APPLICATION
 FOR CERTIFICATION OF A
 SUPERREGENERATIVE RECEIVER
 UNDER CFR TITLE 47, PART 15.109

GRANTEE: SmarTire Systems, Inc.

FCC ID: NATRX355MS

June 24, 1999

Prepared By:

Spectrum Technology, Inc.
209 Dayton Street
Edmonds, WA 98020
425 771-4482

APPLICATION FOR CERTIFICATION
 TABLE OF CONTENTS

Field Strength of Radiated Emissions Discussion Part 15.109(a) 1-2
Antenna Factors and Sample Calculations 3-6
Test Equipment 7

Superregenerative receiver Broadband Emissions Characteristics - Attached Exhibit

TEST: FIELD STRENGTH OF RADIATED EMISSIONS

Grantee: SmartTire Systems, Inc.
FCC ID: NATRX355MS

Setup:

The equipment under test (EUT) was configured and operated in accordance with the applicable provisions of ANSI C63.4-1992, Section 6, 12. Measurements were made in accordance with applicable paragraphs of Section 8.2.2 and 8.2.3, Section 12.1.1.1 Appendix D, Section 12.1.4 and Appendix H3 and H4.

The EUT was placed on a 1 by 1.5 meter table located 40 cm above a 2-meter diameter non-metallic turntable that sits 40 cm above the 15×30 meter ground plane at Spectrum's Open Area Test Site. The bi-conical or log-periodic antenna was mounted on a tower spaced at a three meters distance, and arranged for adjustment in height (1-4 meters) and vertical/horizontal polarization to maximize the emissions levels when combined with turntable rotation of the EUT. The dual ridged guide antenna was mounted on a tripod at one-meter height and adjusted for vertical or horizontal antenna orientation. A HP 8562A spectrum analyzer with a HP 8447F, Option H64 amplifier and a HP 83006A pre-amplifier were used for the peak measuring instrumentation.

Discussion:

No modifications were required prior to the final radiated emissions measurements reported herein.

The EUT is a 355 MHz superregenerative receiver used in the SmartTire Passenger Car Tire Monitoring system. The receiver would be installed in a passenger vehicle and used to receive signals and display status of passenger tire pressure sensors installed on the wheels. A transmitter and sensor would be installed on the rim of each wheel. Each transmitter reports back to the receiver every eighteen seconds with pressure status and once every minute and a half with temperature status while the vehicle is in motion at speeds in excess of ten miles per hour. If a change in excess of 1 lb is detected the 18 second interval is interrupted. The information is transmitted immediately, being considered a safety issue, as in the case of a punctured tire and treated accordingly.

Measurements were made with the EUT receiver operating at its nominal 355 MHz . An IFR signal generator was used to generate a 355 MHz C/W signal to "cohere or help resolve the individual components of the characteristic broadband emissions from the receiver operation, as recommended in Section 12.1.1.1. A plot of the receiver broadband emissions characteristics was made at six inches.

Preliminary measurements were made as described in Section 8.3.11 and 13.1.4.1 with the receiver operating as described. During preliminary measurements only two emissions of significance were detected with the receive antenna in close proximity to the EUT. The low level of the second harmonic and broadband energy observed at six inches was not measureable at 3 meters even with the use of an amplifier.

The EUT configuration is detailed in the photographs included with this report.
The final set of measurements as specified in Section 8.3.1.2 and 13.1.4.2 were made as specified in Section 13.1.1. The receiver was observed while positioned in three mutually orthogonal planes with the horizontal position "on its back antenna parallel to ground plane", the worst case. The EUT 12 VDC power cord and the receivers attached wire antenna were manipulated to different positions endeavoring to maximize the measured levels. The EUT was 12 VDC powered with an Astron VS-35-M power supply during all of the measurements. RBW and VBW of 100 kHz were used for measurements below 1 GHz . Above 1 GHz peak measurements were made with a RBW and VBW of 1 MHz . We also endeavored to maximize levels of the emissions with EUT rotation and adjustment of antenna height.

Measurements were made over the frequency range of $30-5000 \mathrm{MHz}$ with only one emission measurable, the fundamental, at three meters and reported below. A HP 8447F pre-amplifier was used during these measurements.

FCC Part 15.109(b) Field Strength of Radiated Spurious Emissions

 Final Data - Ref. _SMARTIR.R1Grantee: SmarTire Systems, Inc. 03/17/99
FCC ID: NATRX355MS
Radiated Emissions Measurements By Frequency

$\begin{aligned} & \text { Freq. } \\ & \text { MHz } \end{aligned}$	$\begin{aligned} & \text { Vert } \\ & \text { dBm } \end{aligned}$	Horz dBm	Ant-F	$\mathrm{dBuV} / \mathrm{m}$	$u \mathrm{~V} / \mathrm{m}$	$\mathrm{dB}+/-$ Limit	```Limit uV/m @ 3 Meters```
350	-91.33	-94.33	18.3	33.97	49.95	-12.05	200

No receiver antenna conducted emissions measurements were made. The receiver radiated limits were meet with the antenna attached, as it would be normally.

Conclusion:

The SmarTire Systems, Inc., FCC ID: NATRX355MS, when operated and measured as discussed above, meets the receiver radiated spurious emissions requirements under Title 47, CFR Part 15.109(a) and 15.111. This receiver is not subject to the transition provisions of Part 15.37.

ANTENNA FACTORS FOR EMCO 3104 BICONICAL ANTENNA AND EMCO 3146 LOG PERIODIC ANTENNA INCLUDING CONVERSION TO OPEN CIRCUIT VOLTAGE.

Antenna Factor and Field Strength Formula

IF FREQ => 242.5	AND	FREQ $=<245$	THEN ANTF $=15.1$
IF FREQ $=>245$	AND	FREQ $=<247.5$	THEN ANTF $=15.5$
IF FREQ $=>247.5$	AND	FREQ $=<250$	THEN ANTF $=15.7$
IF FREQ $=>250$	AND	FREQ $=<252$	THEN ANTF $=15.9$
IF FREQ $=>252$	AND	FREQ $=<254$	THEN ANTF $=16$
IF FREQ $=>254$	AND	FREQ $=<256$	THEN ANTF $=16.1$
IF FREQ $=>256$	AND	FREQ $=<258$	THEN ANTF $=16.2$
IF FREQ $=>258$	AND	FREQ $=<260$	THEN ANTF $=16.3$
IF FREQ $=>260$	AND	FREQ $=<263.5$	THEN ANTF $=16.4$
IF FREQ => 263.5	AND	FREQ $=<265$	THEN ANTF $=16.4$
IF FREQ => 265	AND	FREQ $=<267.5$	THEN ANTF $=16.6$
IF FREQ $=>267.5$	AND	FREQ $=<271$	THEN ANTF $=16.7$
IF FREQ $=>271$	AND	FREQ $=<274$	THEN ANTF $=16.8$
IF FREQ $=>274$	AND	FREQ $=<276$	THEN ANTF $=16.9$
IF FREQ $=>276$	AND	FREQ $=<278$	THEN ANTF $=17$
IF FREQ $=>278$	AND	FREQ $=<280$	THEN ANTF $=17.1$
IF FREQ $=>280$	AND	FREQ $=<282$	THEN ANTF $=17.3$
IF FREQ $=>282$	AND	FREQ $=<284$	THEN ANTF $=17.6$
IF FREQ $=>284$	AND	FREQ $=<286$	THEN ANTF $=18$
IF FREQ $=>286$	AND	FREQ $=<288$	THEN ANTF $=18.2$
IF FREQ $=>288$	AND	FREQ $=<295$	THEN ANTF $=18.4$
IF FREQ $=>290$	AND	FREQ $=<295$	THEN ANTF $=15.8$
IF FREQ => 295	AND	FREQ $=<305$	THEN ANTF $=18.6$
IF FREQ $=>305$	AND	FREQ $=<310$	THEN ANTF $=18.4$
IF FREQ $=>310$	AND	FREQ $=<311$	THEN ANTF $=18.3$
IF FREQ $=>311$	AND	FREQ $=<312$	THEN ANTF $=18.1$
IF FREQ $=>312$	AND	FREQ $=<313$	THEN ANTF $=18$
IF FREQ $=>313$	AND	FREQ $=<340$	THEN ANTF $=17.9$
IF FREQ $=>340$	AND	FREQ $=<343$	THEN ANTF $=18.1$
IF FREQ $=>343$	AND	FREQ $=<350$	THEN ANTF $=18.2$
IF FREQ $=>350$	AND	FREQ $=<357$	THEN ANTF $=18.3$
IF FREQ => 357	AND	FREQ $=<360$	THEN ANTF $=18.5$
IF FREQ $=>360$	AND	FREQ $=<365$	THEN ANTF $=18.6$
IF FREQ => 365	AND	FREQ $=<375$	THEN ANTF $=18.7$
IF FREQ $=>375$	AND	FREQ $=<378$	THEN ANTF $=19$
IF FREQ $=>378$	AND	FREQ $=<381$	THEN ANTF $=19.1$
IF FREQ $=>381$	AND	FREQ $=<383$	THEN ANTF $=19.2$
IF FREQ $=>383$	AND	FREQ $=<385$	THEN ANTF $=19.3$
IF FREQ $=>385$	AND	FREQ $=<387.5$	THEN ANTF $=19.4$
IF FREQ $=>387.5$	AND	FREQ $=<390$	THEN ANTF $=19.5$
IF FREQ $=>390$	AND	FREQ $=<392$	THEN ANTF $=19.7$
IF FREQ => 392	AND	FREQ $=<394$	THEN ANTF $=18.8$
IF FREQ => 394	AND	FREQ $=<396$	THEN ANTF $=19.9$
IF FREQ => 396	AND	FREQ $=<398$	THEN ANTF $=20$
IF FREQ $=>398$	AND	FREQ $=<402$	THEN ANTF $=20.1$
IF FREQ $=>402$	AND	FREQ $=<405$	THEN ANTF $=20.2$
IF FREQ $=>405$	AND	FREQ $=<410$	THEN ANTF $=20.3$
IF FREQ $=>410$	AND	FREQ $=<415$	THEN ANTF $=20.4$
IF FREQ $=>415$	AND	FREQ $=<420$	THEN ANTF $=20.6$
IF FREQ $=>420$	AND	FREQ $=<425$	THEN ANTF $=20.8$
IF FREQ $=>425$	AND	FREQ $=<430$	THEN ANTF $=21$
IF FREQ $=>430$	AND	FREQ $=<435$	THEN ANTF $=21.2$
IF FREQ $=>435$	AND	FREQ $=<440$	THEN ANTF $=21.3$
IF FREQ $=>440$	AND	FREQ $=<445$	THEN ANTF $=21.4$
IF FREQ $=>445$	AND	FREQ $=<450$	THEN ANTF $=21.5$
IF FREQ $=>450$	AND	FREQ $=<455$	THEN ANTF $=21.6$
IF FREQ $=>455$	AND	FREQ $=<460$	THEN ANTF $=21.8$
IF FREQ $=>460$	AND	FREQ $=<465$	THEN ANTF $=21.9$
IF FREQ $=>465$	AND	FREQ $=<470$	THEN ANTF $=22$
IF FREQ $=>470$	AND	FREQ $=<472.5$	THEN ANTF $=22.1$
IF FREQ $=>472.5$	AND	FREQ $=<475$	THEN ANTF $=22.2$
IF FREQ $=>475$	AND	FREQ $=<477$	THEN ANTF $=22.4$
IF FREQ $=>477$	AND	FREQ $=<478$	THEN ANTF $=22.5$
IF FREQ => 478	AND	FREQ $=<481$	THEN ANTF $=22.6$

IF FREQ $=>481$	AND	FREQ $=<482.5$	THEN ANTF $=22.7$
IF FREQ $=>482.5$	AND	FREQ $=<485$	THEN ANTF $=22.8$
IF FREQ $=>485$	AND	FREQ $=<488$	THEN ANTF $=22.9$
IF FREQ $=>488$	AND	FREQ $=<515$	THEN ANTF $=23.1$
IF FREQ $=>515$	AND	FREQ $=<540$	THEN ANTF $=23.3$
IF FREQ $=>540$	AND	FREQ $=<560$	THEN ANTF $=23.6$
IF FREQ $=>560$	AND	FREQ $=<570$	THEN ANTF $=23.7$
IF FREQ $=>570$	AND	FREQ $=<580$	THEN ANTF $=23.9$
IF FREQ $=>580$	AND	FREQ $=<590$	THEN ANTF $=24$
IF FREQ $=>590$	AND	FREQ $=<610$	THEN ANTF $=24.2$
IF FREQ $=>610$	AND	FREQ $=<615$	THEN ANTF $=24.4$
IF FREQ $=>615$	AND	FREQ $=<620$	THEN ANTF $=24.5$
IF FREQ $=>620$	AND	FREQ $=<625$	THEN ANTF $=24.6$
IF FREQ $=>625$	AND	FREQ $=<630$	THEN ANTF $=24.8$
IF FREQ $=>630$	AND	FREQ $=<635$	THEN ANTF $=24.9$
IF FREQ $=>635$	AND	FREQ $=<640$	THEN ANTF $=25$
IF FREQ $=>640$	AND	FREQ $=<645$	THEN ANTF $=25.1$
IF FREQ $=>645$	AND	FREQ $=<647.5$	THEN ANTF $=25.3$
IF FREQ $=>647.5$	AND	FREQ $=<650$	THEN ANTF $=25.4$
IF FREQ $=>650$	AND	FREQ $=<652.5$	THEN ANTF $=25.6$
IF FREQ $=>652.5$	AND	FREQ $=<655$	THEN ANTF $=25.7$
IF FREQ $=>655$	AND	FREQ $=<660$	THEN ANTF $=25.8$
IF FREQ $=>660$	AND	FREQ $=<665$	THEN ANTF $=26.1$
IF FREQ $=>665$	AND	FREQ $=<670$	THEN ANTF $=26.3$
IF FREQ $=>670$	AND	FREQ $=<680$	THEN ANTF $=26.6$
IF FREQ $=>680$	AND	FREQ $=<690$	THEN ANTF $=26.7$
IF FREQ $=>690$	AND	FREQ $=<720$	THEN ANTF $=26.9$
IF FREQ $=>720$	AND	FREQ $=<760$	THEN ANTF $=26.8$
IF FREQ $=>760$	AND	FREQ $=<800$	THEN ANTF $=27$
IF FREQ $=>800$	AND	FREQ $=<802.5$	THEN ANTF $=27.3$
IF FREQ $=>802.5$	AND	FREQ $=<805$	THEN ANTF $=27.5$
IF FREQ $=>805$	AND	FREQ $=<807.5$	THEN ANTF $=27.6$
IF FREQ $=>807.5$	AND	FREQ $=<810$	THEN ANTF $=27.7$
IF FREQ $=>810$	AND	FREQ $=<815$	THEN ANTF $=27.8$
IF FREQ $=>815$	AND	FREQ $=<820$	THEN ANTF $=27.9$
IF FREQ $=>820$	AND	FREQ $=<840$	THEN ANTF $=28.2$
IF FREQ $=>840$	AND	FREQ $=<860$	THEN ANTF $=28.4$
IF FREQ $=>860$	AND	FREQ $=<870$	THEN ANTF $=28.8$
IF FREQ $=>870$	AND	FREQ $=<880$	THEN ANTF $=29.3$
IF FREQ $=>880$	AND	FREQ $=<890$	THEN ANTF $=29.4$
IF FREQ $=>890$	AND	FREQ $=<910$	THEN ANTF $=29.6$
IF FREQ $=>910$	AND	FREQ $=<920$	THEN ANTF $=29.7$
IF FREQ $=>920$	AND	FREQ $=<930$	THEN ANTF $=29.9$
IF FREQ $=>930$	AND	FREQ $=<940$	THEN ANTF $=30$
IF FREQ $=>940$	AND	FREQ $=<960$	THEN ANTF $=30.2$
IF FREQ $=>960$	AND	FREQ $=<970$	THEN ANTF $=30.6$
IF FREQ $=>970$	AND	FREQ $=<975$	THEN ANTF $=30.8$
IF FREQ $=>975$	AND	FREQ $=<980$	THEN ANTF $=31$
IF FREQ $=>980$	AND	FREQ $=<985$	THEN ANTF $=31.1$
IF FREQ $=>985$	AND	FREQ $=<990$	THEN ANTF $=31.3$
IF FREQ => 990	AND	FREQ $=<1000$	THEN ANTF $=31.4$

\(\left.$$
\begin{array}{lcl}\begin{array}{l}\text { Serial } \\
\text { Number } \\
6225\end{array} & \begin{array}{c}\text { ELECTO-METRICS } \\
\text { GAIN AND ANTENNA FACTORS } \\
\text { MODEL RGA-60 }\end{array} & \begin{array}{c}1 \\
\text { METER }\end{array}
$$

\& \& CALIBRATION\end{array}\right]\)| |
| :--- |
| FREQUENCY |
| MHz |

TEST EQUIPMENT LIST A SPECTRUM TECHNOLOGY, INC.

Equipment	Manufacturer	Serial Number	Cal Dat	e/Due Date
Spectrum Analyzer	Hewlett-Packard 8562A 08562-60062		9/14/98	9/14/99
Amplifier $9 \text { kHz-1300 MHz }$	Hewlett-Packard 8447F 2727A02208 OPT H64		9/14/98	9/14/99
RF Signal Gen.	Fluke 6071A	2915016	8/11/98	5/11/99
Service Monitor	IFR FM/AM 500A	4103	---	
Oscilloscope	Kikusui C055060	6132295	---	
Power Supply	Astron VS35	8601266	---	
Voltmeter	Fluke 8020A	N2420658	---	
Multimeter	Fluke 25	3710310	---	
Wattmeter	Bird 43	56227	---	
RF Termination	Bird 8135	10004	---	
Dual Phase LISN $50 \mathrm{ohm} / 50 \mathrm{uH}$	STI per MP-4	02	1/9/99	1/9/00
Dual Phase LISN 50 ohm/50 uH	Compliance Design	8012-50R-24-BNC	1/9/99	1/9/00
Audio Generator	Hewlett-Packard 205-AG	G 8689	---	
Thermometer	Fluke 52	3965185	---	
Test Line	Simulator, Teltone TLS-2	2 none	---	
Turn Table, RC	EMCO 1060-2M	8912-1415	---	
Antenna Mast, RC	Compliance Design, Inc.	M100	---	
Antennas:				
DiPole Set	EMCO Model: 3121C	1335	9/18/97	3/18/99
Diploe Set	EMCO Model: 3121C	1336	9/18/97	3/18/99
Bi-Conical	EMCO 3104	3763	referenc	ce only
Bi-Conical	EMCO 3104C	9401-4635	1/24/99	1/24/00
Log-Periodic	EMCO 3146	1754	6/15/98	6/15/99
Active Loop	EMCO 6502	9107-2645	reference	ce only

