

MPE Calculation

Applicant: Guillemot Corporation S.A.

Address: Place Du Granier - B.P. 97143, 35571 CHANTEPIE CEDEX, FRANCE

Model No.: Y-400Pt

According to subpart 15.247(i)and subpart §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

Limits for Maximum Permissible Exposure (MPE) (§1.1310, §2.1091)

(B) Limits for General Population/Uncontrolled Exposure					
Frequency Range	Electric Field	Magnetic Field	Power Density	Averaging Time	
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm ²)	(minutes)	
0.3-1.34	614	1.63	*(100)	30	
1.34-30	824/f	2.19/f	*(180/f ²)	30	
30–300	27.5	0.073	0.2	30	
300–1500	/	/	f/1500	30	
1500-100,000	/	/	1.0	30	

f = frequency in MHz; * = Plane-wave equivalent power density;

According to §1.1310 and §2.1091 RF exposure is calculated.

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4\pi R^2 = power density (in appropriate units, e.g. mW/cm^2);$

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data:

Maximum peak output power at antenna input terminal (dBm):	0.07 (CC8530) 0.12 (CC2533)
Maximum peak output power at antenna input terminal (mW):	1.016 (CC8530) 1.028 (CC2533)
Prediction distance (cm):	20
Antenna Gain, typical (dBi):	6.73 (CC8530) 2.66 (CC2533)
Maximum Antenna Gain (numeric):	4.710(CC8530) 1.845(CC2533)
The worst case is power density at predication frequency at 20 cm (mW/cm ²):	0.00095 (CC8530) 0.00038 (CC2533)
MPE limit for general population exposure at prediction frequency (mW/cm²):	1.0

Result: Compliant

Date: 18th July 2013

- TÜV SÜD HONG KONG LTD. -

Prepared by:

Reviewed by:

CHAN Kwong Ngai

Edmond FUNG

Report Number: 60.790.13.023.05A (revision2.0)

TÜV SÜD HONG KONG LTD., 3/F, West Wing, Lakeside 2, 10 Science Park West Avenue, Science Park, Shatin, HK.

Tel: +852-2776 1323 Fax: +852-2776 1206