

Bundesnetzagentur BNetzA-CAB-21/21-21

Test Report

Test report no.: 20114846-19747-0 Date of issue: 2021-06-29

Test result: The test item - passed - and complies with below listed standards.

Applicant Hella GmbH & Co. KGaA

Manufacturer

Hella GmbH & Co. KGaA

Test Item

RS5.3

RF-Spectrum Testing according to:

FCC 47 CFR Part 95 Personal radio services, Subpart M - The 76-81 GHz Band Radar Service

Tested by (name, function, signature)

Karsten Geraldy Head of Laboratory RF

Approved by (name, function, signature)

Dr.-Ing. Harald Ansorge Managing Director

signature

signature

Company: IBL-Lab GmbH · Heinrich-Hertz-Allee 7-10 · 66386 Sankt Ingbert · Germany · Tel: +49 6894 38938-0 · Fax: +49 6894 38938-99 Company Register: 105151, Amtsgericht Saarbrücken URL: www.ib-lenhardt.de · E-Mail: info@ib-lenhardt.de

2021-06-29

Applicant and Test item details		
Applicant	Hella GmbH & Co. KGaA	
	Rixbecker Str. 75	
	59552, Lippstadt, Germany	
	Phone: +49 (0) 2941 38-0	
Manufacturer	Hella GmbH & Co. KGaA	
	Römerstrasse 66	
	59075, Hamm, Germany	
Test item description	Advanced driver assistance system (ADAS)	
Model/Type reference	RS5.3	
FCC ID	NBG01RS53	
Frequency	76.0 GHz to 77.0 GHz	
Antenna	integrated microstrip patch array antenna	
Power supply	9.0 to 18.0 V DC	
Temperature range	-40 °C to +85 °C	

Disclaimer and Notes

The content of this rest report relates to the mentioned test sample(s) only. Without a written permit of IBL-Lab GmbH, this test report shall not be reproduced, except in full. The last valid version is available at TAMSys[®]. Copyright ©: All rights reserved by IBL-Lab GmbH

Within this test report, a ⊠ point / □ comma is used as a decimal separator. If otherwise, a detailed note is added adjected to its use.

IBL-Lab GmbH does not take samples. The samples used for testing are provided by the applicant.

Decision rule: Binary Statement for Simple Acceptance Rule according ILAC-G8:09/2019

2021-06-29

1 TABLE OF CONTENTS

1	TABLE OF CONTENTS	3
2	GENERAL INFORMATION	5
2.1	Administrative details	5
2.2	Possible test case verdicts	5
2.3	Observations	6
2.4	Opinions and interpretations	6
2.5	Revision History	6
2.6	Further documents	6
3	ENVIRONMENTAL & TEST CONDITIONS	7
3.1	Environmental conditions	7
3.2	Normal and extreme test conditions	7
4	TEST STANDARDS AND REFERENCES	7
5	EQUIPMENT UNDER TEST (EUT)	8
5.1	Product description	8
5.2	Description of test item	8
5.3	Technical data of test item	8
5.4	Additional information	8
5.5	Operating conditions	9
5.6	Antenna characteristics	10
6	SUMMARY OF TEST RESULTS	11
7	TEST RESULTS	12
7.1	RF power output (§2.1046 & §95.3367)	12
7.2	Modulation characteristics (§2.1047 & KDB 653005 D01 76-81 GHz Radars v01r01)	15
7.3	Occupied bandwidth (§2.1049)	16
7.4	Field strength of spurious radiation (§2.1053 & §95.3379)	24
7.5	Frequency stability (§2.1055 & §95.3379(b))	34
8	Test Setup Description	35
8.1	Semi Anechoic Chamber with Ground Plane	
8.2	Fully Anechoic Chamber	
8.3	Radiated measurements > 18 GHz	
8.4	Radiated measurements > 50 GHz	
8.5	Frequency error	41
9	Measurement procedures	
9.1	Radiated spurious emissions from 9 kHz to 30 MHz	42
9.2	Radiated spurious emissions from 30 MHz to 1 GHz	43
9.3	Radiated spurious emissions from 1 GHz to 18 GHz	44
9.4	Radiated spurious emissions above 18 GHz	45
10	MEASUREMENT UNCERTAINTIES	46

INGENIEURBÜRO

TR no.: 20114846-19747-0

2021-06-29

Annex 1	EUT Photographs, external	47
Annex 2	EUT Photographs, internal	50
Annex 3	Test Setup Photographs	53

2 GENERAL INFORMATION

2.1 Administrative details			
Testing laboratory	IBL-Lab GmbH		
	Heinrich-Hertz-Allee 7		
	66386 Sankt Ingbert / Germany		
	Fon: +49 6894 38938-0		
	Fax: +49 6894 38938-99		
	URL: <u>www.ib-lenhardt.de</u>		
	E-Mail: info@ib-lenhardt.de		
Accreditation	The testing laboratory is accredited by Deutsche GmbH (DAkkS) in compliance with DIN EN ISO	The testing laboratory is accredited by Deutsche Akkreditierungsstelle GmbH (DAkkS) in compliance with DIN EN ISO/IEC 17025:2018.	
	Scope of testing and registration number:		
	Electronics	D-PI -21375-01-01	
	Electromagnetic Compatibility	D-PL-21375-01-02	
	Electromagnetic Compatibility and	<u>- · · · · · · · · · · · · · · · ·</u>	
	Telecommunication (FCC requirements)	D-PL-21375-01-03	
	Telecommunication (TC) and		
	Electromagnetic Compatibility (EMC)		
	for Canadian Standards	<u>D-PL-21375-01-04</u>	
	ISED Company Number	27156	
	 Testing Laboratory CAB Identifier 	DE0020	
	Telekommunikation (TK)	<u>D-PL-21375-01-05</u>	
	Website DAkkS: <u>https://www.dakks.de/</u>		
	The Deutsche Akkreditierungsstelle GmbH (DAI	kkS) is also a signatory to	
– <i>v</i> – <i>v</i>	ILAC Mutual Recognition Anangement		
lesting location			
	Heininch-Heftz-Allee /		
Date of receipt of test samples			
Chart Find of to sto			
Start – End of tests	2021-05-27 - 2021-06-18		

2021-06-29

2.2 Possible test case verdie	cts
Test sample meets the requirements	P (PASS)
Test sample does not meet the requirements	F (FAIL)
Test case does not apply to the test sample	N/A (Not applicable)
Test case not performed	N/P (Not performed)

2.3 Observations

No additional observations other than the reported observations within this test report have been made.

2.4 Opinions and interpretations

No appropriate opinions or interpretations according ISO/IEC 17025:2017 clause 7.8.7 are within this test report.

2.5 Revision History

-0 Initial Version

2.6 Further documents

List of further applicable documents belonging to the present test report: – no additional documents –

3 ENVIRONMENTAL & TEST CONDITIONS

3.1 Environmental conditions

Temperature	20°C ± 5°C
Relative humidity	25-75% r.H.
Barometric Pressure	860-1060 mbar
Power supply	230 V AC ± 5%

2021-06-29

3.2 Normal and extreme test conditions			
	minimum	normal	maximum
Temperature	-40 °C	+23 °C	+85 °C
Relative humidity	-/-	45 % r.h.	-/-
Power supply	9 V DC	12 V DC	18 V DC

4 TEST STANDARDS AND REFERENCES

Test standard (accredited)	Description
FCC 47 CFR Part 95	Personal radio services,
	Subpart M - The 76-81 GHz Band Radar Service

Reference	Description
ANSI C63.4-2014	American National Standard for Methods of Measurement of Radio- Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices
ANSI C63.26-2015	American National Standard for Compliance Testing of Transmitters Used in Licensed Radio Services
KDB653005 D01, V01, R01	Equipment Authorization Guidance for 76-81 GHz Radar Devices

5 EQUIPMENT UNDER TEST (EUT)

5.1 **Product description**

Advanced driver assistance system (ADAS)

5.2 Description of test item

Model name*	RS5.3
Serial number*	217CA10038 (EUT #2)
PCB identifier*	N/A
Hardware status*	H06
Software status*	A2009RC2

*: as declared by applicant

Г

5.3 Technical data of test item	
Operational frequency band*	76.0 GHz to 77.0 GHz
Type of radio transmission*	modulated carrier
Modulation type*	FMCW (fast chirps)
Number of channels*	1
Channel bandwidth*	< 1 GHz
Channel spacing*	N/A
Receiver category*	N/A
Receiver bandwidth*	N/A
Duty cycle*	~ 35%
Antenna*	integrated microstrip patch array antenna
Antenna gain*	15 dBi
Rated RF output power*	~ 25 dBm
Power supply*	9.0 to 18.0 V DC
Temperature range*	-40 °C to +85 °C

*: as declared by applicant

5.4 Additional information	
Model differences	N/A
Additional application considerations to test a component or sub-assembly	N/A
Ancillaries tested with	N/A
Additional equipment used for testing	N/A

5.5 Operating conditions

Chirp Modulation Data

Start of a radar cycle	
Chirp group 5: Antenna	Tx1
Chirp group 5: Chirp center frequency	76.256 GHz or 76.586 GHz or 76.804 GHz (*)
Chirp group 5: Bandwidth	300 MHz
Chirp group 5: No of chirps	256
Chirp group 5: Duration of a single chirp	34 µs
Chirp group 2: Antenna	Tx1
Chirp group 2: Chirp center frequency	76.586 GHz
Chirp group 2: Bandwidth	870 MHz
Chirp group 2: No of chirps	16
Chirp group 2: Duration of a single chirp	33 µs
Time slot with no emission	12.5 ms
Chrip group 4: Antenna	Tx1 / Tx2 alternating
Chirp group 4: Chirp center frequency	76.481 GHz or 76.679 GHz (*)
Chirp group 4: Bandwidth	720 MHz
Chirp group 4: No of chirps	84 / 84
Chirp group 4: Duration of a single chirp	45 μs
Chrip group 6: Antenna	Tx1
Chirp group 6: Chirp center frequency	76.040 GHz
Chirp group 6: Bandwidth	0 MHz (CW)
Chirp group 6: No of chirps	1
Chirp group 6: Duration of a single chirp	236 µs
Time slot with no emission	20 ms
End of radar cycle	
Duration of one radar cycle	approx. 50 ms
Duty cycle	approx. 35 %

(*) Center frequency is changed approx. every two minutes or if interference is detected.

5.6 Antenna characteristics

Antenna properties:

Illustration of Tx and Rx antennas inside the EUT. Each antenna consists of a linear patch array with horizontal polarisation.

Antenna characteristics in azimuth and in elevation. The peak gain is approx. 15 dBi.

6 SUMMARY OF TEST RESULTS

Test specification

FCC 47 CFR Part 95 Subpart M

Clause	Requirement / Test case	Test Conditions	Result / Remark	Verdict
§2.1046 §95.3367 (a) (b)	RF power output	Nominal		Р
§2.1047	Modulation characteristics	Nominal		Р
§2.1049	Occupied bandwidth	Nominal		Р
§2.1051	Spurious emissions at antenna terminals	Nominal	see note	N/A
§2.1053 §95.3379 (a)(1) §95.3379 (a)(2) §95.3379 (a)(3)	Field strength of spurious radiation	Nominal		Ρ
§2.1055 §95.3379 (b)	Frequency stability	Nominal Extreme		Р

Notes

FCC's Millimeter Wave Test Procedures:

I. A radiated method of measurements in order to demonstrate compliance with the various regulatory requirements has been chosen in consideration of test equipment availability and the limitations of many external harmonic mixers. A conducted method of measurement could be employed if EUT and mixer waveguides both are accessible and of the same type (WG number) and if waveguide sections and transitions can be found. Another potential problem is that the peak power output may exceed the +20 dBm input power limit of many commercially available mixers. For these reasons a radiated method is preferred.

Comments and observations

N/A

7 TEST RESULTS

7.1 RF power output (§2.1046 & §95.3367)

Description

§2.1046 Measurements required: RF power output.

(a) For transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in §2.1033(c)(8). The electrical characteristics of the radio frequency load attached to the output terminals when this test is made shall be stated.

Limits

The fundamental radiated emission limits within the 76-81 GHz band are expressed in terms of Equivalent Isotropically Radiated Power (EIRP) and are as follows:

(a) The maximum power (EIRP) within the 76-81 GHz band shall not exceed 50 dBm based on measurements employing a power averaging detector with a 1 MHz Resolution Bandwidth (RBW).

(b) The maximum peak power (EIRP) within the 76-81 GHz band shall not exceed 55 dBm based on measurements employing a peak detector with a 1 MHz RBW.

Test procedure

Mean Power

Method with spectrum analyser

- A spectrum analyser with the following settings is used as measuring receiver in the test set-up:
- Start frequency: lower than the lower edge of the operating frequency range.
- Stop frequency: higher than the upper edge of the operating frequency range.
- Resolution bandwidth: 1 MHz.
- Video bandwidth: 3 MHz.
- Detector mode: RMS.
- Display mode: clear write.
- Averaging time: larger than one EUT cycle time.
- Sweep time: averaging time × number of sweep points.

Channel Power function needs to be used to calculate the average power. Boundaries for the calculation needs to be defined. This is typically the operating frequency range.

Method with power meter

The power meter shall be connected to the measurement antenna. The frequency correction factor shall be taken into account. The power meter shall be a true RMS power meter. The measurement time shall be equal or longer than the EUT cycle time.

Test procedure

Peak Power

Method with a spectrum analyser

A spectrum analyser with the following settings is used as measuring receiver in the test set-up:

- Start frequency: lower than the lower edge of the operating frequency range.
- Stop frequency: higher than the upper edge of the operating frequency range.
- Resolution bandwidth: 1 MHz.
- Video bandwidth: 3 MHz.
- Detector mode: Peak detector.
- Display mode: Maxhold.
- Averaging time: larger than one EUT cycle time.
- Sweep time: averaging time × number of sweep points.

The peak power to be considered is the maximum value recorded.

Test setup: 8.3			
Test results:			
EUT mode	Test distance	Radiated Mean Power (EIRP) [dBm]	Radiated Peak Power (EIRP) Power Spectral Density [dBm]
see 5.5	1 m	20.0	25.5

Plot no. 1: Mean Power EIRP, RMS detector / Channel Power

11:14:01 11.06.2021

Plot no. 2: Peak Power EIRP, Peak detector

11:02:41 11.06.2021

7.2 Modulation characteristics (§2.1047 & KDB 653005 D01 76-81 GHz Radars v01r01)

Description

§2.1047 Modulation characteristics

(d) Other types of equipment. A curve or equivalent data which shows that the equipment will meet the modulation requirements of the rules under which the equipment is to be licensed.

KDB 653005 D01 76-81 GHz Radars V01r01:

Concerning the Section 2.1047 modulation characteristics requirement, the following information should be provided:

- 1) Pulsed radar: pulse width and pulse repetition frequency (if PRF is variable, then report maximum and minimum values).
- 2) Non-pulsed radar (*e.g.*, FMCW): modulation type (i.e., sawtooth, sinusoid, triangle, or square wave) and sweep characteristics (sweep bandwidth, sweep rate, sweep time).

Statement of applicant / manufacturer concerning modulation characteristics of EUT

Chirp Modulation Data

Start of a radar cycle	
Chirp group 5: Antenna	Tx1
Chirp group 5: Chirp center frequency	76.256 GHz or 76.586 GHz or 76.804 GHz (*)
Chirp group 5: Bandwidth	300 MHz
Chirp group 5: No of chirps	256
Chirp group 5: Duration of a single chirp	34 µs
Chirp group 2: Antenna	Tx1
Chirp group 2: Chirp center frequency	76.586 GHz
Chirp group 2: Bandwidth	870 MHz
Chirp group 2: No of chirps	16
Chirp group 2: Duration of a single chirp	33 µs
Time slot with no emission	12.5 ms
Chrip group 4: Antenna	Tx1 / Tx2 alternating
Chirp group 4: Chirp center frequency	76.481 GHz or 76.679 GHz (*)
Chirp group 4: Bandwidth	720 MHz
Chirp group 4: No of chirps	84 / 84
Chirp group 4: Duration of a single chirp	45 µs
Chrip group 6: Antenna	Tx1
Chirp group 6: Chirp center frequency	76.040 GHz
Chirp group 6: Bandwidth	0 MHz (CW)
Chirp group 6: No of chirps	1
Chirp group 6: Duration of a single chirp	236 µs
Time slot with no emission	20 ms
End of radar cycle	
Duration of one radar cycle	approx. 50 ms
Duty cycle	approx. 35 %

(*) Center frequency is changed approx. every two minutes or if interference is detected.

7.3 Occupied bandwidth (§2.1049)

Description

§2.1049 Measurements required: Occupied bandwidth.

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured.

Limits

The radar device's occupied bandwidth (i.e. 99% emission bandwidth) shall be contained in the 76-81GHz frequency band.

Test procedure

ANSI C63.10, 6.9.3

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

The following procedure shall be used for measuring 99% power bandwidth:

- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

Note

Measurements with the peak detector are also suitable to demonstrate compliance of an EUT, as long as the required resolution bandwidth is used, because peak detection will yield amplitudes equal to or greater than amplitudes measured with RMS detector. The measurement data from a spectrum analyser peak detector will represent the worst-case results (see ANSI C63.10).

Test setup: 8.3, 8.4

2021-06-29

est results under normal and extreme test conditions						
EUT mode	Test conditions	f∟ [GHz]	f _H [GHz]	99% OBW [MHz]		
see 5.5	85 °C	76.021	76.978	956.840		
see 5.5	50 °C	76.020	76.977	957.006		
see 5.5	40 °C	76.020	76.977	957.196		
see 5.5	30 °C	76.021	76.976	955.574		
see 5.5	20 °C	76.019	76.975	955.738		
see 5.5	10 °C	76.022	76.978	956.019		
see 5.5	0°C	76.022	76.978	956.667		
see 5.5	-10 °C	76.022	76.980	957.224		
see 5.5	-20 °C	76.023	76.981	957.713		
see 5.5	-30 °C	76.023	76.980	957.195		
see 5.5	-40 °C	76.023	76.980	956.361		
	·			·		
/ith voltage variati	on					
put voltage variatio	on does not affect the tra	nsmitted signal (see p	lot for ambient/norma	l temperature).		

Input voltage variation does not affect the transmitted signal (see plot for ambient/normal temperature).

2021-06-29

Plot no. 3: 99% OBW, Peak detector, 85 °C

15:44:57 17.06.2021

Plot no. 4: 99% OBW, Peak detector, 50 °C

						× Y
MultiView	Spectrum	1				•
Ref Level -10	.00 dBm	■ RBW 1 M	Hz			
	SWT	4.8 ms 🖷 VBW 3 M	IHz Mode Auto Sweep			
Inp: ExtMix E						
1 Occupied Ba	indwidth					O 1Pk Max
					MI[I]	-25.21 dBm
-20 dBm		MI				76.271200 GHz
Ţ	1	Ι I I				
-30 dBm	·					
						T2
-40 dBm						
	M ~					
-50 dBm	/					
	r					1
-60 dBm						
and a surf						MAN
-70 dBm						" moundary and
-80 dBm						
-90 dBm						
-100 dBm						
CF 76.5 GHz			1201 pts	120.0 MHz/		Span 1.2 GHz
2 Marker Tabl	e					
M1		76-271 2 GHz	-25-21 dBm	Punction Function	957.005 806	
T1	1	76.019708 GHz	-27.31 dBm	Occ Bw Centroid	76.498	21115 GHz
T2	1	76.976 714 GHz	-36.36 dBm	Occ Bw Freq Offset	-1.7888	350 345 MHz
					Measuring	17.06.2021 15:01:42

15:01:43 17.06.2021

Plot no. 5: 99% OBW, Peak detector, 40 °C

12:59:12 17.06.2021

Plot no. 6: 99% OBW, Peak detector, 30 °C

									I
MultiView 🎫 S	pectrum	× Spectrum	12 X	Spectrum 3	× Spectr	um 4	×		•
Ref Level -10.00	0 dBm	• RBW :	l MHz				_		
Inter Franklin F	S₩T 4	4.8 ms 🖷 VBW 3	3 MHz Mode	Auto Sweep					
1 Occupied Banc	dwidth								o1Pk Max
								M1[1]	-24.47 dBm
-20 dBm			M1					7	6.273 200 GHz
	11.	1	Ĭ						
-30 dBm-			-11	1				T:	
-40 dBm	N"								
-50 dBm									
),
-60 dBm									Aug.
-70 dBm									"Mr. Master worked
-80 dBm									
-90 dBm									
-100 dBm									
CF 76.5 GHz			1201 pt	is	12	20.0 MHz/			Span 1.2 GHz
2 Marker Table									
Type Ref	Trc	X-Value	_	Y-Value		Function		Function Re	esult
M1 T1	1	76.273 2 GI	1Z -	-26.63 dBm	Occ Bw Occ Bw Ce	ntroid	95	5.574 206 1 76 49863	3 509 GHz
T2	î	76.976 421 G	Hz	-35.57 dBm	Occ Bw Fre	eq Offset		-1.36649	0 625 MHz
~							Measuring		17.06.2021 12:15:58

12:15:58 17.06.2021

Plot no. 7: 99% OBW, Peak detector, 20 °C

11:44:49 11.06.2021

Plot no. 8: 99% OBW, Peak detector, 10 °C

MultiView 🍧 Spectrum	X Spectrum 2 X	Spectrum 3	X Spectrum 4 X	•
Ref Level -10.00 dBm	• RBW 1 MHz	-		
SWT	4.8 ms VBW 3 MHz Mod	e Auto Sweep		
1 Occupied Bandwidth				o 1Pk Max
				M1[1] -23.80 dBm
-20 d8m	M1.			7 <mark>6.274200 GHz</mark>
	A Ť			
-30 dBm				12
-40 dBm				
N N				
-50 dBm				
-60 dBm				No. 1
20 dow				and the second se
-70 ubii				
-80 dBm				
-90 dBm				
-100 dBm				
CE 76 5 CH2	1201	nte	120.0 MHz/	Span 1.2 GHz
2 Marker Table	1201	pto	12010 (0112)	opdit 1.2 GHz
Type Ref Trc	X-Value	Y-Value	Function	Function Result
M1 1	76.274 2 GHz	-23.80 dBm	Occ Bw	956.019 196 41 MHz
T2 1	76.021 97 GHz 76.977 989 GHz	-25.30 dBm -34.74 dBm	Occ Bw Centroid Occ Bw Fred Offset	76.499979221 GHz -20.779139465 kHz
**************************************		o + dom		Measuring 17.06.2021 10:47:49

10:47:49 17.06.2021

2021-06-29

Plot no. 9: 99% OBW, Peak detector, 0 °C

09:59:09 17.06.2021

Plot no. 10: 99% OBW, Peak detector, -10 °C

					
MultiView - Spectrum	X Spectrum 2	× Spectrum 3	X Spectrum 4 X	¢	•
Ref Level -10.00 dBm	• RBW 1 MHz		_	-	
SW	T 4.8 ms 🖷 VBW 3 MHz	Mode Auto Sweep			
1 Occupied Bandwidth					o1Pk Max
				M1	[1] -23.91 dBm
-20 dBm	M1				76.255 200 GHz
	1 I				
-30 dBm					12
-40 uBm					
-50 dBm					
l j					$\langle \cdot \rangle$
-60 dBm					Marco .
-70 dam					manad
ro ubii					
-80 dBm					
-90 dBm					
-100 dBm					
CF 76.5 GHz	1	201 pts	120.0 MHz/		Span 1.2 GHz
Z Marker Table	X-Value	V-Value	Function	Functio	n Result
M1 1	76.2552 GHz	-23.91 dBm	Occ Bw	957.2237	87816 MHz
T1 1 T2 1	76.022 499 GHz 76.979 722 GHz	-25.44 dBm -34.57 dBm	Occ Bw Centroid Occ Bw Fred Offset	76.50	01 110 421 GHz 0 421 457 MHz
· · · · · · · · ·		0 4.07 dbm		Measuring	17.06.2021 09:25:40

09:25:40 17.06.2021

Plot no. 11: 99% OBW, Peak detector, -20 °C

08:39:55 17.06.2021

Plot no. 12: 99% OBW, Peak detector, -30 °C

				
MultiView Spectru	Im X Spectrum 2	× Spectrum 3	X Spectrum 4 X	*
Ref Level -10.00 dBm	• RBW 1 MHz	:		
	SWT 4.8 ms 🖷 VBW 3 MHz	Mode Auto Sweep		
1 Occupied Bandwidth	ו			o1Pk Max
				M1[1] -23.86 dBm
-20 dBm	мі.			76.256 200 GHz
1 T.	1			
-30 dBm / .	Mulan			12
-40 dBm	P			
··· ····				
-50 dBm				
-60 dBm				North
-70 dBm				winder
-80 dBm				
-90 dBm				
-100 dBm				
CF 76.5 GHz		1201 pts	120.0 MHz/	Span 1.2 GHz
2 Marker Table				
Type Ref Trc	X-Value	Y-Value	Function	Function Result
M1 1 T1 1	76.256 2 GHZ	-23.86 dBm -26.15 dBm	Occ Bw Occ Bw Centroid	957.194 788 459 MHZ 76 501 468 706 GHz
T2 1	76.980 066 GHz	-34.34 dBm	Occ Bw Freq Offset	1.468 705 703 MHz
~			~	Measuring 17.06.2021 07:50:12

07:50:13 17.06.2021

2021-06-29

Plot no. 13: 99% OBW, Peak detector, -40 °C

06:44:42 17.06.2021

7.4 Field strength of spurious radiation (§2.1053 & §95.3379)

Description

- §2.1053 Measurements required: Field strength of spurious radiation.
- (a) Measurements shall be made to detect spurious emissions that may be radiated directly from the cabinet, control circuits, power leads, or intermediate circuit elements under normal conditions of installation and operation. Curves or equivalent data shall be supplied showing the magnitude of each harmonic and other spurious emission. For this test, single sideband, independent sideband, and controlled carrier transmitters shall be modulated under the conditions specified in paragraph (c) of §2.1049, as appropriate. For equipment operating on frequencies below 890 MHz, an open field test is normally required, with the measuring instrument antenna located in the far-field at all test frequencies. In the event it is either impractical or impossible to make open field measurements (e.g. a broadcast transmitter installed in a building) measurements will be accepted of the equipment as installed. Such measurements must be accompanied by a description of the site where the measurements were made showing the location of any possible source of reflections which might distort the field strength measurements. Information submitted shall include the relative radiated power of each spurious emission with reference to the rated power output of the transmitter, assuming all emissions are radiated from halfwave dipole antennas.

Limits

§95.3379 76-81 GHz Band Radar Service unwanted emissions limits.

- (a) The power density of any emissions outside the 76-81 GHz band shall consist solely of spurious emissions and shall not exceed the following:
- (1) Radiated emissions below 40 GHz shall not exceed the field strength as shown in the following emissions table.

Frequency	Frequency Field Strength	
[MHz]	[µV/m] / [dBµV/m]	[m]
0.009 - 0.490	2400/F[kHz]	300
0.490 – 1.705	24000/F[kHz]	30
1.705 – 30.0	30.0 / 29.5	30
30 – 88	100 / 40.0	3
88 – 216	150 / 43.5	3
216 – 960	200 / 46.0	3
960 - 40 000	500 / 54.0	3

(2) The power density of radiated emissions outside the 76-81 GHz band above 40.0 GHz shall not exceed the following, based on measurements employing an average detector with a 1 MHz RBW:

Frequency [GHz]	Power Density / EIRP	Measurement distance [m]
40 – 200	600 pW/cm ² → -1.7 dBm	3
200 – 243	1000 pW/cm ² → +0.5 dBm	3

Note

Measurements with the peak detector are also suitable to demonstrate compliance of an EUT, as long as the required resolution bandwidth is used, because peak detection will yield amplitudes equal to or greater than amplitudes measured with RMS detector. The measurement data from a spectrum analyser peak detector will represent the worst-case results (see ANSI C63.10).

2021-06-29

Typical test distances								
Up to 18 GHz:	3.00 m							
18 – 50 GHz:	0.50 m							
50 – 110 GHz:	0.25 m							
110 – 170 GHz:	0.10 m							
In-band / OOB:	1.00 m							

Test setup: 8.1 - 8.4 (in case of field strength measurements below 40 GHz: test distance correction factor of 20dB/decade is already considered in the plots / test result table)

Test results:						
Channel / Mode	Frequency [GHz]	Detector	Test distance [m]	Level [dBm]	Limit [dBm]	Margin [dB]
see 5.5	25.417	PosPeak	1	57.7	74	16.3
see 5.5	25.349	AVG	1	36.9	54	17.1

2021-06-29

Critical_Freqs

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Pol	Azimuth (deg)	Corr. (dB/m)
9.957750	34.11	53.59	19.47			Н	60.0	20.6
15.864000	31.66	50.01	18.35			Н	95.0	20.5

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Pol	Azimuth (deg)	Corr. (dB/m)
9.957750	25.13	53.62	28.49	100.0	9.000	Н	60.0	20.6
15.864000	23.38	50.01	26.63	100.0	9.000	Н	95.0	20.5

2021-06-29

Critical_Freqs

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
30.525000	27.21	40.00	12.79			103.0	V	195.0
38.250000	22.21	40.00	17.79			100.0	V	165.0
48.725000	15.61	40.00	24.39			146.0	V	107.0
86.375000	19.04	40.00	20.96			206.0	Н	45.0
951.350000	25.45	46.00	20.55			228.0	V	-11.0

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)
30.525000	19.13	40.00	20.87	100.0	120.000	103.0	V	195.0
38.250000	14.33	40.00	25.67	100.0	120.000	100.0	V	165.0
48.725000	9.67	40.00	30.33	100.0	120.000	146.0	V	107.0
86.375000	14.06	40.00	25.94	100.0	120.000	206.0	Н	45.0
951.350000	17.06	46.00	28.94	100.0	120.000	228.0	V	-11.0

2021-06-29

Critical_Freqs

Frequency	MaxPeak	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)		(deg)
1894.600000	30.80	54.00	23.20			150.0	V	273.0

Final_Result

Frequency	Average	Limit	Margin	Meas. Time	Bandwidth	Height	Pol	Azimuth
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(ms)	(kHz)	(cm)		(deg)
1894.600000	21.55	54.00	32.45	100.0	1000.000	150.0	V	273.0

2021-06-29

Att PA PA 1 Frequency Sw 90 dBµv 80 dBµv 74 DBUV PEAK 70 dBµv 60 dBµv	o dB • SWT	10 s • V	BW 3 MHz N	Node Auto Swee				○ 1Pk Max M1[1] M2[2]	€ 2Av M 57.6 25.417 36.8 25.349
PA 1 Frequency Sw 90 dBµv 80 dBµv 74 DBUV PEAK 70 dBµv 60 dBµv	veep							● 1Pk Max M1[1] M2[2]	● 2Av M 57.6 25.417 36.8 25.349
1 Frequency Sw 90 dBµV 80 dBµV 74 DBUV PEAK 70 dBµV 60 dBµV	veep							• 1Pk Max M1[1] M2[2]	●2Av M 57.6 25.417 36.8 25.349
90 dBµv 80 dBµv 74 DBUV PEAK 70 dBµv 60 dBµv								M1[1] M2[2]	57.6 25.417 36.8 25.349
60 dBµv 74 DBUV PEAK 70 dBµv 60 dBµv								M2[2]	25.417 36.8 25.349
80 dBµV 74 DBUV PEAK 70 dBµV 60 dBµV								M2[2]	36.8 25.349
80 dBµV 74 DBUV PEAK 70 dBµV 60 dBµV									25.349
74 DBUV PEAK 70 dBµV 60 dBµV									
74 DBUV PEAK 70 dBμV 60 dBμV							1		1
70 dBµV									
60 dBµV									
60 dBµV									
60 dBµ∨									
								MI.	
								, Mr. d	
54 DBUV AVG								1 1 m	
зо авру					ut.	. a .		- true	M
Mohamman	monthematica	mounter	man man	Manananan	r have all manager	- warman	- warman ward	where but and it is	
40. dBuV								M2-	
io dopi								Υ.	
					+	h		Mm	
30 dBµV									
20 dBµV									
10 dBµV									
									1
o Journal									
0 dвµV									_
18.0 GHz			1001 p	ts	85	50.0 MHz/	1	1	20

Plot no. 17: radiated emissions 18 GHz - 26.5 GHz, polarization vertical / horizontal

11:35:29 15.06.2021

Plot no. 18: radiated emissions 26.5 GHz - 40 GHz, polarization vertical / horizontal

									I
MultiView 📒	Spectrum	× s	pectrum 2	×					•
Ref Level 97.00	dBµV Offse	t 28.50 dB 🖷	RBW 1 MHz						
Att PA	0 dB 🖷 SWT	10 s 🖷	VBW 3 MHz M	lode Auto Sweep					
1 Frequency Swee	ер						_	o1Pk Max	●2Av MaxLin
Limit Check			P/	ASS				M1[1] 48.02 dBµV
90 dBHVine 74 DBUV			P	455					39.5210 GHz
								M2[2] 35.43 dBµV
90. dauw									39.939 0 GHz
00 UBH*									
74 DBUV PEAK									
70 dBµV									
60 dBµV									
54 DBUV AVG									M1
50 dBµV								1	
white man Margar	No man man	whentheman	and more thank	Manan	man and more	n-wyunnnhunun	turner war	New Working a colonge as a	for a second sec
40 dBµ∨									M2
									~~~~
30. dBuV	~~~								
00 0000									
20 dBµV									
10 dBµV									
0 dBµV			1						
26.5 GHz			1001 p	ts	1	.35 GHz/			40.0 GHz
							Measuring		15.06.2021

12:01:28 15.06.2021



2021-06-29

Huntiview Sh		Spectrum 2	^					
Ref Level 7.90 dBm	Offset 37.90 dB	RBW 1 MHz	la Auto Curra					
PA Udb	• 5441 IUS	ARA 2 MUS MOC	e Auto Sweep					
1 Frequency Sweep							o1Pk M	ax e2Rm
Limit Check	0.514	P4	SS				M1[1]	-46.9
0 dBm	95101	P7	55					49.975(
TSM - FCC §95M							M2[2]	-58.2
								49.7150
-10 dBm								
-20 dBm								
-30 dBm-								
-40 dBm								
						the hard and an an an and an and an	mannaharrish	and more than the
-50 dBMm with when when	approximate a	new charter the marries	Train and a case	- all a subsection of the second s	**************************************	and other standing county of the standing of t		1
-60 dBm							<u> </u>	
-70 dBm								
-80 dBm								
-yu asm					1		1	

#### Plot no. 19: radiated emissions 40 GHz - 50 GHz, polarization vertical / horizontal

12:09:32 15.06.2021

#### Plot no. 20: radiated emissions 50 GHz - 75 GHz, polarization vertical / horizontal

				-					<b>\$</b>
MultiView	Spectrum	1							•
Ref Level 10.	00 dBm Offse	t 36.50 dB • RE	3W 1 MHz	de Auto Swoon					
Inp: ExtMix V	- 361	10 5 🗢 🕫		ae Auto Sweep					
1 Frequency S	weep						o1Pk Ma	x Auto ID 😑 2Rm	n Max Auto ID
Limit Che	ck		PA	SS				M1[1	] -37.97 dBm
Line TSM	- FCC §95M		PA	ss					74.6880 GHz
0 dBm								M2[2	]—-49.45 dBm-
TSM - FCC §95M									74.9880 GHz
-10 dBm									
-20 dBm									
-30 dBm									
									M1
-40 dBm				. 1 whether 1		montain		1 months	reducted the marked and the
- manument	manonina	mananahwat	where man were		and the second second and	a	www.guture	manner	MO
-50 dBm									
·									
-60 dBm									
-70 dBm									
-80 dBm									
50.0.GHz			1001 pt		<u> </u>	5 GHz/		I	75.0.GHz
0010 0112			1001 pt	3	2	.10 01127	Measuring		15.06.2021
							measuring		12:40:41

12:40:41 15.06.2021



● SWT	100 s 🗢 VBW 3 MH	Iz Mode Auto Sweep				
Frequency Sweep						o1Rm M
					M1[1]	2.17 c
0 d8m						76.272.20
o ubm						
D d9m						
ubiii-		M1				
dam		i j				
SM - FCC §95M						
10 dBm		r				
io ubii		V   <u> </u>		-		
20 dBm		]				
30 dBm						
40 dBm						
50 dBm						
50 dBm						+
75 0 GHz		001 pts	300.0 MH	7/		78.0.0

Plot no. 21: radiated emissions 75 GHz - 78 GHz, BEC, TSM, polarization aligned with radar sensor

Plot no. 22: radiated emissions 78 GHz – 110 GHz, polarization vertical / horizontal

									<b>I</b>
MultiView	Spectrum								•
RefLevel 10.0	00 dBm Offse	t 37.80 dB 🖷 RI	3W 1 MHz						
Inn: ExtMix W	● SWT	10 s 🖷 VI	3WF3 MHz Moo	le Auto Sweep					
1 Frequency S	weep							o 1Pk Ma	ix 🛛 2Rm Max
TSM - FCC 895Mie	ck		PA	SS				M1[1]	-34.69 dBm
Line TSM	- FCC §95M		PA	ss					93.425 0 GHz
0 dBm								M2[2]	—-46.56 dBm
									92.8490 GHz
-10 dBm									
-20 d0m									
-20 ubili									
-30 dBm									
				T INT					
		me who program	apphilon manhan	work the water	whenternorm	montalantalante	moundary	month	www.marship
ort40/dBm-4-4-00-4-4-4	Arw American	an office and the							
				M2					
- 50 d8m									
-30 0811									
-60 dBm									
-70 dBm									
00 40									
-eo asm									
									110.0.011
78.0 GHz			1001 pts	5	3	s.z GHz/			110.0 GHz
	~					~	Measuring		15:06.2021

17:15:47 15.06.2021



2021-06-29

MultiView Spectrum				
Ref Level 10.00 dBm Offset 38.60	dB 🖷 RBW 1 MHz			
SWT 1	0 s 🖷 VBW 3 MHz 🛛 Mode Auto Sweep			
1 Frequency Sweep				● 2Rm I
Limit Check Line TSM - FCC 95M	PASS PASS		M1[2	] -41.74 167.3330
0 dBm				
TSM - FCC 95M				
-10 dBm				
-20 dBm				
-30 dBm-				
-40 dBm-				M1
- ED dBm				
-60 dBm				
-70 dBm				+
-80 dBm				+
110.0 GHz	1001 pts	6.0 GHz/		170.0
				46.06.00

#### Plot no. 23: radiated emissions 110 GHz - 170 GHz, polarization vertical / horizontal

09:57:52 16.06.2021

#### Plot no. 24: radiated emissions 170 GHz - 220 GHz, polarization vertical / horizontal

MultiView Spectrum				
Ref Level 10.00 dBm Offset 40	J.6U dB = RBW 3 MHz Made Auto Sues			
Inn: ExtMix G	TU'S - VBW 3 MHZ Mode Auto Swee	P		
1 Frequency Sweep				● 2Rm Max
Limit Check	PASS		M1[2	] -31.84 dBm
Line TSM - FCC 95M	PASS			192.253 0 GHz
0 dBm				
TSM - FCC 95M				
-10 UBM				
-20 dBm				
20 dbm	M1			
-30 ubm				
		+~~		
-40 dBm				
-50 dem				
36 0.511				
-60 dBm				
-70 dBm				
-80 dBm-				
	1001-1-			
170.0 GHZ	1001 pts	5.0 GHZ/		220.0 GHZ
÷			Measuring	12:01:36

12:01:37 16.06.2021



2021-06-29

#### Plot no. 25: radiated emissions 220 GHz – 243 GHz, polarization vertical / horizontal

				<b></b>
MultiView 📑 Spectrum				•
Ref Level 10.00 dBm Offset 40.60	) dB ● RBW 1 MHz			
Inp: ExtMix J	to s • VEW STAILS Mode Auto Sweep			
1 Frequency Sweep	DAGG			● 2Rm Max
Limit Check Line TSM - FCC 95M	PASS		M1[2]	J -30.38 dBm 242.989 0 GHz
TSM ^{PUT} FCC 95M				
-10 dBm				
-20 dBm				
-30 dBm				M
-40 dBm				
-50 dBm				
-60 dBm				
-70 dBm				
-80 dBm				
220.0 GHz	1001 pts	2.3 GHz/	I	243.0 GHz
		~	Measuring	16.06.2021

12:06:03 16.06.2021



#### 7.5 Frequency stability (§2.1055 & §95.3379(b))

#### Description

- §2.1055 Measurements required: Frequency stability.
- (a) The frequency stability shall be measured with variation of ambient temperature as follows:
- (1) From −30° to + 50° centigrade for all equipment except that specified in paragraphs (a) (2) and (3) of this section.
- (b) Frequency measurements shall be made at the extremes of the specified temperature range and at intervals of not more than 10° centigrade through the range. A period of time sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. The short term transient effects on the frequency of the transmitter due to keying (except for broadcast transmitters) and any heating element cycling normally occurring at each ambient temperature level also shall be shown. Only the portion or portions of the transmitter containing the frequency determining and stabilizing circuitry need be subjected to the temperature variation test.
- (d) The frequency stability shall be measured with variation of primary supply voltage as follows:
- (1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
- (2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.
- (3) The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided. Effects on frequency of transmitter keying (except for broadcast transmitters) and any heating element cycling at the nominal supply voltage and at each extreme also shall be shown.

#### Limits

§95.3379 76-81 GHz Band Radar Service unwanted emissions limits.

(b) Fundamental emissions must be contained within the frequency bands specified in this section during all conditions of operation. Equipment is presumed to operate over the temperature range −20 to +50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage, unless justification is presented to demonstrate otherwise.

#### Test procedure

ANSI C63.10, 6.9.3

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission.

The following procedure shall be used for measuring 99% power bandwidth:

- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

#### Note

Please see measurement results for occupied bandwidth.



# 8 Test Setup Description

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Cyclically chamber inspections and range calibrations are performed. Where possible resp. necessary, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

8.1



# Semi Anechoic Chamber with Ground Plane

Radiated measurements are performed in vertical and horizontal plane in the frequency range 30 MHz to 1 GHz in a Semi Anechoic Chamber with a metallic ground plane. The EUT is positioned on a non-conductive test table with a height of 0.80 m above the metallic ground plane that covers the whole chamber. The receiving antennas conform to specification ANSI C63.10-2013, American National Standard for Testing Unlicensed Wireless Devices. These antennas can be moved over the height range between 1.0 m and 4.5 m in order to search for maximum field strength emitted from the EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by a spectrum analyzer where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

2021-06-29



Measurement distance: ULTRALOG antenna 5 meter; loop antenna 5 meter / 3 meter / 1 meter EMC32 software version: 11.00.00

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

#### Example calculation:

FS [dBµV/m] = 12.35 [dBµV/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dBµV/m] (35.69 µV/m)



#### List of test equipment used:

No.	Equipment	Manufacturer	Туре	Serial No.	IBL No.	Kind of Calibration	Calibration
1	EMI Test Receiver	Rohde & Schwarz	ESW26	101517	LAB000363	К	$2021-02-05 \rightarrow 12M \rightarrow 2022-02-05$
2	Power Supply	Elektro-Automatik GmbH & Co. KG	EA-PSI 9080-40 T	2000230001	LAB000313	NE	-
3	Test table	innco systems GmbH	PT1208-080-RH	-	LAB000306	NE	-
4	Power Supply	Chroma	61604	616040005416	LAB000285	NE	-
5	Antenna	TTE Europe	62-HA20-A-SMF	-	LAB000282	К	$\textbf{2020-09-29} \rightarrow \textbf{36M} \rightarrow \textbf{2023-09-29}$
6	Positioner	maturo GmbH	TD 1.5-10KG		LAB000258	NE	-
7	Compressed Air	Implotex	1-850-30	-	LAB000256	NE	-
8	Semi-Anechoic Chamber (SAC)	Albatross Projects GmbH	Babylon 5 (SAC 5)	20168.PRB	LAB000235	ZW	$2020-08-24 \rightarrow 12 M \rightarrow 2021-08-24$
9	Measurement Software	Rohde & Schwarz	EMC32 V11.00.10		LAB000226	NE	-
10	Turntable	maturo GmbH	TT2.0-2t	TT2.0-2t/921	LAB000225	NE	-
11	Antenna Mast	maturo GmbH	CAM4.0-P	CAM4.0-P/316	LAB000224	NE	-
12	Controller	maturo GmbH	FCU 3.0	10082	LAB000222	NE	-
13	Power Supply	Elektro-Automatik GmbH & Co. KG	EA-PS 2042-10 B	2878350292	LAB000191	NE	-
14	Pre-Amplifier	Schwarzbeck Mess- Elektronik OHG	BBV 9718 C	84	LAB000169	NE	-
15	Antenna	Rohde & Schwarz	HF907	102899	LAB000151	К	$\textbf{2020-04-23} \rightarrow \textbf{36M} \rightarrow \textbf{2023-04-23}$
16	Antenna	Rohde & Schwarz	HL562E	102005	LAB000150	К	$\textbf{2020-07-05} \rightarrow \textbf{36M} \rightarrow \textbf{2023-07-05}$
17	Open Switch and Control Platform	Rohde & Schwarz	OSP200 Base Unit 2HU	101748	LAB000149	ZW	$2020\text{-}07\text{-}07 \to 12\text{M} \to 2021\text{-}07\text{-}07$
18	Antenna	Rohde & Schwarz	HL562E	102001	LAB000123	К	$2020\text{-}07\text{-}05 \rightarrow 36 \text{M} \rightarrow 2023\text{-}07\text{-}05$
19	Antenna	Rohde & Schwarz	HFH2-Z2E - Active Loop Antenna	100954	LAB000108	к	$2020\text{-}03\text{-}25 \rightarrow 36\text{M} \rightarrow 2023\text{-}03\text{-}25$

2021-06-29