at 20 dB/decade of distance beyond the region λ in m divided by 2π (i.e., λ/2π), using the measurement of a single point at the radial angle that produces the maximum emission. This correction is already included in the corresponding measurement plots.



# **10 MEASUREMENT UNCERTAINTIES**

Radio frequency	≤ ± 10 ppm
Radiated emission	≤ ± 6 dB
Temperature	≤ ± 1 °C
Humidity	≤ ± 5 %
DC and low frequency voltages	≤ ± 3 %

The indicated expanded measurement uncertainty corresponds to the standard measurement uncertainty for the measurement results multiplied by the coverage factor k = 2. It was determined in accordance with EA-4/01 m:2013. The true value is located in the corresponding interval with a probability of 95 %.

# **End of Test Report**