

FCC CFR47 PART 15 SUBPART B INDUSTRY CANADA RSS-210 ISSUE 7 CLASS II PERMISSIVE CHANGE VERIFICATION TEST REPORT

FOR

433.92 MHz RECEIVER

MODEL NUMBER: 200.0191

FCC ID: NATRX433R-2 IC: 3323104597A

REPORT NUMBER: 07U11313-1, REVISION B

ISSUE DATE: OCTOBER 5, 2007

Prepared for

SMARTIRE SYSTEMS INC. #150 13151 VANIER PLACE RICHMOND, BC V6V2J1, CANADA

Prepared by COMPLIANCE CERTIFICATION SERVICES 47173 BENICIA STREET FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	10/01/07	Initial Issue	T. Chan
В	10/05/07	Corrected IC Certification Number.	S. Radecki

Page 2 of 15

TABLE OF CONTENTS

1.	AT'	TESTATION OF TEST RESULTS	4
2.	TES	ST METHODOLOGY	5
3.	FA	CILITIES AND ACCREDITATION	5
4.	CA	LIBRATION AND UNCERTAINTY	5
4	4.1.	MEASURING INSTRUMENT CALIBRATION	5
4	4.2.	MEASUREMENT UNCERTAINTY	5
5.	EQ	UIPMENT UNDER TEST	6
5	5.1.	DESCRIPTION OF EUT	6
5	5.2.	CLASS II CHANGE DESCRIPTION	6
5	5.3.	PRELIMINARY TEST CONFIGURATIONS	7
5	5.4.	MODE (S) OF OPERATION	7
5	5.5.	MODIFICATIONS	7
5	5.6.	DETAILS OF TESTED SYSTEM	7
6.	TES	ST AND MEASUREMENT EQUIPMENT	9
7.	AP	PLICABLE LIMITS AND TEST RESULTS10	0
7	7.1.	RADIATED EMISSIONS	0
7	7.2.	AC MAINS LINE CONDUCTED EMISSIONS	3
8.	SET	ГИР РНОТОЅ14	4

Page 3 of 15

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	SMARTIRE SYS	STEMS INC.		
	#150 13151 VAN	NIER PLACE		
	RICHMOND, BO	C V6V2J1, CANADA		
EUT DESCRIPTION: 433.92 M		CEIVER		
MODEL NUMBER:	200.0191	200.0191		
SERIAL NUMBER:	191-1-0001507	191-1-0001507		
DATE TESTED: SEPTEMBER		3, 2007		
	APPLICABI	LE STANDARDS		
STANDARD		TEST RESULTS		
FCC PART 15 SUBPART B		NO NON COMPLIANCE NOTED		
RSS-210 Issue 7 Annex 8		No Noiv Com Elance Noted		

Compliance Certification Services, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Tested By:

THU CHAN EMC SUPERVISOR COMPLIANCE CERTIFICATION SERVICES

Chin Pany

CHIN PANG EMC TECHNICIAN COMPLIANCE CERTIFICATION SERVICES

Page 4 of 15

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2003, FCC CFR 47 Part 2, FCC CFR 47 Part 15, and RSS-210 Issue 7.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Radiated Emission, 30 to 200 MHz	+/- 3.3 dB
Radiated Emission, 200 to 1000 MHz	+4.5 / -2.9 dB
Radiated Emission, 1000 to 2000 MHz	+4.5 / -2.9 dB
Radiated Emission, Above 2000 MHz	+/- 4.3 dB
Power Line Conducted Emission	+/- 2.9 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a 433 MHz receiver used in the SmartTire Passenger Car Tire Monitoring System. One of the three versions of the receiver would be installed in a passenger vehicle and used to receive signals from and display the status of the passenger tire pressure sensors installed on the wheels. All three versions of the receiver use an identical receiver board. The Basic Receiver has LED's to display the status while the High End Display and High End Remote Display versions both have an identical LCD Display connected either directly or remotely via a cable to the Basic Receiver. A transmitter/sensor would be installed either on the rim or in place of the valve of each wheel, depending on the model of the transmitter. Each transmitter reports back to the receiver with the pressure status and temperature status, regardless of vehicle movement. If a change in excess of 11b. is detected, the 4-to-6 minute normal cycle transmit interval is interrupted. Instead, the information is transmitted immediately because it is considered a safety issue, as in the case of a punctured tire, and treated accordingly.

The receiver was powered with a 12-volt external power supply connected to the cigarette lighter plug connector.

GENERAL INFORMATION

CHASSIS MATERIAL	PLASTIC
ENCLOSURE MATERIAL	PLASTIC
POWER REQUIREMENTS	12 / 24 VDC
POWERLINE FILTER MANUFACTURER AND MODEL	N/A

5.2. DESCRIPTION OF CLASS II CHANGE

The major change filed under this application is:

(1) The PCB was modified to add additional components

3 capacitors were added for filtering noise on the alarm output lines (C44, C45, C46) 2 resistors were changed to capacitors for additional filtering on these lines (C42, C43)

(2) The Part # (originally 200.0059) has now changed to 200.0191(3) The following components were removed for cost reasons:

(1) Buzz1 (2) R30, R32, R33, Q2, Q8

Page 6 of 15

5.3. PRELIMINARY TEST CONFIGURATIONS

The following configurations were used for testing:

EUT Configuration	Description	
Normal	EUT and Power Supply	

5.4. MODE (S) OF OPERATION

Mode	Description
Normal	Receive mode.

5.5. MODIFICATIONS

No modifications were made during testing.

5.6. DETAILS OF TESTED SYSTEM

TEST SETUP

The EUT is installed in a typical configuration.

Page 7 of 15

TEST SETUP DIAGRAM

Page 8 of 15

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST				
Description	Manufacturer	Model	Serial Number	Cal Due
EMI Receiver, 9 kHz ~ 2.9 GHz	Agilent / HP	8542E	3942A00286	6/12/2008
RF Filter Section	Agilent / HP	85420E	3705A00256	6/12/2008
Antenna, Bilog 30 MHz ~ 2 Ghz	Sunol Sciences	JB1	A121003	11/13/2007
Preamp 30-1000MHz	Sonoma	310N	185623	1/20/2008
Preamplifier, 1 ~ 26.5 GHz	Agilent / HP	8449B	3008A00369	11/1/2007
Spectrum Analyzer 9KHz ~ 26.5 GHz	Agilent / HP	E4407B	US41444322	11/4/2007

Page 9 of 15

7. APPLICABLE LIMITS AND TEST RESULTS

7.1. RADIATED EMISSIONS

TEST PROCEDURE

ANSI C63.4

The highest clock frequency generated or used in the EUT is 433.92 MHz, therefore the frequency range was investigated from 30 MHz to 2 GHz.

<u>LIMIT</u>

IC RSS-210 Clause 2.6

§15.109 (a) Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Limits for radiated disturbance of Class B ITE at measuring distance of 3 m		
Frequency range	Quasi-peak limits	
(MHz)	(dBµV/m)	
30 to 88	40	
88 to 216	43.5	
216 to 960	46	
Above 960 MHz	54	
Note: The lower limit shall apply at the transition frequency.		

RESULTS

No non-compliance noted:

Page 10 of 15

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

Page 11 of 15

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Note: no emission was detected above 1 GHz.

Page 12 of 15

7.2. AC MAINS LINE CONDUCTED EMISSIONS

TEST PROCEDURE

ANSI C63.4

Because product receives its DC power from an automobile or truck this test is not required.

Page 13 of 15

8. SETUP PHOTOS

RADIATED EMISSION

Page 14 of 15

END OF REPORT

Page 15 of 15