

Product Name	802.11B/G SDIO Module with Antenna Connectors
Model No	SDM-11BG
FCC ID.	NBF-M9130

Applicant	Argox Information Co.,Ltd.
Address	7F,NO.126,Lane 235,Pao-Chiao Rd., Hsin Tien , Taipei, Taiwan

Date of Receipt	June. 10, 2010
Issue Date	July. 05, 2010
Report No.	106202R-RFUSP28V01
Report Version	V1.0

The test results relate only to the samples tested.

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Test Report Certification

Issue Date: July. 05, 2010 Report No.: 106202R-RFUSP28V01

Accredited by NIST (NVLAP) NVLAP Lab Code: 200533-0

Product Name	802.11B/G SDIO Module with Antenna Connectors			
Applicant	Argox Information Co.,Ltd.	Argox Information Co.,Ltd.		
Address	7F,NO.126,Lane 235,Pao-Chiao Rd., Hsin Tien, T	7F,NO.126,Lane 235,Pao-Chiao Rd., Hsin Tien, Taipei, Taiwan		
Manufacturer	Argox Information Co.,Ltd.	Argox Information Co.,Ltd.		
Model No.	SDM-11BG	SDM-11BG		
EUT Rated Voltage	DC 3.3V			
EUT Test Voltage	DC 3.3V			
Trade Name	ARGOX			
Applicable Standard FCC CFR Title 47 Part 15 Subpart C: 2009		1 _®		
	ANSI C63.4: 2003			
Test Result	Complied	NVLAP Lab Code: 200533-0		

The test results relate only to the samples tested.

:

:

The test report shall not be reproduced except in full without the written approval of QuieTek Corporation. This report must not be used to claim product endorsement by NVLAP any agency of the U.S. Government

Documented By :

Loven Huang

(Senior Adm. Specialist / Leven Huang)

Tested By

uO 90

(Engineer / Joe Guo)

Approved By

(Manager / Vincent Lin)

TABLE OF CONTENTS

De	Page	
1.	GENERAL INFORMATION	5
1.1.	EUT Description	
12	Operational Description	7
1.2.	Tested System Details	8
1.5.	Configuration of Tested System	
1.4.	EUT Exercise Software	
1.3.	Test Essility	
1.0.		
2.	Conducted Emission	10
2.1.	Test Equipment	
2.2.	Test Setup	
2.3.	Limits	
2.4.	Test Procedure	
2.5.	Uncertainty	
2.6.	Test Result of Conducted Emission	
3.	Peak Power Output	14
3.1.	Test Equipment	
3.2.	Test Setup	
33	Limits	14
34	Test Procedure	14
3 5	Uncertainty	14
3.6.	Test Result of Peak Power Output	
4.	Radiated Emission	17
4.1.	Test Equipment	
42	Test Setup	18
43	Limits	19
44	Test Procedure	20
4.5	Uncertainty	20
ч. <i>5</i> . Л.б	Test Result of Radiated Emission	
0.		
5.	RF antenna conducted test	
5.1.	Test Equipment	
5.2.	Test Setup	
5.3.	Limits	
5.4.	Test Procedure	
5.5.	Uncertainty	
5.6.	Test Result of RF antenna conducted test	
6.	Band Edge	
6.1.	Test Equipment	
6.2.	Test Setup	
6.3.	Limits	
6.4.	Test Procedure	
6.5.	Uncertainty	
6.6.	Test Result of Band Edge	38

7.	Occupied Bandwidth	46
7.1.	Test Equipment	46
7.2.	Test Setup	46
7.3.	Limits	46
7.4.	Test Procedure	
7.5.	Uncertainty	
7.6.	Test Result of Occupied Bandwidth	47
8.	Power Density	53
8.1.	Test Equipment	53
8.2.	Test Setup	
8.3.	Limits	
8.4.	Test Procedure	
8.5.	Uncertainty	54
8.6.	Test Result of Power Density	55
9.	EMI Reduction Method During Compliance Testing	61

Attachment 1: EUT Test Photographs

Attachment 2: EUT Detailed Photographs

1. GENERAL INFORMATION

1.1. EUT Description

Product Name	802.11B/G SDIO Module with Antenna Connectors		
Trade Name	ARGOX		
Model No.	SDM-11BG		
FCC ID.	NBF-M9130		
Frequency Range	2412-2462MHz		
Number of Channels	802.11b/g: 11		
Data Speed	802.11b: 1-11Mbps, 802.11g: 6-54Mbps		
Type of Modulation	802.11b:DSSS (DBPSK, DQPSK, CCK)		
	802.11g:OFDM (BPSK, QPSK, 16QAM, 64QAM)		
Antenna Type PIFA			
Antenna Gain	Refer to the table "Antenna List"		
Channel Control	Auto		

Antenna List

No.	Manufacturer	Product No.	Peak Gain
1	JI-HAW	69-70003-001	3.54dBi in 2.4GHz
2	JI-HAW	69-70002-001	3.48dBi in 2.4GHz
3	JI-HAW	69-70003-002	3.07dBi in 2.4GHz

Note: 1. The antenna of EUT is conform to FCC 15.203

2. Only the higher gain antenna was tested and recorded in this report.

802.11b/g Center Frequency of Each Channel:

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
Channel 01:	2412 MHz	Channel 02:	2417 MHz	Channel 03:	2422 MHz	Channel 04:	2427 MHz
Channel 05:	2432 MHz	Channel 06:	2437 MHz	Channel 07:	2442 MHz	Channel 08:	2447 MHz
Channel 09:	2452 MHz	Channel 10:	2457 MHz	Channel 11:	2462 MHz		

- 1. The EUT is an 802.11B/G SDIO Module with Antenna Connectors with a built-in 2.4GHz WLAN transceiver.
- 2. Regarding to the operation frequency, the lowest, middle and highest frequency are selected to perform the test.
- 3. Lowest and highest data rates are tested in each mode. Only worst case is shown in the report. (802.11b is 1Mbps > 802.11g is 6Mbps)
- 4. These tests are conducted on a sample for the purpose of demonstrating compliance of 802.11b/g transmitter with Part 15 Subpart C Paragraph 15.247 of spread spectrum devices
- 5. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case is shown in the report.

1.2. Operational Description

The EUT is an 802.11B/G SDIO Module with Antenna Connectors with 11 channels. This device provided four kinds of transmitting speed 1, 2, 5.5 and 11Mbps and the device of RF carrier is DBPSK, DQPSK and CCK (IEEE 802.11b). The device provided of eight kinds of transmitting speed 6, 9, 12, 18, 24, 36, 48 and 54Mbps the device of RF carrier is BPSK, QPSK, 16QAM and 64QAM (IEEE 802.11g).

This 802.11B/G SDIO Module with Antenna Connectors, compliant with IEEE 802.11b and IEEE 802.11g, is a high-efficiency Wireless LAN adapter. It allows your computer to connect to a wireless network and to share resources, such as files or printers without being bound to the network wires. Operation in 2.4GHz Direst Sequence Spread Spectrum (DSSS) and Orthogonal Frequency Division Multiplexing (OFDM) radio transmission, the 802.11B/G SDIO Module with Antenna Connectors Wired Equivalent Protection (WEP) algorithm is used. In addition, its standard compliance ensures that it can communicate with any IEEE 802.11b and IEEE 802.11g network.

Test Mode:	Mode 1: Transmit (802.11b 1Mbps)
	Mode 2: Transmit (802.11g 6Mbps)

1.3. Tested System Details

The types for all equipment, plus descriptions of all cables used in the tested system (including inserted cards) are:

	Product	Manufacturer	Model No.	Serial No.	Power Cord
1	DC Power Supply	Agilent	E3610A	N/A	N/A
2	DC Power Supply	Agilent	E3646A	N/A	N/A

Signal Cable Type		Signal cable Description	
A Power Cable		Non-shielded, 1.8m	
В	Power Cable	Non-shielded, 1.8m	

1.4. Configuration of Tested System

1.5. EUT Exercise Software

- (1) Setup the EUT as shown in Section 1.4.
- (2) Execute Test Software on the EUT.
- (3) Configure the test mode, the test channel, and the data rate.
- (4) Press "OK" to start the continuous transmission.
- (5) Verify that the EUT works properly.

1.6. Test Facility

Ambient conditions in the laboratory:

Items	Required (IEC 68-1)	Actual
Temperature (°C)	15-35	20-35
Humidity (%RH)	25-75	50-65
Barometric pressure (mbar)	860-1060	950-1000

The related certificate for our laboratories about the test site and management system can be downloaded from QuieTek Corporation's Web Site : <u>http://www.quietek.com/tw/ctg/cts/accreditations.htm</u> The address and introduction of QuieTek Corporation's laboratories can be founded in our Web site : <u>http://www.quietek.com/</u>

Site Description: File on

Federal Communications Commission FCC Engineering Laboratory 7435 Oakland Mills Road Columbia, MD 21046 Registration Number: 92195

Accreditation on NVLAP NVLAP Lab Code: 200533-0

Site Name: Quietek Corporation Site Address: No. 5-22, Ruei-Shu Valley, Ruei-Ping Tsuen, Lin-Kou Shiang, Taipei, Taiwan, R.O.C. TEL: 886-2-8601-3788 / FAX : 886-2-8601-3789 E-Mail : <u>service@quietek.com</u>

FCC Accreditation Number: TW1014

2. Conducted Emission

2.1. Test Equipment

The following test equipment are used during the conducted emission test:

Item	Instrument	Manufacturer	Type No./Serial No	Last Cal.	Remark
1	Test Receiver	R & S	ESCS 30/825442/17	May, 2010	
2	L.I.S.N.	R & S	ESH3-Z5/825016/6	May, 2010	EUT
3	L.I.S.N.	Kyoritsu	KNW-407/8-1420-3	May, 2010	Peripherals
4	Pulse Limiter	R & S	ESH3-Z2	May, 2010	
5	No.1 Shielded Roor	n		N/A	

Note: All instruments are calibrated every one year.

2.2. Test Setup

2.3. Limits

FCC Part 15 Subpart C Paragraph 15.207 (dBuV) Limit							
Frequency	Limits						
MHz	QP	AVG					
0.15 - 0.50	66-56	56-46					
0.50-5.0	56	46					
5.0 - 30	60	50					

2.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm /50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2003 on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

2.5. Uncertainty

± 2.26 dB

2.6. Test Result of Conducted Emission

Product	:	802.11B/G SDIO Module with Antenna Connectors
Test Item	:	Conducted Emission Test
Power Line	:	Line 1
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2437MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV	dB	dBuV
Line 1					
Quasi-Peak					
0.338	9.650	3.530	13.180	-46.072	59.252
0.550	9.640	3.250	12.890	-43.110	56.000
0.775	9.649	7.790	17.439	-38.561	56.000
3.007	9.690	2.710	12.400	-43.600	56.000
11.978	9.870	12.810	22.680	-37.320	60.000
24.277	10.080	3.040	13.120	-46.880	60.000
Average					
0.338	9.650	2.020	11.670	-37.582	49.252
0.550	9.640	1.050	10.690	-35.310	46.000
0.775	9.649	1.200	10.849	-35.151	46.000
3.007	9.690	1.240	10.930	-35.070	46.000
11.978	9.870	12.260	22.130	-27.870	50.000
24.277	10.080	1.580	11.660	-38.340	50.000

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

Product	: 802.11B/G SDIO Module with Antenna Connectors								
Test Item	: Conducted Emission Test								
Power Line	: Line 2								
Test Mode	: Mode 2: Tr	ransmit (802.11g	g 6Mbps) (2437MHz	2)					
Frequency	Correct	Reading	Measurement	Margin	Limit				
	Factor	Level	Level						
MHz	dB	dBuV	dBuV	dB	dBuV				
Line 2									
Quasi-Peak									
0.466	9.640	11.580	21.220	-35.751	56.971				
0.677	9.650	20.630	30.280	-25.720	56.000				
0.757	9.664	20.830	30.494	-25.506	56.000				
1.337	9.670	5.460	15.130	-40.870	56.000				
3.038	9.690	2.220	11.910	-44.090	56.000				
11.848	9.870	2.070	11.940	-48.060	60.000				
Average									
0.466	9.640	1.020	10.660	-35.925	46.585				
0.677	9.650	15.490	25.140	-20.860	46.000				
0.757	9.664	9.000	18.664	-27.336	46.000				
1.337	9.670	1.150	10.820	-35.180	46.000				
3.038	9.690	1.110	10.800	-35.200	46.000				
11.848	9.870	1.120	10.990	-39.010	50.000				

- 1. All Reading Levels are Quasi-Peak and average value.
- 2. "means the worst emission level.
- 3. Measurement Level = Reading Level + Correct Factor

3. Peak Power Output

3.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.				
Х	Power Meter	Anritsu	ML2495A/6K00003357	May, 2010				
Х	Power Sensor	Anritsu	MA2411B/0738448	Jun, 2010				
Note:								
1.	All equipments are calibrated with traceable calibrations. Each calibration is traceable to the							
	national or international standards.							

2. The test instruments marked with "X" are used to measure the final test results.

3.2. Test Setup

Conducted Measurement

3.3. Limits

The maximum peak power shall be less 1 Watt.

3.4. Test Procedure

The EUT was tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

3.5. Uncertainty

 \pm 1.27 dB

3.6. Test Result of Peak Power Output

:	802.11B/G SDIO Module with Antenna Connectors
:	Peak Power Output Data
:	No.3 OATS
:	Mode 1: Transmit (802.11b 1Mbps)
	::

Channel No	Frequency (MHz)	For d	Average ifferent Da	e Power ata Rate (N	/lbps)	Peak Power	Required	Pogult
		1	2	5.5	11	1	Limit	Kesun
			Measur					
01	2412	14.3	14.25	14.11	14.02	16.64	<30dBm	Pass
06	2437	14.15				16.42	<30dBm	Pass
11	2462	14.05				16.3	<30dBm	Pass

Note: Peak Power Output Value =Reading value on peak power meter + cable loss

Product	:	802.11B/G SDIO Module with Antenna Connectors
Test Item	:	Peak Power Output Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

			Average Power					Peak				
г	Frequency		For different Data Rate (Mbps) Power								Required	
Channel No	(MHz)	6	9	12	18	24	36	48	54	6	Limit	Result
			Measurement Level (dBm)									
01	2412	11.2								20.21	<30dBm	Pass
06	2437	11.27	11.21	11.17	11.13	11.06	11.02	10.96	10.91	20.42	<30dBm	Pass
11	2462	11.06								20.4	<30dBm	Pass

Note: Peak Power Output Value =Reading value on peak power meter + cable loss

4. Radiated Emission

4.1. Test Equipment

The following test equipment are used during the radiated emission test:

Test Site	Equipment		Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Х	Bilog Antenna	Schaffner Chase	CBL6112B/2673	Sep., 2009
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2009
	Х	Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2010
	Х	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2009
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2010
	Х	Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2009
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2010
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Х	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.

2. The test instruments marked with "X" are used to measure the final test results.

4.2. Test Setup

Radiated Emission Below 1GHz

Radiated Emission Above 1GHz

4.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation.

FCC Part 15 Subpart C Paragraph 15.209(a) Limits			
Frequency MHz	uV/m@3m	dBuV/m@3m	
30-88	100	40	
88-216	150	43.5	
216-960	200	46	
Above 960	500	54	

Remarks: E field strength $(dBuV/m) = 20 \log E$ field strength (uV/m)

4.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003 and tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned between 1 meter and 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4:2003 on radiated measurement.

The resolution bandwidth below 1GHz setting on the field strength meter is 120 kHz and above 1GHz is 1MHz.

Radiated emission measurements below 1GHz are made using broadband Bilog antenna and above 1GHz are made using Horn Antennas.

The measurement is divided into the Preliminary Measurement and the Final Measurement. The suspected frequencies are searched for in Preliminary Measurement with the measurement antenna kept pointed at the source of the emission both in azimuth and elevation, with the polarization of the antenna oriented for maximum response. The antenna is pointed at an angle towards the source of the emission, and the EUT is rotated in both height and polarization to maximize the measured emission. The emission is kept within the illumination area of the 3 dB beamwidth of the antenna. The worst radiated emission is measured in the Open Area Test Site on the Final Measurement. The frequency range from 30MHz to 10th harminics is checked.

4.5. Uncertainty

- ± 3.9 dB above 1GHz
- ± 3.8 dB below 1GHz

4.6. Test Result of Radiated Emission

Product	:	802.11B/G SDIO Module with Antenna Connectors
Test Item	:	Harmonic Radiated Emission Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4824.000	0.428	48.550	48.979	-25.021	74.000
7236.000	7.177	44.760	51.937	-22.063	74.000
9648.000	8.019	43.420	51.440	-22.560	74.000
Average					
Detector:					
Vertical					
Peak Detector:					
4824.000	0.836	46.760	47.597	-26.403	74.000
7236.000	7.676	45.410	53.086	-20.914	74.000
9648.000	8.556	43.050	51.607	-22.393	74.000

Average

Detector:

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	: 802.11B/G SDIO Module with Antenna Connectors				
Test Item	: Harmon	ic Radiated Emiss	sion Data		
Test Site	: No.3 OA	ATS			
Test Mode	: Mode 1:	Transmit (802.11	lb 1Mbps) (2437 MH	z)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4874.000	0.076	45.200	45.277	-28.723	74.000
7311.000	7.512	46.080	53.592	-20.408	74.000
9748.000	7.630	43.810	51.440	-22.560	74.000
Average					
Detector:					
Vertical					
Peak Detector:					
4874.000	0.532	46.500	47.032	-26.968	74.000
7311.000	8.089	44.210	52.299	-21.701	74.000
9748.000	8.266	41.900	50.167	-23.833	74.000
Average					
Detector:					

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	: 802.11B/G SDIO Module with Antenna Connectors				
Test Item	: Harmoni	ic Radiated Emiss	sion Data		
Test Site	: No.3 OA	ATS			
Test Mode	: Mode 1:	Transmit (802.11	b 1Mbps) (2462 MH	z)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4924.000	0.191	47.950	48.141	-25.859	74.000
7386.000	8.373	44.150	52.524	-21.476	74.000
9848.000	7.964	42.320	50.284	-23.716	74.000
Average					
Detector:					
Vertical					
Peak Detector:					
4924.000	0.805	48.490	49.295	-24.705	74.000
7386.000	9.180	43.250	52.430	-21.570	74.000
9848.000	8.801	38.570	47.371	-26.629	74.000

Average

- **Detector:**
 - --

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	: 802.11B/G SDIO Module with Antenna Connectors						
Test Item	: Harmoni	c Radiated Emiss	sion Data				
Test Site	: No.3 OA	: No.3 OATS					
Test Mode	: Mode 2:	Transmit (802.11	g 6Mbps) (2412MHz	2)			
Frequency	Correct	Reading	Measurement	Margin	Limit		
	Factor	Level	Level				
MHz	dB	dBuV	dBuV/m	dB	dBuV/m		
Horizontal							
Peak Detector:							
4824.000	0.428	49.500	49.929	-24.071	74.000		
7236.000	7.177	45.580	52.757	-21.243	74.000		
9648.000	8.019	41.260	49.280	-24.720	74.000		
Average							
Detector:							
Vertical							
Peak Detector:							
4824.000	0.836	44.320	45.157	-28.843	74.000		
7236.000	7.676	42.360	50.036	-23.964	74.000		
9648.000	8.556	41.400	49.957	-24.043	74.000		
Average							

Detector:

--

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	: 802.11B/G SDIO Module with Antenna Connectors				
Test Item	: Harmon	ic Radiated Emiss	sion Data		
Test Site	: No.3 OA	ATS			
Test Mode	: Mode 2:	Transmit (802.11	g 6Mbps) (2437 MH	z)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4874.000	0.076	47.750	47.827	-26.173	74.000
7311.000	7.512	42.670	50.182	-23.818	74.000
9748.000	7.630	40.380	48.010	-25.990	74.000
Average					
Detector:					
Vertical					
Peak Detector:					
4874.000	0.532	45.610	46.142	-27.858	74.000
7311.000	8.089	44.110	52.199	-21.801	74.000
9748.000	8.266	39.380	47.647	-26.353	74.000
Average					
Detector:					

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	: 802.11B/G SDIO Module with Antenna Connectors				
Test Item	: Harmoni	c Radiated Emiss	sion Data		
Test Site	: No.3 OA	TS			
Test Mode	: Mode 2:	Transmit (802.11	g 6Mbps) (2462 MH	z)	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
Peak Detector:					
4924.000	0.191	47.210	47.401	-26.599	74.000
7386.000	8.373	41.030	49.404	-24.596	74.000
9848.000	7.964	43.620	51.584	-22.416	74.000
Average					
Detector:					
Vertical					
Peak Detector:					
4924.000	0.805	46.680	47.485	-26.515	74.000
7386.000	9.180	41.210	50.390	-23.610	74.000
9848.000	8.801	39.570	48.371	-25.629	74.000

Average

- **Detector:**
 - --

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	: 802.11B/G SDIO Module with Antenna Connectors				
Test Item	: General Radiated Emission Data				
Test Site	: No.3 O.	ATS			
Test Mode	: Mode 1	: Transmit (802.11	b 1Mbps)(2437 MHz	2)	
		× ×		,	
Frequency	Correct	Reading	Measurement	Margin	Limit
	Factor	Level	Level		
MHz	dB	dBuV	dBuV/m	dB	dBuV/m
Horizontal					
34.850	-0.978	32.215	31.237	-8.763	40.000
294.325	-4.872	39.275	34.403	-11.597	46.000
468.925	3.597	36.018	39.615	-6.385	46.000
546.525	4.301	36.261	40.562	-5.438	46.000
624.125	1.555	39.202	40.758	-5.242	46.000
662.925	1.879	39.645	41.524	-4.476	46.000
Vertical					
44.550	-10.527	43.186	32.659	-7.341	40.000
177.925	-1.107	32.343	31.236	-12.264	43.500
381.625	0.668	33.286	33.954	-12.046	46.000
607.150	2.216	34.632	36.848	-9.152	46.000
687.175	2.285	34.183	36.468	-9.532	46.000
759.925	2.040	38.410	40.450	-5.550	46.000

Note:

-

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

Product	: 802.11B/G SDIO Module with Antenna Connectors					
Test Item	: General	: General Radiated Emission Data				
Test Site	: No.3 O	ATS				
Test Mode	: Mode 2	: Transmit (802.11	g 6Mbps)(2437 MHz	2)		
Frequency	Correct	Reading	Measurement	Margin	Limit	
	Factor	Level	Level			
MHz	dB	dBuV	dBuV/m	dB	dBuV/m	
Horizontal						
34.850	-0.978	33.548	32.570	-7.430	40.000	
294.325	-4.872	37.771	32.899	-13.101	46.000	
468.925	3.597	35.129	38.726	-7.274	46.000	
546.525	4.301	36.017	40.318	-5.682	46.000	
585.325	3.244	37.482	40.726	-5.274	46.000	
682.325	2.814	38.159	40.973	-5.027	46.000	
Vertical						
44.550	-10.527	39.739	29.212	-10.788	40.000	
153.675	-5.278	36.912	31.634	-11.866	43.500	
379.200	0.881	34.180	35.061	-10.939	46.000	
541.675	1.938	33.912	35.850	-10.150	46.000	
607.150	2.216	34.516	36.732	-9.268	46.000	
759.925	2.040	38.988	41.028	-4.972	46.000	

- 1. All Readings below 1GHz are Quasi-Peak, above 1GHz are performed with peak and/or average measurements as necessary.
- 2. Peak measurements: RBW = 1MHz, VBW = 3 MHz, Sweep: Auto.
- 3. Average measurements: RBW = 1MHz, VBW = 10 Hz, Sweep: Auto.
- 4. "*", means this data is the worst emission level.
- 5. Measurement Level = Reading Level + Correct Factor.
- 6. The average measurement was not performed when the peak measured data under the limit of average detection.

5. **RF** antenna conducted test

5.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2010
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2010
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2010

- Note: 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
 - 2. The test instruments marked with "X" are used to measure the final test results.

5.2. Test Setup

RF antenna Conducted Measurement:

5.3. Limits

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

5.4. Test Procedure

The EUT was tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

Set RBW = 100 kHz, Set VBW> RBW, scan up through 10th harmonic.

5.5. Uncertainty

The measurement uncertainty Conducted is defined as ± 1.27 dB

5.6. Test Result of RF antenna conducted test

Product	:	802.11B/G SDIO Module with Antenna Connectors
Test Item	:	RF antenna conducted test
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

Channel 01 (2412MHz) 30-25GHz

🗩 Agilen	t Spectrum	Analyzer	- Swept SA									
⊯ Start	50 Freq 3	Ω 0.000	000 MHz	/	AC SE		Avg Type Avg Hold	ALIGNAUTO e: Log-Pwr • 15/100	09:35:43 P	M Jun 23, 2010 E 1 2 3 4 5 6	Save As	
10 dB/c	liv Re	f 20.0	nput: RF	PNO: Fast IFGain:Low	#Atten: 30) dB		M	kr1 2.4 2.6	02 GHz 98 dBm		Save
10.0 —	•	1									File/F	[:] older List
0.00 — -10.0 —											Filer	name:
-20.0										-17.36 dBm	Sa	ve As type:
-40.0 —	ľ	-	- How whether w	Junit a s		ne institut	-	phila draws and	NUMBER	, Maker My Mar, P	🏂 Up	o One Level
-60.0 -	- All and a start	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	v .	- Winnerstein Polk	ก็ของใหญ่มีรา <i>ปเกล</i> องอาก	114 yetr					Create F	e New [:] older
Start 3 #Res I	30 MHz 3W 100	kHz		#VBW	1.0 MHz			Sweep	Stop 2 2.30 s (5.00 GHz 1001 pts)	с	ancel
MSG								STATUS				

								- Swept SA	rum Analyzer	gilent Spec	D A (
Save As	54 PM Jun 23, 2010 RACE 1 2 3 4 5 6	09:43: T	ALIGNAUTO e: Log-Pwr	Avg Tyj Avg Hol		C S	A	00 MHz	50 Ω 30.000	art Freq	Sta
Save	.427 GHz 551 dBm	kr1 2 4	M		30 dB	#Atten: 3	NO: Fast 🖵 Gain:Low	nput: RF P IF dBm	Ref 20.00	dB/div	10 c
File/Folde Lis									- 1	.0	10.0
File name										0	0.00
Save As type	-16.82 dBm									o	-20.0 -30.0
Dup One Leve	and the stand	John Mark	departure and	Long - Ar				- jessthrad	4	o	-40.0
Create New Folde				14 m 1 / 4 mg 144	eelen of the light of t	namon Property and provide and a second s	- Ally working		N K Ward	0 HUM	-60.0
Cance	25.00 GHz	Stop	Sweep		Iz	, 1.0 MH	#VBW		Hz 00 kHz	art 30 M es BW 1	Sta
	(STATUS						nave person		ISG

Channel 06 (2437MHz) 30-25GHz

Channel 11 (2462MHz) 30-25GHz

Product	:	802.11B/G SDIO Module with Antenna Connectors
Test Item	:	RF Antenna Conducted Spurious
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

Channel 01 (2412MHz) 30-25GHz

D Agilent S	pectrum Analyzer -	Swept SA								
₩ Start Fr	50 Ω eq 30.0000	00 MHz	۵		NSE:INT	Avg Type	ALIGNAUTO	09:34:02 P	M Jun 23, 2010 E 1 2 3 4 5 6	Save As
10 dB/div	Ref 20.00	nput: RF PI IFC dBm	NO: Fast 😱 Gain:Low	#Atten: 30	dB	Avginoia.	M	kr1 2.4 -3.1	27 GHz 15 dBm	Save
10.0		0								File/Folder List
-10.0	 									File name:
-20.0									-24.37 dBm	Save As type:
-40.0	- Anno - 1	w the lot of the lot and the	4	د الله الله	an har mark	Hudayapalana	. Malestre, might	Broth mallinian	and the stand of the	🍏 Up One Level
-60.0	hollow Vywala		"MULARWINA	1999 ANY 1997						Create New Folder
Start 30 #Res B\	MHz N 100 kHz		#VBW	1.0 MHz			Sweep	Stop 2 2.30 s (5.00 GHz 1001 pts)	Cancel
MSG							STATUS			1

								Swept SA	m Analyzer -	lent Spectru	D Agi
Save As	06 PM Jun 23, 2010 RACE 1 2 3 4 5 6 TYPE MWWWWW	09:22:06 TRA TY	ALIGNAUTO e: Log-Pwr : 30/100	Avg Typ Avg Hold		C SE	NO: Fast	00 MHz	0.00000	t Freq 3	Star
Save	.452 GHz 998 dBm	ء 4 kr1 2.4 -3.9	М		30 dB	#Atten: 3	Gain:Low	d B m	ef 20.00	3/div R	10 di
File/Folder List											10.0
File name:									1	•	0.00 -10.0
Save As type:	-24.37 dBm										-20.0 -30.0
Dp One	Vistor All and the second	www.	and the property of the second	Langed Loans a Mar	. I Ass slimmer			and an in all the prime	n		-40.0 -50.0
Create New Folder					200 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	ĸĸŧŧ	Mr. Jandalow July			e loo te alla alla alla alla alla alla alla a	-60.0
Cance	25.00 GHz	Stop 2	Sweep		2	1.0 MHz	#VBW		z 0 kHz	t 30 MHz s BW 10	Star #Re
		and the second s	STATUS				6.000 (B. 000 ⁻¹ , 2007		1999 - 1999 (1999) (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999 (1999		MSG

Channel 06 (2437MHz) 30-25GHz

Channel 11 (2462MHz) 30-25GHz

6. Band Edge

-

6.1. Test Equipment

RF Conducted Measurement

The following test equipments are used during the band edge tests:

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2010
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2010
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2010

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

RF Radiated Measurement:

The following test equipments are used during the band edge tests:

Test Site		Equipment	Manufacturer	Model No./Serial No.	Last Cal.
Site # 3	Bilog Antenna		Schaffner Chase	CBL6112B/2673	Sep., 2009
	Х	Horn Antenna	Schwarzbeck	BBHA9120D/D305	Sep., 2009
		Horn Antenna	Schwarzbeck	BBHA9170/208	Jul., 2010
	Х	Pre-Amplifier	Agilent	8447D/2944A09549	Sep., 2009
	Х	Spectrum Analyzer	Agilent	E4407B / US39440758	May, 2010
		Test Receiver	R & S	ESCS 30/ 825442/018	Sep., 2009
	Х	Coaxial Cable	QuieTek	QTK-CABLE/ CAB5	Feb., 2010
	Х	Controller	QuieTek	QTK-CONTROLLER/ CTRL3	N/A
	Χ	Coaxial Switch	Anritsu	MP59B/6200265729	N/A

Note:

1. All instruments are calibrated every one year.

2. The test instruments marked by "X" are used to measure the final test results.

6.2. Test Setup

RF Conducted Measurement

RF Radiated Measurement:

6.3. Limits

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 20dB below the level of the fundamental or to the general radiated emission limits in paragraph 15.209, whichever is the lesser attenuation. QuieTer

6.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003 and tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements.

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level. The EUT was positioned such that the distance from antenna to the EUT was 3 meters.

The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find the maximum emission, all of the interface cables were manipulated according to ANSI C63.4:2003 on radiated measurement.

6.5. Uncertainty

± 3.9 dB above 1GHz

± 3.8 dB below 1GHz

6.6. Test Result of Band Edge

Product	:	802.11B/G SDIO Module with Antenna Connectors
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

Fundamental Filed Strength

Antenna Pole	Frequency [MHz]	Correction Factor [dB/m]	Reading Level [dBuV]	Emission Level [dBuV/m]	Detector
Horizontal	2412	31.771	64.2	95.972	Peak
Vertical	2412	30.248	60.12	90.369	Peak

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)Δ (dB)		Band Edge Field Strength (dBuV/m)	Detector
Horizontal	2336.25	95.972	47.526	48.446	Peak
Vertical	2336.25	90.369	47.526	42.843	Peak

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge

measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = F - Δ

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

Peak limit = 74dBuV/m, Average limit = 54dBuV/m

💴 Agilent Spectrum Analyzer	- Swept SA				
50 Ω Center Freq 2.390	000000 GHz	AC SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	02:32:12 PM Jun 22, 2010 TRACE 1 2 3 4 5 6	Frequency
40 dB/dia - Bof 20.00	Input: RF PNO: Fast IFGain:Low	#Atten: 30 dB	Mkr	3 2.336 25 GHz -42 00 dBm	Auto Tune
					Center Freq 2.390000000 GHz
-20.0 -30.0 -40.0	Marena Maria ana marina	2 minumanul		Constration of the state of the	Start Freq 2.315000000 GHz
-60.0					Stop Freq 2.465000000 GHz
Center 2.39000 GHz #Res BW 1.0 MHz	#VE	SW 1.0 MHz	#Sweep	Span 150.0 MHz 500 ms (1001 pts) FUNCTION VALUE	CF Step 15.000000 MHz Auto Man
1 N 1 f 2 N 1 f 3 N 1 f 4 - - - 5 - - - 6 - - - 7 - - - 8 - - - 9 - - - 10 - - - 11 - - -	2.412 95 GHz 2.390 00 GHz 2.336 25 GHz	5.526 dBm -45.688 dBm -42.00 dBm			Freq Offset 0 Hz

Peak Detector of conducted Band Edge Delta

QuieTer

Product	:	802.11B/G SDIO Module with Antenna Connectors
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps)

Fundamental Filed Strength

Antenna	Frequency	Correction Factor	Reading Level	Emission Level	Detector
Pole	[MHz]	[dB/m]	[dBuV]	[dBuV/m]	
Horizontal	2462	31.892	66.59	98.482	Peak
Vertical	2462	30.48	64.61	95.09	Peak

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)	Fundamental (dBuV/m)	Δ (dB)	Band Edge Field Strength (dBuV/m)	Detector
Horizontal	2496.5	98.482	50.39	48.092	Peak
Vertical	2496.5	95.09	50.39	44.7	Peak

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = F - Δ

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

Peak limit = 74dBuV/m, Average limit = 54dBuV/m

🐌 Agilent Spectrum Analyzer - Swept SA	🛛 Agilent Spectrum Analyzer - Swept SA 📃 🗖 🔀									
	AC SENSE:IN	ALIGNAUTO	02:44:33 PM Jun 22, 2010	Frequency						
Lenter Freq 2.483500000 GHZ Input: RF PNO: Fast IFGain:Low	Trig: Free Run #Atten: 30 dB	Avg Type. Log-Fwi	TYPE WWWWWW DET P N N N N N							
10 dB/div Ref 20.00 dBm	Auto Tune									
10.0 0.00 -10.0				Center Freq 2.483500000 GHz						
-20.0 -30.0 -40.0	vore 2	3 	hydroxel of some state of the source of the	Start Freq 2.433500000 GHz						
-50.0				Stop Freq 2.533500000 GHz						
Center 2.48350 GHz #Res BW 1.0 MHz #VBW	1.0 MHz	#Sweep	Span 100.0 MHz 500 ms (1001 pts)	CF Step 10.000000 MHz						
MKR MODE TRO SCL X	Y 5.97 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man						
2 N 1 f 2.483 5 GHz 3 N 1 f 2.496 5 GHz 4	-45.80 dBm -44.42 dBm			Freq Offset 0 Hz						
7										
MSG		STATUS								

Peak Detector of conducted Band Edge Delta

Product	:	802.11B/G SDIO Module with Antenna Connectors
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

Fundamental Filed Strength

Antenna	Frequency	Correction Factor	Reading Level	Emission Level	Detector
Pole	[MHz]	[dB/m]	[dBuV]	[dBuV/m]	
Horizontal	2412	31.771	63.29	95.062	Peak
Vertical	2412	30.248	60.38	90.629	Peak

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz)Fundamental (dBuV/m)		Δ (dB)	Band Edge Field Strength (dBuV/m)	Detector
Horizontal	2390	95.062	45.06	50.002	Peak
Vertical	2390	90.629	45.06	45.569	Peak

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge

measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = F - Δ

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

Peak limit = 74dBuV/m, Average limit = 54dBuV/m

🗊 Agi	lent S	ipect	rum	Analyzer - S	Swept SA							3		
<mark>⊯</mark> Cen	ter	Fre	50 s 9	2.3900	00000 G	Hz	AC	SENSE	:INT	Avg	ALIGN AUTO Type: Log-Pwr	03:06:36 P	M Jun 22, 2010 E 1 2 3 4 5 6	Frequency
10 dE	Input: RF PN0: Fast Low Ing. Fise Kun Der P NNNN IFGain:Low #Atten: 30 dB Mkr2 2.390 0 GHz 0 dB/div Ref 20.00 dBm -39.18 dBm									Auto Tune				
Log 10.0 0.00 -10.0										<i>[</i>				Center Freq 2.390000000 GHz
-20.0 -30.0 -40.0	and a	-	ma	humber	a Jackson Carlow and Market	atten the	- Antower Anto	22	m			L	manna	Start Freq 2.340000000 GHz
-50.0 -60.0 -70.0														Stop Freq 2.440000000 GHz
Cent #Res	ter 2 s BV	2.39 N 1	000 .0 N .0	0 GHz /IHz	×	#VI	BW 1.0	MHz	FUN	ICTION	#Sweep	Span 1 500 ms (00.0 MHz 1001 pts)	CF Step 10.000000 MHz <u>Auto</u> Man
1 2 3 4 5 6	N	1	f		2.417 2.390	7 GHz 0 GHz	-39	.88 dBm .18 dBm						Freq Offset 0 Hz
7 9 10 11 12														
MSG											STATU	3		

Peak Detector of conducted Band Edge Delta

Product	:	802.11B/G SDIO Module with Antenna Connectors
Test Item	:	Band Edge Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps)

Fundamental Filed Strength

Antenna	Frequency	Correction Factor	Reading Level	Emission Level	Detector
Pole	[MHz]	[dB/m]	[dBuV]	[dBuV/m]	
Horizontal	2462	31.892	65.82	97.712	Peak
Vertical	2462	30.48	63.01	93.49	Peak

Note: 1:Spectrum Analyzer setting:

Peak detector: RBW=1MHz, VBW=1MHz

Average detector: RBW=1MHz, VBW=10Hz

Band Edge Test Data

Antenna Pole	Test Frequency (MHz) Fundamental (dBuV/m)		Δ (dB)	Band Edge Field Strength (dBuV/m)	Detector
Horizontal	2484.9	97.712	44.59	53.122	Peak
Vertical	2484.9	93.49	44.59	48.9	Peak

Note:

The Band Edge Field Strength was calculated using the Fundamental and Conducted Band Edge measurements per the Marker-Delta Method with the following formula:

Band Edge field Strength = $F - \Delta$

F = Fundamental field Strength (Peak or Average)

 Δ = Conducted Band Edge Delta (Peak or Average)

Peak limit = 74dBuV/m, Average limit = 54dBuV/m

D Ag	ilent S	ipect	rum	Analyzer -	Swept SA												
X		-	50 \$	2 4025	00000	011-	AC	SE	ENSE:IN	IT	Aura	AL Type: I		03:11:5	8 PM Jun 22, 2010	Frequ	lency
Cer	iter	Fre	pe	2.4833 Ir	put: RF	GHZ PNO: Fas IFGain:Lo	at GP	Trig: Fre #Atten: 3	e Rur 0 dB		AY Y	rype. i	-0g-r wi	'n	DET P N N N N		-
10 d	B/div	,	Ref	20.00	dBm								Mk	r3 2.4 -38	84 9 GHz 3.85 dBm		ito Tune
Log 10.0						(∕_ 1									Cer	ter Fre
0.00						~~~~	~									2 48350	0000 GH
-10.0				1	1											2.40000	
-20.0						_									_		
-30.0								1								S S	tart Free
-40.0		m	ym	port				homen								2.43350	0000 GH
-50.0	and a									When which	- and the second	-linen these	Non-self-sheet	A sector and all	Vanish - Kun of Kun fr		
-60.0																l s	top Fre
70.0																2,53350	0000 GH
-70.0																	
Cer	nter	2.48	335	0 GHz					305					Span	100.0 MHz		CE Sten
#Re	s Bl	W 1	.0 R	/IHZ		#	VBW '	1.0 MHz	<u> </u>			#	sweep	500 ms	s (1001 pts)	10.00	0000 MH
MKR	MODE	TRC	SCL		Х			Y		FUNC	TION	FUNC	TION WIDTH	FUNC	TION VALUE	Auto	Ma
1	N	1	f		2.46	58 9 GHz 3 5 GHz		-40.33 d	IBm IBm								
3	N	1	f		2.48	34 9 GHz		-38.85 d	Bm			1				Fre	o Offse
4			_														0 H
6																	011
7		_	_				0					-					
9							2										
10			_				0		-								
12																	
ASG													STATUS	6			

Peak Detector of conducted Band Edge Delta

7. Occupied Bandwidth

7.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2010
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2010
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2010

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

7.2. Test Setup

7.3. Limits

The minimum bandwidth shall be at least 500 kHz.

7.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003; tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements. Set RBW = 100 kHz, Span greater than RBW.

7.5. Uncertainty

± 150Hz

7.6. Test Result of Occupied Bandwidth

Product	:	802.11B/G SDIO Module with Antenna Connectors
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	2412.00	10200	>500	Pass

Figure Channel 1:

🗊 Agilent Spectri	um Analyzer - Swept SA	Í.						
Center Free	^{50 ຊ}) GH7	C SENSE:IM	NT Avg Type	ALIGNAUTO : Log-Pwr	08:56:40 P	M Jun 23, 2010	Save As
	Input: RF	PNO: Fast 😱 IFGain:Low	┘ Trig: Free Rur #Atten: 30 dB	n Avg Hold:	>100/100 Mkr3	3 2.417	10 GHz	Save
10 dB/div F Log 10.0 0.00			2 June 1	when 3		-0.00	-5.19 dBm	File/Folder List
-20.0 -30.0 -40.0					Way made was			File name:
-50.0 -60.0 -70.0	name and the second							Save As type:
Center 2.412 #Res BW 10 MKE MODE TRE	200 GHz 00 kHz 501 X f 2.4	#VBW	100 kHz 1.812 dBm	Function Fun	#Sweep	Span 5 500 ms (*	0.00 MHz 1001 pts) NVALUE	Dup One Level
2 N 1 3 N 1 4 5 6 7	f 2.4 f 2.4	06 90 GHz 17 10 GHz	-5.479 dBm -5.582 dBm					Create New Folder
8 9 10 11 12								Cancel
MSG		•			STATUS			

Product	:	802.11B/G SDIO Module with Antenna Connectors
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
6	2437.00	10200	>500	Pass

Figure Channel 6:

								owept SA	Analyzer - S	opectrum	gilent !
Save As	M Jun 23, 2010 E 1 2 3 4 5 6 E M WWWWWW	09:02:56 Pf TRACI	ALIGN AUTO : Log-Pwr > 100/100	Avg Type AvgIHold		AC SE	Hz	00000 G	2.4370	50 s Freq	nter
Sav	10 GHz	™ 3 2.442 -5 58	Mkr		0 dB	#Atten: 30	io: Fast 🕞 Gain:Low		int		
File/Fold Li	-5.14 dBm	-0.00		3	2 ¹	2 mmm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	IBM	20.00 0		
File nam			M					rin en l')
Save A typ	hunsister and the	Merty Maleraans	LA Lorne						A A A A A A A A A A A A A A A A A A A	unil gințune.)))
Dp Or Lev	0.00 MHz 1001 pts) NVALUE	Span 5) 500 ms (/	#Sweep	NCTION FU	FL	/ 100 kHz	#VBW	×	0 GHz kHz	2.4370 N 100	nter es Bi
Create Ne Fold					Bm Bm Bm	<u>1.860 d</u> -5.367 dl -5.585 dl	0 GHz 0 GHz 0 GHz	2.437 5 2.431 9 2.442 1		1 f 1 f 1 f	N N
Cano											

Product	:	802.11B/G SDIO Module with Antenna Connectors
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
11	2462.00	10200	>500	Pass

Figure Channel 11:

								Swept SA	Analyzer -	ctrum /	nt Spec	Agile
Save As	M Jun 23, 2010	09:06:37 P	ALIGNAUTO	0	SE:INT			00000 0	0.4000	50 Ω	-	
	ET P N N N N N	TYP	> 100/100	Avg Hold:	Run dB	Trig: Free #Atten: 30	HZ 10: Fast 🕞 Gain:Low	put: RF P	2.4620 In	req	er⊢r	ent
Sa	10 GHz 98 dBm	3 2.467 -5.6	Mkr					dBm	20.00	Ref	div	dB
File/Fol				8	∿1	19 <u>1</u>						9 2.0
T	6.26 JDa			3	manufactor	2 marting						.00
	-5.25 UDN			M	- 1	av \	pr1					m
				V ~~			Jon V					
				1		·	r					J.U -
File nan							1					0.0
			-1	<u> </u>			/					0.0
	when a stand	May Munday . W	by more and	4			2	man w	- Jan -			0.0
Save	Adu Man History and a la									Y-749-0-4990	all part line.	n
tvi												
ري												J.U -
	0.00 MHz	Span 5				6 V			0 GHz	4620	er 2.4	ent
🔺 Up O	1001 pts)	500 ms (#Sweep			100 kHz	#VBV		kHz	100	BW	Res
Le	N VALLIF	FUNCTIO	ICTION WIDTH	ICTION FU	Ē	Ŷ		X		act set	IDEL TR	BL M
<u> </u>					m	1.754 dE	0 GHz	2.462 5		f	V 1	1
					m	-5.565 dE	0 GHz	2.456 9	÷	f	1 1	2
) Create N					m	-5.698 GE	UGHZ	2.407		T		4
Fol												5
L									\$		-	5
											-	3
Can									_		_	9
Call					_					_	_	1
1												11

Product	:	802.11B/G SDIO Module with Antenna Connectors
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2412MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
1	2412.00	16650	>500	Pass

Figure Channel 1:

D Agi	ilent S	ipect	rum	Analyze	er - S	iwept	SA		-										-							
w Cen	ter	Fre	50 s q	2.41	200	000	00 (GH	z	-		ia: Frei	NSE:IN	IT	Avg	Type Hold:	ALIGNA	UTO ² wr 10	09:08	TRAC	M Jun E 1 2 E M V	23,2010	5	S	ave As	
					Inp	iut: H	ι- Ι	FGa	: Fast in:Lov	v	#A	tten: 3	0 dB			ioiu.	R	11. m ²	2 0 4	DE	20		Ň		;	Save
10 di	B/div		Ref	20.0	0 d	Bn	1										17	INIS	-10	20).84	45	dBm				
10.0								_						^		_							ſ		File/F	older
0.00									(Jan	ութու	www	4 mm	water	miles	เกิดเป็นสูญหนัง	♦ ³					8	-9.42 dBn				List
-20.0]							Į							ŀ			
-30.0	-					122	Marria Marrie	- Alan									WWW NAME								File na	ame:
-40.0	y may the	Adates	work	Munad	4pmel	ar di la												ትም	www.	-			ŀ			
-60.0					_			+																	Sav	e As
-70.0																										ype:
Cen #Re	ter : s B\	2.41 N 1	00	0 GH: kHz	z				#V	BW	100) kHz					#Swe	ер	Spa 500 m	n 5 1s (0.00	0 MHz 1 pts	Ĩ		Up	One
MKE 1	MODE	TRC 1	SCL			-	× 2.416	: 10	GHZ		-3	Y 421 d	Bm	FUN	CTION	FUI	NCTION W	/IDTH	FU	NCTIC	on val	.UE			Ľ	eve
2	N N	1	f				2.403	65 30	GHz GHz		-11.	565 d 845 d	Bm Bm										┢		Croato	Nou
4																						_		9	F	older
6 7 8			2							8																
9 10													-												Ca	ance
11 12																										
MSG																	ST	TATUS								

Product	:	802.11B/G SDIO Module with Antenna Connectors
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
6	2437.00	16650	>500	Pass

Figure Channel 6:

gilent Spectrum Analyzer - Sv	wept SA			
50 Ω Inter Freq 2.43700		ALIGNAUTO Avg Type: Log-Pwr AvgIHold>100/100	09:10:54 PM Jun 23, 2010 TRACE 1 2 3 4 5 6 TYPE M WAAAAAAAA	Save As
Inpi	IFGain:Low #Atten: 30 dB	Mkr	DET P NNNNN 3 2.445 30 GHz	Sav
dB/div Ref 20.00 dl	Bm		-10.972 dBm	
9 .0				File/Fold
.0	James pur marine and a second	manutaren 3	-9.72 dBm	L
.0				
.0		- Marine Marine Contraction		File nam
0 wellow maker manager a	white .		- when have been and and and	
.0				Save
.0				typ
enter 2.43700 GHz Res BW 100 kHz	#VBW 100 kHz	#Sweep	Span 50.00 MHz 500 ms (1001 pts)	🔺 Up O
a model troi sci	X			Le D
N 1 f	2.441 10 GHz -3.723 dBm			
N 1 f	2.445 30 GHz -10.972 dBm			🚕 Create N
				💆 Fol
				Car
	J. J.	STATUS]	

Product	:	802.11B/G SDIO Module with Antenna Connectors
Test Item	:	Occupied Bandwidth Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (kHz)	Required Limit (kHz)	Result
11	2462.00	16650	>500	Pass

Figure Channel 11:

		10						Swept SA	nalyzer - S	ctrum /	ent Spe	🛛 Agi
Save As	M Jun 23, 2010 E 1 2 3 4 5 6	09:13:01 P	ALIGNAUTO	Avg Typ	SENSE:INT	AC	Hz	00000 G	2.4620	50 Ω req	er Fi	ø Cen
Sav		DE	>100/100	Avginoid	30 dB	₽ #Atte	NO: Fast (Gain:Low	put: RF P	Inj			
	30 GHz 56 dBm	3 2.470 -11.8	MKR					dBm	20.00 d	Ref	div	10 dE
File/Folde												_og 10.0
Lis	-10.27 dBm			3	warman .	งคงให้เป็นบางไม่สาว	an			+		0.00
) j					-10.0
File name			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				And a	مر مردم		_		-30.0
			We How wath					Walland and	AR WWW			-40.0
Save A	man an a	Martin and Alexand							4.11	و ماليد يس		-50.0 -60.0
type					_					_		-70.0
	0.00 MHz	Span 5	#Oween			W 100 k	#\/P) GHz	1620	er 2.4	Cen
Leve		JUU IIIS (#oweep				#VD	~	λΠΖ			fice:
					dBm	-4.26	0 GHz	2.466 1		f	N 1	1
					dBm	-12.17	IO GHZ	2.453 0		f	N 1	3
💆 Folde											-	5
												7
Canc												9
					_		1					11 12
1		;	STATUS									SG

8. **Power Density**

8.1. Test Equipment

	Equipment	Manufacturer	Model No./Serial No.	Last Cal.
	Spectrum Analyzer	R&S	FSP40 / 100170	Jun, 2010
	Spectrum Analyzer	Agilent	E4407B / US39440758	Jun, 2010
Х	Spectrum Analyzer	Agilent	N9010A / MY48030495	Apr., 2010

Note:

- 1. All equipments are calibrated with traceable calibrations. Each calibration is traceable to the national or international standards.
- 2. The test instruments marked with "X" are used to measure the final test results.

8.2. Test Setup

8.3. Limits

The transmitted power density averaged over any 1 second interval shall not be greater +8dBm in any 3kHz bandwidth.

8.4. Test Procedure

The EUT was setup according to ANSI C63.4, 2003; tested according to DTS test procedure of Mar. 2005 KDB558074 for compliance to FCC 47CFR 15.247 requirements. Set RBW= 3 kHz, VBW=10KHz, Sweep time=(SPAN/3KHz), detector=Peak detector

8.5. Uncertainty

± 1.27 dB

8.6. Test Result of Power Density

Product	:	802.11B/G SDIO Module with Antenna Connectors
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2412MHz)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
1	2412.00	-16.078	< 8dBm	Pass

Figure Channel 1:

🗊 Agi	lent Spectru	m Analyzer -	Swept SA						10			
<mark>іхі</mark> Cen	5 ter Frec	οΩ 1 2 4125	00000 G	H7	IC SE	NSE:INT	Avg Type	ALIGNAUTO : Log-Pwr	09:38:55 P	M Jun 23, 2010	Sa	ve As
10 dl	B/div R	ef 20.00	dBm	NO: >30k 🖵 Gain:Low	┘ Trig: Free #Atten: 30	e Run)dB	Avg Hold:	Mkr1 2.	412 639 -16.0	9 8 GHz 78 dBm		Save
10.0												File/Folder List
0.00 -10.0										1-		File name:
-20.0 -30.0												Save As type:
-40.0 -50.0											٦	Up One Level
-60.0											^و	reate New Folder
Cen #Re	ter 2.412 s BW 3.0	25000 GH 0 kHz	z	#VBW	10 kHz			#Swee	Span 3 p 100 s (300.0 kHz 1001 pts)		Cancel
MSG								STATUS				

Product	:	802.11B/G SDIO Module with Antenna Connectors
Test Item	:	Power Density Data
Test Site	:	No.3OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
6	2437.000	-14.044	< 8dBm	Pass

Figure Channel 6:

																A	ept Si	- Sv	yzei	ı Ana	pectrun	lent !	D Ag
Save As	M Jun 23, 2010	09:42:39 P	to Nr	.IGN AU .og-Pv	pe:	/g Ty	Â	-	SE:IN	SEN	ia: Fi		/	:	SH2	0 0	000	65	37	Ω 2. 4	50 Freq	ter	x Cer
Sa) 6 GHz 14 dBm	437 710 -14.04	2.	1kr1	I	grine			dB	30	tten:	#A	`	>30k n:Low	Gai	F	t: RF Bm	Inpi	0.0	ef 24	Re	B/div	10 d
File/Fold																							10.0
File nan				1								2											0.00 10.0
Save . typ			A			N	V	\mathbb{A}	$\left \right\rangle$		\mathbb{N}	\mathbb{N}		\mathbb{N}		\mathbb{V}	M		V	\mathbb{V}	W	N	20.C
🎒 Up O Lev																							0.C
Create N Fole).C
Can	00.0 kHz	Span 3	een	#Sw							kH-	10	BIM	#\/				Hz) G	65Ô	2.437	ter	er Re
			ATUS	STA																			G

Product	:	802.11B/G SDIO Module with Antenna Connectors
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 1: Transmit (802.11b 1Mbps) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
11	2462.00	-16.561	< 8dBm	Pass

Figure Channel 11:

		<u>N0.</u>						iwept SA	n Analyzer - S	ilent Spectrur	D Agi
Save As	M Jun 23, 2010 E 1 2 3 4 5 6	09:49:02 P	ALIGNAUTO	Avg Type	NSE:INT	AC SE	Hz	00000 G	2.4615	ter Freq	₩ Cen
Save	5 7 GHz 51 dBm	161 358 -16.50	Mkr1 2.4	Avg Hold:	≥ Run) dB	#Atten: 3	IO: >30k 🖵 Gain:Low	iBm	Ing ef 20.00 c	B/div R (10 di
File/Folder List											10.0
File name:										_1	0.00 -10.0
Save As type:										ÂΨ	-20.0 -30.0
り Up One Level											-40.0 -50.0
Create New Folder											-60.0
Cancel	00.0 kHz 1001 pts)	Span 3 100 s (#Sweep			10 kHz	#VBW	:	5000 GHz kHz	ter 2.461 s BW 3.0	Cen #Re:
			STATUS				for a star of a second second second				MSG

Draduat		802 11 P/C SDIO Module with Antenna Connectors
Flouuet	•	602.11D/O SDIO MOdule with Antenna Connectors
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2412MHz)

Channel No.	Frequency (MHz)	Measure Level (dBm)	Limit (dBm)	Result
1	2412.00	-18.211	< 8dBm	Pass

Figure Channel 1:

	M.)	00:00:40.0						Swept SA	n Analyzer -	ent Spectrur	D Agil		
Save As	E 1 2 3 4 5 6 E MWWWWW T P N N N N N	TRAC TYP	: Log-Pwr 3/100	Avg Type Avg Hold:	Run	Trig: Fre	Hz NO: >30k 🖵	50000 G	2.4182	er Freq	Cent		
Sav	l 8 GHz 11 dBm	Mkr1 2.418 281 8 GHz iv Ref 20.00 dBm -18.211 dBm											
File/Folde											10.0		
File name				. 1							0.00		
Save A	\sim	\mathcal{M}	\sim	Ŵ	w	wv	~~~~	m	m	$\bigvee \bigvee$	-20.0		
Dip On Lev											-40.0		
Create Ne Folde											60.0		
Canc	100.0 kHz 1001 pts)	Span 3 100 s (1	#Sweep			10 kHz	#VBW	z	2500 GH: kHz	er 2.418 BW 3.0	cent Zent		
			STATUS				40				SG		

Product	:	802.11B/G SDIO Module with Antenna Connectors
Test Item	:	Power Density Data
Test Site	:	No.3OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2437MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
6	2437.000	-19.193	< 8dBm	Pass

Figure Channel 6:

								Swept SA	m Analyzer -	ent Spectr	🗖 Agil
Save As	M Jun 23, 2010	09:25:13 P	ALIGNAUTO	A	NSE:INT	.C SE	μ.	F0000 -	Ω Δ		a
	E 123456 E M WWWW T P N N N N N	TYP	: 1/100	Avg Ho	e Run 0 dB	Trig: Fre #Atten: 3	HZ 10: >30k 😱 Gain:Low	put: RF PI	2.4304	ter Fre	ien
Sa	' 1 GHz 93 dBm	430 437 -19.19	Mkr1 2.					dBm	ef 20.00	3/div F	0 dE
File/Fold											^{og} [
Li						»		-			0.0
											.00
File nam					s	0					0.0
						1					
Save				h	\sim	~~~~	ma		0.00	0 0	D.O
typ	m	$\Lambda_{\Lambda}\Lambda$	MA	V~		- 4	v	m v	vvvv	w.	
	/ •										J.U P
🔺 Up O						-					D.O
Lev											
											0.0
Create No											10
Fold											
								-			D.O
Cano	00.0 kHz	Span 3		1	1			ź	4500 GH	ter 2.43	ent
	1001 pts)	100 s ('	#Sweep			10 kHz	#VBW		kHz	s BW 3.	Res
			STATUS								з

Product	:	802.11B/G SDIO Module with Antenna Connectors
Test Item	:	Power Density Data
Test Site	:	No.3 OATS
Test Mode	:	Mode 2: Transmit (802.11g 6Mbps) (2462MHz)

Channel No.	Frequency (MHz)	Measurement Level (dBm)	Required Limit (dBm)	Result
11	2462.00	-19.585	< 8dBm	Pass

Figure Channel 11:

					2	52		- Swept SA	trum Analyzer	🗊 Agilent Sp
Save As	09:16:10 PM Jun 23, 2010 TRACE 1 2 3 4 5 6		ALIGN AUTO Avg Type: Log-Pwr		SENSE:INT		<u>Hz</u>	100000	eq 2.466	W Center F
Save	Input: RF PN0: >30k Trig: Free Run Avg Hold: 1/100 PETP NNNN IFGain:Low #Atten: 30 dB Mkr1 2.466 044 5 GHz -19.585 dBm -									
File/Folder List						0				10.0
File name:						A	. 1			-10.0
Save As type:	\sim	$\overline{\mathbf{A}}$	Δm	w	\sim	\sim	1 m	\sim	vm	-20.0
Dp One Leve		0								-40.0
Create New Folder										-60.0
Cance	300.0 kHz 1001 pts)	Span 3 100 s (#Sweep			10 kHz	#VBW	Hz	.661000 G 3.0 kHz	Center 2 #Res BW
			STATUS							MSG

9. EMI Reduction Method During Compliance Testing

No modification was made during testing.