

CERTIFICATION TEST REPORT

Report Number.: 12016445-E3V1

- Applicant : BENDIX COMMERCIAL VEHICLE SYSTEMS LLC #2110 – 6900 GRAYBAR ROAD RICHMOND, B. C. V6W 0A5 CANADA
 - FCC ID : NATRXK123716 IC : 3323A-K123716
- Model Numbers : K123716, K138357, K138362, K138367
- EUT Description : 433.92 MHz TRANSCEIVER
- Test Standard(s) : FCC 47 CFR PART 15 SUBPART B INDUSTRY OF CANADA ICES-003 ISSUE 6

Date Of Issue:

March 26, 2018

Prepared by: UL Verification Services Inc. 47173 Benicia Street Fremont, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

Revision History

Rev.	Issue Date	Revisions	Revised By
V1	3/26/2018	Initial Issue	

Page 2 of 19

TABLE OF CONTENTS

1.	ATT	ESTATION OF TEST RESULTS4
2.	TES	T METHODOLOGY
3.	FAC	ILITIES AND ACCREDITATION
4.	CAL	IBRATION AND UNCERTAINTY6
4	4.1.	MEASURING INSTRUMENT CALIBRATION
4	4.2.	SAMPLE CALCULATION
4	4.3.	MEASUREMENT UNCERTAINTY7
5.	EQU	IPMENT UNDER TEST
4	5.1.	DESCRIPTION OF EUT
4	5.2.	TEST CONFIGURATIONS
ł	5.3.	MODE(S) OF OPERATION
4	5.4.	SOFTWARE AND FIRMWARE
ł	5.5.	DETAILS OF TESTED SYSTEM9
7.	MEA	SUREMENT EQUIPMENT12
8.	RAD	IATED EMISSIONS LIMITS AND TEST RESULTS13
ð	8. <i>1.</i> 8.1.1 8.1.2	NEXT GEN ECU
9.	SET	UP PHOTOS

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	BENDIX CVS CANADA INC. 13151 VANIER PLACE #150 RICHMOND, BRITISH COLUMBIA V6V 2J1 CANADA				
EUT DESCRIPTION:	433.92 MHZ TRANSCEIVER	433.92 MHZ TRANSCEIVER			
MODEL NUMBERS:	IODEL NUMBERS: K123716, K138357, K138362, K138367				
SERIAL NUMBER:	0000207, 0000260				
DATE TESTED:	ATE TESTED: NOVEMBER 16 to DECEMBER 09, 2017				
	APPLICABLE STANDARDS				
S	TEST RESULTS				
FCC 47 CFR	PART 15 SUBPART B	Complies			
ICES	S-003 ISSUE 6	Complies			

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 4 of 19

REPORT NO: 12016445-E3V1 FCC ID: NATRXK123716 DATE: MARCH 26, 2018 IC: 3323A-K123716

Reviewed By:

Bobby Bayani Lead Project Engineer UL Verification Service Inc.

Approved & Released For UL Verification Services Inc By:

121

Thu Chan Operations Leader UL Verification Service Inc.

Prepared By:

Jason Qian Test Engineer UL Verification Services Inc.

Page 5 of 19

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2014, ICES-003 Issue 6.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

47173 Benicia Street	47266 Benicia Street
Chamber A(IC: 2324B-1)	Chamber D(IC: 22541-1)
Chamber B(IC: 2324B-2)	Chamber E(IC: 22541-2)
Chamber C(IC: 2324B-3)	Chamber F(IC: 22541-3)
	Chamber G(IC: 22541-4)
	Chamber H(IC: 22541-5)

The above test sites and facilities are covered under FCC Test Firm Registration # 208313.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

Page 6 of 19

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	3.84 dB
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.65 dB
Worst Case Radiated Disturbance, 9KHz to 30 MHz	3.15 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	5.36 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.32 dB
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.45 dB
Worst Case Radiated Disturbance, 26000 to 40000 MHz	5.24 dB

Uncertainty figures are valid to a confidence level of 95%.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP47011 TEL: (510) 771-1000 FAX: (510) 661-0888

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a 433.92MHz transceiver used for Tire Pressure Monitoring Systems.

GENERAL INFORMATION

Highest frequency generated or used by the EUT	433.92 MHz
--	------------

5.2. TEST CONFIGURATIONS

The following configuration was tested:

EUT Configuration	Description			
Power On	The EUT was installed in a typical configuration			

5.3. MODE(S) OF OPERATION

Mode	Description
Normal mode	The EUT was exercised during testing.

5.4. SOFTWARE AND FIRMWARE

The software used in the EUT during testing was CANRXTOOL Test Ver. 9.6.0.2. The firmware installed in the EUT during testing was version 1.63 (Application) and 1.23 (Bootloader) for the Next Gen ECU and 1.12 (Application) and 0.7 (Bootloader) for the Smart Antenna.

Page 8 of 19

5.5. DETAILS OF TESTED SYSTEM

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST						
Description Manufacturer Model Serial Number						
Laptop PC	LENOVO	T410	2921940145			
AC Adapter	LENOVO	ADLX66NCT2A	11S36200293ZZ100392366			
DC Power Supply	SORENSEN	XT 15-4	1319A02780			
USB-Link	NEXIQ	-	73726			

I/O CABLES

I/O CABLE LIST							
Cable	Port	# of	Connector	Cable	Cable	Remarks	
No.		Identical	Туре	Туре	Length		
		Ports					
1	DC	1	DC	Unshielded	1.0m	N/A	
2	SERIAL	1	SERIAL	Unshielded	1.5m	N/A	
3	USB	1	USB	Unshielded	1.0m	N/A	
4	SERIAL	1	SERIAL	Shielded	0.3m	N/A	
5	DC	1	DC	Unshielded	1.2m	N/A	
6	AC	1	AC	Unshielded	1.2m	N/A	
7	AC	1	AC	Unshielded	1.2m	N/A	

TEST SETUP

The EUT was connected to a host Laptop via USB cable. Test software exercised the EUT.

Page 9 of 19

SETUP DIAGRAM FOR NEXT GEN ECU

Page 10 of 19

SETUP DIAGRAM FOR SMART ANTENNA

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 11 of 19

7. MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List							
Description Manufacturer Model ID No. Cal Date Cal							
Spectrum Analyzer	Agilent	N9030A	T908	04/28/17	04/28/18		
Spectrum Analyzer	Agilent	N9030A	T907	01/23/17	01/23/18		
Antenna, Biconolog, 30MHz-1 GHz	Sunol Sciences	JB1	T899	06/15/17	06/15/18		
Antenna, Biconolog, 30MHz-1 GHz	Sunol Sciences	JB1	T130	10/16/17	10/16/18		
Antenna, Horn, 1-18GHz	ETS Lindgren	3117	T863	06/09/17	06/09/18		
Antenna, Horn, 1-18GHz	ETS Lindgren	3117	T862	06/09/17	06/09/18		
RF Preamplifier, 10kHz - 1GHz	Sonoma	310N	T15	02/15/17	02/15/18		
RF Preamplifier, 10kHz - 1GHz	Sonoma	310N	T10	02/15/17	02/15/18		
RF Preamplifier, 1 - 18GHz	Miteq	AFS42-00101800-25-	T492	07/23/17	07/23/18		
		S-42					
RF Preamplifier, 1 - 18GHz	Miteq	AFS42-00101800-25-	T493	06/23/17	06/23/18		
		5-42					

Test Software List					
Description	Manufacturer	Model	Version		
Antenna Port Software	UL	UL RF	Ver 6.2, March 10, 2017		
Radiated Software	UL	UL EMC	Ver 9.5 Apr 26, 2016		

8. RADIATED EMISSIONS LIMITS AND TEST RESULTS

<u>LIMIT</u>

§15.109 (a) Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Limits for radiated disturbance of Class B ITE at measuring distance of 3 m							
Frequency range	Quasi-peak limits						
(MHz)	(dBµV/m)						
30 to 88	40						
88 to 216	43.5						
216 to 960 46							
Above 960 MHz 54							
Note: The lower limit shall apply at the transition frequency.							

TEST PROCEDURE

ANSI C63.4: 2014

The highest frequency generated or used in the EUT is 5.8 GHz therefore the frequency range was investigated from 30 MHz to 40 GHz.

Highest frequency generated or used in the device or on which the device operates or tunes	Upper frequency of measurement range
Bolow 108	1000
100 E00	1000
108-500	2000
500-1000	5000
Above 1000	5 th harmonic of the highest frequency or 40 GHz, whichever is lower

<u>RESULTS</u>

Page 13 of 19

8.1. NEXT GEN ECU

8.1.1. RADIATED EMISSIONS 30 MHz to 1 GHz

Page 14 of 19

HORIZONTAL AND VERTICAL DATA

Trace Markers

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF T130 (dB/m)	Amp/Cbl (dB/m)	Correcte Class B QPk Limit d (dBuV/m) Reading (dBuV/m)		Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
3	70.0029	36.1	Pk	12.1	-26.7	21.5	40	-18.5	0-360	100	V
4	74.254	38.44	Pk	12	-26.7	23.74	40	-16.26	0-360	100	V
1	156.0876	33.13	Pk	16.2	-25.8	23.53	43.52	-19.99	0-360	200	Н
2	277.31	39.01	Pk	17.3	-24.7	31.61	46.02	-14.41	0-360	100	Н
5	297.0126	38	Pk	17.3	-24.6	30.7	46.02	-15.32	0-360	300	V
6	519.7416	35.5	Pk	21.7	-25.3	31.9	46.02	-14.12	0-360	200	V

Pk - Peak detector

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 15 of 19

8.1.2. RADIATED EMISSIONS 1 GHz to 18 GHz

Page 16 of 19

HORIZONTAL AND VERTICAL DATA

Trace Markers

Marker	Frequenc y (GHz)	Meter Reading (dBuV)	Det	AF T862 (dB/m)	Amp/Cbl (dB)	Correcte d Reading dBuV/m	Class B Avg Limit (dBuV/m)	Av(CISPR)Marg in (dB)	Class B Pk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
4	1.312	31.38	Avg	29.5	-33.3	27.58	-	-	-	-	0-360	101	V
1	1.894	30.71	Avg	31	-32.6	29.11	-	-	-	-	0-360	101	Н
5	2.733	31.1	Avg	32.4	-31.4	32.1	-	-	-	-	0-360	101	V
2	3.092	30.01	Avg	32.9	-30.6	32.31	-	-	-	-	0-360	101	Н
6	10.832	23.85	Avg	37.8	-19.6	42.05	-	-	-	-	0-360	101	V
3	13.292	24.12	Avg	39.4	-19.9	43.62	-	-	-	-	0-360	199	Н

Avg - Video bandwidth < Resolution bandwidth

Radiated Emissions

Frequenc y (GHz)	Meter Reading (dBuV)	Det	AF T862 (dB/m)	Amp/Cbl (dB)	Correcte d Reading dBuV/m	Class B Avg Limit (dBuV/m)	Av(CISPR)Marg in (dB)	Class B Pk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
1.313	39.19	Pk	29.5	-33.3	35.39	-	-	74	-38.61	158	150	V
1.313	26.2	Av	29.5	-33.3	22.4	54	-31.6	-	-	158	150	V
1.895	38.11	Pk	31	-32.6	36.51	-	-	74	-37.49	165	159	Н
1.895	24.83	Av	31	-32.6	23.23	54	-30.77	-	-	165	159	Н
2.734	37.54	Pk	32.4	-31.4	38.54	-	-	74	-35.46	142	165	V
2.734	24.72	Av	32.4	-31.4	25.72	54	-28.28	-	-	142	165	V
3.091	37.17	Pk	32.9	-30.6	39.47	-	-	74	-34.53	354	145	Н
3.091	24.39	Av	32.9	-30.6	26.69	54	-27.31	-	-	354	145	Н
10.833	31.47	Pk	37.9	-19.6	49.77	-	-	74	-24.23	28	124	V
10.833	18.74	Av	37.9	-19.6	37.04	54	-16.96	-	-	28	124	V
13.291	31.18	Pk	39.4	-19.8	50.78	-	-	74	-23.22	341	159	Н
13.291	18.86	Av	39.4	-19.8	38.46	54	-15.54	-	-	341	159	Н

Pk - Peak detector

Av - Average detection

Page 17 of 19

9. SETUP PHOTOS

Page 18 of 19

END OF REPORT

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 19 of 19