FCC - TEST REPORT

Report Number	60/790.13.023.01 (Revision 2.0)		Date of Issue:	September 26, 2013
Model	Y-400Pc			
Product Type	Wireless Gaming Headset-controller			
Applicant	Guillemot Corporation S.A.			
Address	Place du Granier, B.P 97143, Chantepie, 35171, France			
Test Result	■ Positive			
Total pages including Appendices	32			

TÜV SÜD Hong Kong Ltd. is a subcontractor to TÜV Product Service, GmbH according to the principles outlined in ISO 17025.
TÜV SÜD Hong Kong Ltd. reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Hong Kong Ltd. shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Hong Kong Ltd. issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.

1. Table of Contents

1. Table of Contents 2
2. Details about the Test Laboratory 3
3. Description of the Equipment Under Test 4
4. Summary of Test Standards 5
5. Summary of Test Results 6
6. General Remarks 7
7. Technical Requirement 8
7.1 Conducted peak output power 8
7.2 Band edge Measurement 10
7.3 Spurious RF conducted emissions 15
7.4 Spurious radiated emissions 19
7.5 6dB bandwidth 23
7.6 Power spectral density 28
8. System Measurement Uncertainty 31
9. Test Equipment List 32

2. Details about the Test Laboratory

Details about the Test Laboratory

Test site 1:

Company name: TÜV SÜD HONG KONG LTD. 3/F, West Wing, Lakeside 2, 10 Science Park West Avenue, Science Park, Shatin HK.

Telephone: 85227761323
Fax:
85227761372
Test site 2:
Company name: Global United Technology Service Co., Ltd.
2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, China

3. Description of the Equipment Under Test

Description of the Equipment Under Test

Product: Wireless Gaming Headset-controller
Model no.: Y-400Pc
Serial number: NIL
Options and accessories: NIL
Rated Voltage: $\quad 3.0 V D C-1 \times$ CR2032 size battery
Rated Current: NIL
Rated Power: NIL
Frequency: NIL
Modulation type: O-QPSK
Antenna gain: $\quad 2.93 \mathrm{dBi}$
RF Transmission
Frequency: $\quad 2425 \mathrm{MHz}-2475 \mathrm{MHz}$
Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.(SHIELD)	S/N(LENGTH)
--	--	--	--

4. Summary of Test Standards

	Test Standards
FCC Part 15 Subpart C, Intentional	PART 15 - RADIO FREQUENCY DEVICES
Radiators, 10-1-12 Edition	Subpart C - Intentional Radiators

5．Summary of Test Results

Technical Requirements					
FCC Part 15 Subpart C					
Test Condition	Pages	Test site	Test Result		
			Pass	Fail	N／A
15．207 Conducted Emission AC Power Port	N／A	N／A	\square	\square	®
15.247 （b）（1）Conducted peak output power	8	Site 2	区	\square	\square
15．247（d）Band edge compliance of RF emissions	10	Site 2	区	\square	\square
15．247（d）Spurious RF conducted emissions	15	Site 2	【	\square	\square
15．247（d）\＆15．209 Spurious radiated emissions for transmitter	19	Site 2	区	\square	\square
15．247（a）（2）6dB bandwidth	23	Site 2	区		\square
15．247（e）Power spectral density	28	Site 2	【	\square	\square

6. General Remarks

Remarks

This submittal(s) (test report) is intended for FCC ID: NAM4160586C complies with Section, 15.209, 15.247 of the FCC Part 15.

All the configurations of the product were tested and only the worst test results listed in the report.

SUMMARY:

All tests according to the regulations cited on page 5 were

■ - Performed
\square - Not Performed

The Equipment Under Test

■ - Fulfills the general approval requirements.
\square - Does not fulfill the general approval requirements.

Sample Received Date:
$21^{\text {st }}$ May 2013
Testing Start Date:
$21^{\text {st }}$ May 2013
Testing End Date:
$30^{\text {th }}$ May 2013

- TÜV SÜD HONG KONG LTD. -

CHAN Kwong Ngai

7. Technical Requirement

7.1 Conducted peak output power

Test Method

The transmitter output connected to the Spectrum analyzer and set to the peak power detection.

Limits for conducted peak output power measurements

Frequency Range $\mathbf{M H z}$	Limit W	Limit dBm
$2400-2483.5$	≤ 1.0	≤ 30.0

Conducted peak output power

Date of test : $21^{\text {st }}$ May 2013
Remarks : NIL

Type	Channel		
	2425 MHz	2450 MHz	2475 MHz
O-QPSK	-0.96 dBm	-1.28 dBm	-0.025 dBm

7.2 Band edge Measurement

Test Method

The band edge compliance of RF radiated emission should be measured by following the guidance in ANSI C63.4 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW and VBW to 1MHz to measure the peak field strength and set RBW to 1 MHz and VBW to 10 Hz to measure the average radiated field strength.
The conducted RF band edge was measured by using a spectrum analyzer. Set span wide enough to capture the highest in-band emission and the emission at the band edge. Set RBW and VBW to 100 kHz , to measure the conducted peak band edge.

Limits

According to $\S 15.247(\mathrm{~d})$, in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in $\S 15.205(\mathrm{a})$, must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

Frequency $\mathbf{M H z}$	Limit Average $\mathrm{dBuV} / \mathbf{m}$	Limit Peak $\mathrm{dBuV} / \mathbf{m}$
Below 2390 Above 2483.5	54	74

Band edge Measurement

Date of test : $21^{\text {st }}$ May 2013
Remarks
: NIL

Test Result
\boxtimes Passed
\square Not Passed

Conducted measurement

Frequency (MHz)	Reading (dBm)	Limit $(-20 \mathrm{dBc})$	Margin (dB)
2400.000	-62.5	-21.77	-40.73
2425.050	-1.77	-	-

Band edge Measurement

Date of test : $21^{\text {st }}$ May 2013
Remarks
: NIL

Test Result
\boxtimes Passed
\square Not Passed

Conducted measurement

Frequency (MHz)	Reading (dBm)	Limit $(-20 \mathrm{dBc})$	Margin (dB)
2474.672	-1.92	-	-
2483.500	-61.1	-21.92	-39.18

Band edge Measurement

Date of test : $21^{\text {st }}$ May 2013
Remarks
: NIL

Test Result
\boxtimes Passed
\square Not Passed

Radiated measurement

Frequency (MHz)	Reading $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Limit $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Margin (dB)	Detector
2400.000	57.7	74.0	-16.3	PK
2400.000	45.7	54.0	-8.3	AV

Band edge Measurement

Date of test : $21^{\text {st }}$ May 2013
Remarks
: NIL

Test Result
\boxtimes Passed
\square Not Passed

Radiated measurement

Frequency (MHz)	Reading $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Limit $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Margin (dB)	Detector
2483.500	58.1	74.0	-15.9	PK
2483.500	46.4	54.0	-7.6	AV

7.3 Spurious RF conducted emissions

Test Method

The transmitter output is connected to the Spectrum analyzer. The Spectrum analyzer is set to the peak power detection.
Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The resolution bandwidth(RBW) and the video bandwidth (VBW) of the spectrum analyzer were respectively set to 100 kHz and 100 kHz .

Limit

Frequency Range $\mathbf{M H z}$	Limit (dBc)
$1000-25000$	-20

Spurious RF conducted emissions

Date of test	$: 23^{\text {rd }}$ May 2013
Channel	$: 2425 \mathrm{MHz}$
Remark	$: \quad$ NIL

$\langle\stackrel{s}{s}$	Ref 10	dBm		* Att 20	dB	$\begin{array}{ccc} \text { * RBW } & 10 \\ \text { VBW } & 30 \\ \text { SWT } & 3 \end{array}$	$\begin{aligned} & 100 \mathrm{kHz} \\ & 300 \mathrm{kHz} \\ & 3 \mathrm{~s} \end{aligned}$	Marker 4.	$\begin{array}{r} 2[\mathrm{~T} 1] \\ -53 . \\ .8252000 \end{array}$.45 dBm 000 GHz	
	10							Marker		$\begin{aligned} & 55 \mathrm{dBm} \\ & 0 \\ & \hline \end{aligned}$	A
$\frac{1 \mathrm{PK}}{\mathrm{mAXH}}$											
	$-10 \longrightarrow$										
											DB
		Town	noweminp	parenerorn	\int_{n}	prohara	quarmar	Hnomer	Mown	Noncos	
	-80										
	\square										

Spurious RF conducted emissions

Date of test	$: 23^{\text {rd }}$ May 2013
Channel	$: 2450 \mathrm{MHz}$
Remark	$:$ NIL

Test Result
\boxtimes Passed
\square Not Passed

Remark : NIL

Spurious RF conducted emissions

Date of test	$: 23^{\text {rd }}$ May 2013
Channel	$: 2475 \mathrm{MHz}$
Remark	$:$ NIL

Test Result
\boxtimes Passed
\square Not Passed

Remark : NIL

7.4 Spurious radiated emissions

Test Method

1 The EUT is placed on a turntable, which is 0.8 m above ground plane.
2 The turntable shall be rotated for 360 degrees to determine the position of maximum emission level
3 EUT is set 3 m away from the receiving antenna, which is varied from 1 m to 4 m to find out the highest emissions.
4 Maximum procedure was performed on the six highest emissions to ensure EUT compliance. 5 Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

Limit

Frequency $\mathbf{M H z}$	Field Strength $\mathbf{u V} / \mathbf{m}$	Field Strength $\mathbf{d B} \boldsymbol{\mathbf { V } / \mathbf { m }}$	Detector
$30-88$	100	40	QP
$88-216$	150	43.5	QP
$216-960$	200	46	QP
$960-1000$	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

Spurious radiated emissions

Date of test	$:$	$21^{\text {st }}$ May 2013		
Operating mode	$:$	Transmitter mode		Test Result
:---				
\square Passed				
\square Not Passed				

Frequency : 2425 MHz
Remark : NIL

Frequency (MHz)	Polarity $(\mathrm{H} / \mathrm{V})$	Read Level $(\mathrm{dB} \mu \mathrm{V})$	Corr. (dB)	Result $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Limit $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Margin (dB)	Detector
48.332	V	36.27	-13.52	22.75	40.00	-17.25	QP
${ }^{*} 133.151$	V	38.45	-18.49	19.96	43.50	-23.54	QP
434.065	V	37.69	-11.64	26.05	46.00	-19.95	QP
2425.000	V	98.74	-0.53	98.21	$/$	$/$	PK
2425.000	V	90.15	-0.53	89.62	$/$	$/$	Ave.
${ }^{*} 4850.000$	V	58.88	0.35	59.23	74.00	-14.77	PK
${ }^{*} 4850.000$	V	50.63	0.35	50.98	54.00	-3.02	Ave.

Frequency (MHz)	Polarity $(\mathrm{H} / \mathrm{V})$	Read Level $(\mathrm{dB} \mu \mathrm{V})$	Corr. (dB)	Result $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Limit $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Margin (dB)	Detector
48.332	H	33.43	-13.52	19.91	40.00	-20.09	QP
79.800	H	35.66	-19.94	15.72	40.00	-24.28	QP
434.065	H	43.00	-11.64	31.36	46.00	-14.64	QP
2425.000	H	96.51	-0.53	95.98	$/$	$/$	PK
2425.000	H	88.43	-0.53	87.9	$/$	$/$	Ave.
${ }^{*} 4850.000$	H	55.30	0.35	55.65	74.00	-18.35	PK
${ }^{*} 4850.000$	H	49.68	0.35	50.03	54.00	-3.97	Ave.

"*" means the emission(s) appear within the restricted bands shall follow the requirement of section 15.205.

Spurious radiated emissions

Date of test : $21^{\text {st }}$ May 2013
Operating mode : Transmitter mode

Frequency : 2450 MHz
Remark : NIL

Frequency (MHz)	Polarity $(\mathrm{H} / \mathrm{V})$	Read Level $(\mathrm{dB} \mu \mathrm{V})$	Corr. (dB)	Result $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Limit $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Margin (dB)	Detector
33.680	V	38.13	-13.37	24.76	40.00	-15.24	QP
48.332	V	36.09	-13.52	22.57	40.00	-17.43	QP
72.592	V	38.25	-20.36	17.89	40.00	-22.11	QP
${ }^{*} 133.151$	V	38.42	-18.49	19.93	43.50	-23.57	QP
2450.000	V	99.30	-2.89	96.41	$/$	$/$	PK
2450.000	V	91.55	-2.89	88.66	$/$	$/$	Ave.
${ }^{*} 4900.000$	V	59.81	0.46	60.27	74.00	-13.73	PK
${ }^{*} 4900.000$	V	50.53	0.46	50.99	54.00	-3.01	Ave.

Frequency (MHz)	Polarity $(\mathrm{H} / \mathrm{V})$	Read Level $(\mathrm{dB} \mu \mathrm{V})$	Corr. (dB)	Result $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Limit $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Margin (dB)	Detector
48.332	H	32.25	-13.52	18.73	40.00	-21.27	QP
${ }^{*} 110.957$	H	31.87	-15.76	16.11	43.50	-27.39	QP
2450.000	H	94.85	-2.89	91.96	$/$	$/$	PK
2450.000	H	85.34	-2.89	82.45	$/$	$/$	Ave.
${ }^{*} 4900.000$	H	53.71	0.46	54.17	74.00	-19.83	PK
${ }^{*} 4900.000$	H	48.26	0.46	48.72	54.00	-5.28	Ave.

"*" means the emission(s) appear within the restricted bands shall follow the requirement of section 15.205 .

Spurious radiated emissions

Date of test : $21^{\text {st }}$ May 2013
Operating mode : Transmitter mode

Frequency : 2475 MHz
Remark : NIL

Frequency (MHz)	Polarity $(\mathrm{H} / \mathrm{V})$	Read Level $(\mathrm{dB} \mu \mathrm{V})$	Corr. (dB)	Result $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Limit $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Margin (dB)	Detector
48.332	V	36.08	-13.52	22.56	40.00	-17.44	QP
106.385	V	34.86	-15.36	19.50	43.50	-24.00	QP
${ }^{*} 133.151$	V	38.11	-18.49	19.62	43.50	-23.88	QP
176.888	V	33.79	-15.07	18.72	43.50	-24.78	QP
2475.000	V	97.97	-2.89	95.08	$/$	$/$	PK
2475.000	V	91.55	-2.89	88.66	$/$	$/$	Ave.
${ }^{*} 4950.000$	V	57.98	0.65	58.63	74.00	-15.37	PK
${ }^{*} 4950.000$	V	50.15	0.65	50.80	54.00	-3.2	Ave.

Frequency (MHz)	Polarity $(\mathrm{H} / \mathrm{V})$	Read Level $(\mathrm{dB} \mu \mathrm{V})$	Corr. (dB)	Result $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Limit $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	Margin (dB)	Detector
48.332	H	32.15	-13.52	18.63	40.00	-21.37	QP
${ }^{*} 110.182$	H	32.43	-15.58	16.85	43.50	-26.65	QP
351.708	H	36.35	-12.29	24.06	46.00	-21.94	QP
2475.000	H	98.50	-2.89	95.61	$/$	$/$	PK
2475.000	H	90.44	-2.89	87.55	$/$	$/$	Ave.
${ }^{*} 4950.000$	H	58.63	0.65	59.28	74.00	-14.72	PK
${ }^{*} 4950.000$	H	50.11	0.65	50.76	54.00	-3.24	Ave.

"*" means the emission(s) appear within the restricted bands shall follow the requirement of section 15.205.

7.5 6dB bandwidth

Test Method

1 Place the EUT on the table and set it in the transmitting mode.
2 Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
3 Mark the peak frequency and 6dB (upper and lower) frequency.

Limit

Limit [kHz]

≥ 500

6dB bandwidth

6 dB bandwidth test result

Bandwidth $\mathbf{M H z}$	Result
1.62	Pass

Remark : NIL

6dB bandwidth

6 dB bandwidth test result

Bandwidth $\mathbf{M H z}$	Result
1.70	Pass

Remark : NIL

6dB bandwidth

6 dB bandwidth test result

Bandwidth MHz	Result
1.64	Pass

Remark : NIL

6dB bandwidth

Test Equipment

Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Due date (mm-dd-yy)
BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	May 242014
Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	May 242014
EMI Test Software	AUDIX	E3	N/A	N/A
Coaxial Cable	CCIS	N/A	CCIS0016	May 312013
Coaxial Cable	CCIS	N/A	CCIS0017	May 312013
Coaxial cable	CCIS	N/A	CCIS0018	May 312013
Coaxial Cable	CCIS	N/A	CCIS0019	May 312013
Coaxial Cable	CCIS	N/A	CCIS0087	May 312013
Amplifier(10kHz-1.3GHz)	HP	8447D	CCIS0003	May 312013
Amplifier(1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	Jun 082014
Pre-amplifier (18-26GHz)	Rohde \& Schwarz	$\begin{aligned} & \text { AFS33-18002 } \\ & \text { 650-30-8P-44 } \end{aligned}$	GTS218	May 312013
Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 292014
Positioning Controller	UC	UC3000	CCIS0015	N/A
Spectrum analyzer $9 \mathrm{k}-30 \mathrm{GHz}$	Rohde \& Schwarz	FSP	CCIS0023	May. 282014
Loop antenna	Laplace instrument	RF300	EMC0701	Aug. 112014
EMI Test Receiver	Rohde \& Schwarz	ESPI	CCIS0022	May 242014
Spectrum Analyzer	Agilent	E4440A	US	Jan. 102014

7.6 Power spectral density

Test Method

1 Place the EUT on the table and set it in transmitting mode. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer. 2 Set the spectrum analyzer as RBW $=3 \mathrm{kHz}$, VBW $=10 \mathrm{kHz}$, Span $=300 \mathrm{kHz}$, Sweep $=500 \mathrm{~s}$ 3 Record the max reading.

Limit

Limit
dBm / 3kHz
8

Power spectral density

Test result

Frequency $(\mathbf{M H z})$	Power spectral density $(\mathbf{d B m})$	Result
2425	-13.3	Pass
2450	-13.5	Pass
2475	-13.7	Pass

Power spectral density

8. System Measurement Uncertainty

For a 95\% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertainty

Items		Extended Uncertainty
RE	Field strength $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$	$\mathrm{U}=5.12 \mathrm{~dB}(30 \mathrm{MHz}-1 \mathrm{GHz})$
CE	Disturbance Voltage $(\mathrm{dB} \mu \mathrm{V})$	$\mathrm{U}=4.63 \mathrm{~dB}(1 \mathrm{GHz}-6 \mathrm{GHz})$

9. Test Equipment List

Test Equipment

Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Due date (mm-dd-yy)
BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	May 242014
Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	May 242014
EMI Test Software	AUDIX	E3	N/A	N/A
Coaxial Cable	CCIS	N/A	CCIS0016	May 312013
Coaxial Cable	CCIS	N/A	CCIS0017	May 312013
Coaxial cable	CCIS	N/A	CCIS0018	May 312013
Coaxial Cable	CCIS	N/A	CCIS0019	May 312013
Coaxial Cable	CCIS	N/A	CCIS0087	May 312013
Amplifier(10kHz-1.3GHz)	HP	8447D	CCIS0003	May 312013
Amplifier(1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	Jun 082014
Pre-amplifier (18-26GHz)	Rohde \& Schwarz	$\begin{aligned} & \text { AFS33-18002 } \\ & 650-30-8 P-44 \end{aligned}$	GTS218	May 312013
Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 292014
Positioning Controller	UC	UC3000	CCIS0015	N/A
Spectrum analyzer $9 k-30 \mathrm{GHz}$	Rohde \& Schwarz	FSP	CCIS0023	May. 282014
Loop antenna	Laplace instrument	RF300	EMC0701	Aug. 112014
EMI Test Receiver	Rohde \& Schwarz	ESPI	CCIS0022	May 242014
Spectrum Analyzer	Agilent	E4440A	US	Jan. 102014

