

849 NW STATE ROAD 45

NEWBERRY, FL 32669 USA

PH: 888.472.2424 OR 352.472.5500

FAX: 352.472.2030

EMAIL: info@timcoengr.com

HTTP://WWW.TIMCOENGR.COM

FCC TEST REPORT PART 15.231

APPLICANT	AUTOSTART				
ADDRESS	5764 PARE				
	MONTREAL, QUEBEC H4P 2M2				
	CANADA				
FCC ID	NAHAS2501				
MODEL NUMBER	AS2501				
PRODUCT DESCRIPTION	REMOTE CONTROL TRANSMITTER				
DATE SAMPLE RECEIVED	AUGUST 2, 2006				
DATE TESTED	AUGUST 16, 2006				
TESTED BY	JOSEPH SCOGLIO				
APPROVED BY	Y MARIO DE ARANZETA				
TIMCO REPORT NO.	2284UT6TestReport.doc				
TEST RESULTS	□ FAIL				
TOTAL PAGES	14				

THE ATTACHED REPORT SHALL NOT BE REPRODUCED EXCEPT IN FULL WITHOUT THE WRITTEN APPROVAL OF TIMCO ENGINEERING, INC.

TABLE OF CONTENTS

GENERAL INFORMATION	3
COMPLIANCE WITH PART 15.231(a)	4
EMC EQUIPMENT LIST	5
TEST PROCEDURE	6
RADIATION INTERFERENCE	7
CALCULATION OF DUTY CYCLE	9
OCCUPIED BANDWIDTH	L3

APPLICANT: AUTOSTART

GENERAL INFORMATION

EUT Specification

The test results relate only to the items tested.				
FCC ID NAHAS2501				
Product Description	ion REMOTE CONTROL TRANSMITTER			
Operating Frequency	433.92 MHz			
EUT Power	Battery Powered Only			
Test Item	☐ Prototype			
	☐ Pre-Production			
	☐ Production			
Type of Equipment	☐ Fixed			
	☐ Mobile			
	□ Portable			

Test standards

FCC Part 15, Subpart C, IC RSS-210, ANSI C63.4 - 2003

Test Facility

All tests are carried out at Timco Engineering Inc. at $849~\mathrm{NW}$ State Road $45~\mathrm{Newberry}$, FL 32669.

APPLICANT: AUTOSTART FCC ID: NAHAS2501

COMPLIANCE WITH PART 15.231(a)

Part 15.231(a):
• Continuous operation: Yes No_X
• Control signal only: Yes_X_ No
• Data transmission with a control signal Yes No_XN/A
Description of control signal: CAR ALARM(notes: indicate whether such
info is included in supporting exhibit such as operation description page
xx)
Part 15.231(a)(1):
Manually operated device: Yes X No
Does it meet the 5s deactivation requirement after the switch is being
released: Yes No
Description:(notes: a plot showing the pulse train does not
necessarily constitute an objective evidence of compliance with the
deactivation requirement. A plot should be accompanied by an explanation
and/or statement of compliance, if not otherwise clearly stated in supporting
documentation e.g. operation description page xx)
Part 15.231(a)(2):
• Automatically operated device: Yes No_X
 Does it meet the 5s deactivation requirement after being activated:
Yes No
Description:(notes: a plot showing the pulse train does not
necessarily constitute an objective evidence of compliance with the
deactivation requirement. A plot should be accompanied by an explanation
and/or statement of compliance, if not otherwise clearly stated in supporting documentation e.g. operation description page xx)
documentation e.g. operation description page xx)
Part 15.231(a)(3):
$ullet$ Periodic transmission at regular predetermined intervals: Yes No_X N/A
Description: MANUAL OPERATION
• Polling or supervision transmissions, including data, to check system
integrity check requires a total transmission time not exceeding 2s per
hour:
Yes No_X N/A
Part 15.231(a)(4):
Operation involving fire, security, or safety of life, when activated to
signal an alarm, may operate during the pendency of the alarm condition.
Does the transmitter meet the above condition? Yes_X NoN/A

APPLICANT: AUTOSTART

EMC EQUIPMENT LIST

Device	Manufacturer	Model	Serial Number	Cal/Char Date	Due Date
3-Meter OATS	TEI	N/A	N/A	Listed 1/11/06	1/10/09
3/10-Meter	TEI	N/A	N/A	Listed 3/27/04	3/26/07
OATS		0.000	•4•0 + 0 == 0 <	~ · · · · · · · · · · ·	4.4-10-
Analyzer Tan	HP	8566B Opt 462	3138A07786	CAL 12/7/05	12/7/07
Tower			3144A20661		
Spectrum					
Analyzer	IID	05/05 4	2221 4 01 400	CAT 12/5/05	12/5/05
Analyzer Tan Tower RF	HP	85685A	3221A01400	CAL 12/7/05	12/7/07
Preselector					
	HP	85650A	3303A01690	CAL 12/8/05	12/8/07
Analyzer Tan Tower Quasi-	nr	05050A	3303A01090	CAL 12/8/05	12/8/07
Peak Adapter					
Analyzer Tan	HP	8449B-H02	3008A00372	CAL 12/8/05	12/8/07
Tower	111	0447D-1102	3000A00372	CAL 12/0/03	12/0/07
Preamplifier					
Analyzer Blue	HP	8568B	2928A04729	CAL 4/13/05	4/13/07
Tower	111	0500 D	2848A18049	C/111 4/15/05	4/15/07
Spectrum			2040/110042		
Analyzer					
Analyzer Blue	HP	85685A	2926A00983	CAL 9/5/05	9/5/07
Tower RF		000011	_>_01100>00	0.122 > / 0 / 00	3,0,0,
Preselector					
Analyzer Blue	HP	85650A	2811A01279	CAL 4/13/05	4/13/07
Tower Quasi-					
Peak Adapter					
Analyzer Silver	HP	8566B Opt 462	3552A22064	CAL 12/8/04	12/8/06
Tower		•	3638A08608		
Spectrum					
Analyzer					
Analyzer Silver	HP	85685A	2620A00294	CAL 4/27/04	12/8/06
Tower RF					
Preselector					
Analyzer Silver	HP	85650A	3303A01844	CAL 12/8/04	12/8/06
Tower Quasi-					
Peak Adapter					
Analyzer Open-	HP	8449B	3008A01075	CAL 8/8/05	8/8/07
Frame Tower					
Preamplifier					
Antenna:	Electro-Metrics	BIA-25	1171	CAL 4/29/05	4/29/07
Biconnical	- .		1005	G. T. G. 1 = 10.4	0.47
Antenna:	Eaton	94455-1	1096	CAL 8/17/04	8/17/06
Biconnical	T	04455 4	10==	OAT 484810F	40/40/07
Antenna:	Eaton	94455-1	1057	CAL 12/12/05	12/12/07
Biconnical					

APPLICANT: AUTOSTART

TEST PROCEDURE

RADIATION INTERFERENCE: The test procedure used was ANSI STANDARD C63.4-2003 using a HEWLETT PACKARD spectrum analyzer with a preselector. The bandwidth of the spectrum analyzer was 100 kHz with an appropriate sweep speed. The analyzer was calibrated in dB above a microvolt at the output of the antenna. The resolution bandwidth was 100 kHz and the video bandwidth was 300 kHz. The ambient temperature of the UUT was 98.3°F with a humidity of 40%.

FORMULA OF CONVERSION FACTORS: The Field Strength at 3m was established by adding the meter reading of the spectrum analyzer (which is set to read in units of dBuV) to the antenna correction factor supplied by the antenna manufacturer. The antenna correction factors are stated in terms of dB. The gain of the Preselector was accounted for in the Spectrum Analyzer Meter Reading.

Example:

Freq (MHz) METER READING + ACF = FS 33 20 dBuV + 10.36 dB = 30.36 dBuV/m @ 3m

ANSI STANDARD C63.4-2003 10.1.7 MEASUREMENT PROCEDURES: The UUT was placed on a table 80 cm high and with dimensions of 1m by 1.5m. The UUT was placed in the center of the table. The table used for radiated measurements is capable of continuous rotation. The spectrum was scanned from 30 MHz to 10th harmonic of the fundamental.

Peak readings were taken in three (3) orthogonal planes and the highest readings were converted to average readings based on the duration of "ON" time.

When an emission was found, the table was rotated to produce the maximum signal strength. At this point, the antenna was raised and lowered from 1m to 4m. The antenna was placed in both the horizontal and vertical planes.

APPLICANT: AUTOSTART FCC ID: NAHAS2501

RADIATION INTERFERENCE

RULES PART NO.: 15.231

REQUIREMENTS:

Fundamental Frequency (MHz)	Field Strength of Fundamental (dBµV)	Field Strength of Harmonics and Spurious Emissions (dBµV/m @ 3m)		
40.66 to 40.70	67.04	47.04		
70 to 130	61.94	41.94		
130 to 174	61.94 to 71.48	41.94 to 51.48		
174 to 260	71.48	51.48		
260 to 470	71.48 to 81.94	51.48 to 61.94		
470 and above	81.94	61.94		

The limit for average field strength dbuv/m for the fundamental frequency = $80.83~\mathrm{dB}\mu\mathrm{v/m}$. No fundamental is allowed in the restricted bands.

The limit for average field strength dbuv/m for the harmonics and spurious frequencies = $60.83~dB\mu\nu/m$. Spurious in the restricted bands must be less than $54~dB\mu\nu/m$ or 15.209.

TEST DATA:

Emission Frequency MHz	*	Meter Reading dBuV	Ant. Pol	Coax Loss dB	Correction Factor dB	Duty Cycle Factor dB	Field Strength dBuV/m	Margin dB
433.90		56.2	\mathbf{V}	3.24	16.40	11.20	64.64	16.19
433.90		61.7	H	3.24	16.76	11.20	70.50	10.33
867.90		8.4	\mathbf{V}	4.87	22.48	11.20	24.55	36.28
867.90		17.2	H	4.87	22.86	11.20	33.73	27.10
1,301.70	**	14.3	\mathbf{V}	1.35	28.00	11.20	32.45	21.55
1,301.70	**	15.2	H	1.35	28.00	11.20	33.35	20.65
1,735.80		15.4	H	1.57	29.70	11.20	35.47	25.36
1,735.80		15.5	\mathbf{V}	1.57	29.70	11.20	35.57	25.26
2,169.70		7.1	H	1.77	31.94	11.20	29.61	31.22
2,169.70		7.8	\mathbf{V}	1.77	31.94	11.20	30.31	30.52
2,603.70		8.5	H	1.94	32.77	11.20	32.01	28.82
2,603.70		10.0	\mathbf{V}	1.94	32.77	11.20	33.51	27.32
3,037.60		8.7	H	2.11	33.39	11.20	33.00	27.83
3,037.60		10.1	\mathbf{V}	2.11	33.39	11.20	34.40	26.43
3,471.60		3.0	\mathbf{V}	2.24	33.31	11.20	27.35	33.48
3,471.60		6.0	H	2.24	33.31	11.20	30.35	30.48

^{** -}DENOTES RESTRICTED BANDS.

APPLICANT: AUTOSTART FCC ID: NAHAS2501

Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

- 1) for the band 130-174 MHz, uV/m at 3 meters = 56.81818(F)-6136.3636;
- 2) for the band 260-470 MHz, uV/m at 3 meters = 41.6667(F)-7083.3333.

Emissions attenuated more than $20~\mathrm{dB}$ below the permissible value are not reported.

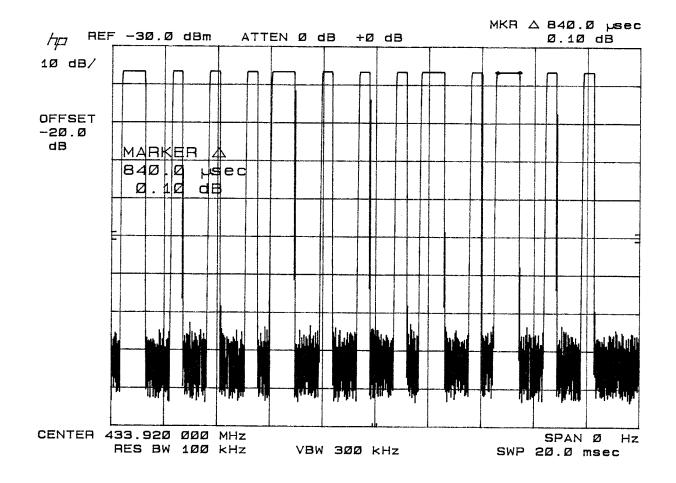
Sample Calculation of Limit @ 433.92 MHz:

41.6667 (433.92) - 7083.3333 = 10,995.85 uV/m $20\log(10,995.85) = 80.82 \text{ dBuV/m limit @ } 433.92 \text{ MHz}$

APPLICANT: AUTOSTART FCC ID: NAHAS2501

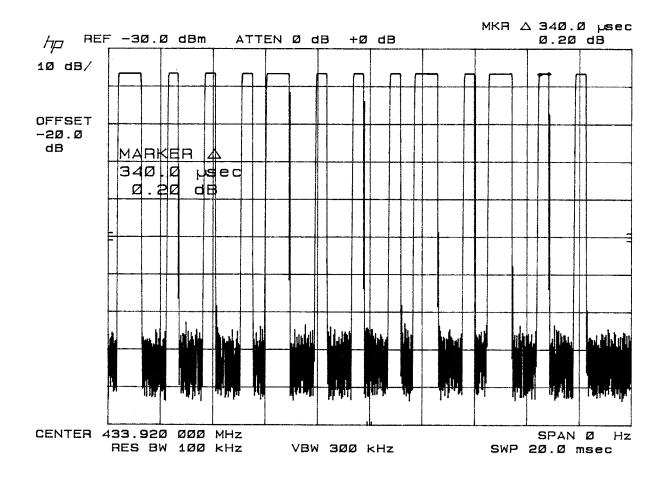
CALCULATION OF DUTY CYCLE

The period of the pulse train is determined by observing it on an oscilloscope or a spectrum analyzer with zero (0) frequency span. A plot is then made of the pulse train with a sweep time of 100 milliseconds. This sweep determines the duration of the pulse train, which in this case is millisecond. This sweep allows the determination of the number of and type of pulses, i.e. long & short. Plots are then made showing the duration of each type of pulse and its duration. From the 100 millisecond Plot, the number of a given type of pulse is then multiplied by the duration of that type pulse. This allows the calculation of the amount of time the UUT is on within 100 ms. If the pulse train is longer than 100 ms then this number is multiplied by 100 to determine the percentage ON TIME. If the pulse train is less than 100 ms the total on time is divided by the length of the pulse train and then multiplied by 100 to determine the percentage ON TIME. In this case there were 23 short pulses .340 mS long and 16 long pulses .840 ms long for a total of 21.26 ms ON TIME within a 77.6 ms pulse train. The average field strength is determined by multiplying the peak field strength by the percent on time.

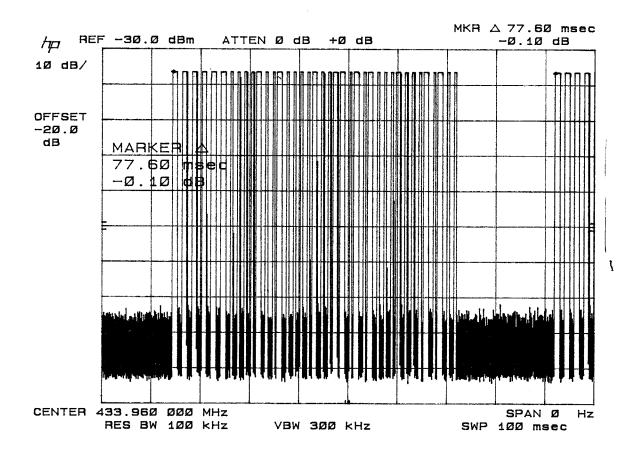

dB = 20*log(ON TIME)/PERIOD dB = 20*log(21.26/77.6) dB = 20*log(.27396907)

dB = -11.24

APPLICANT: AUTOSTART FCC ID: NAHAS2501


DUTY CYCLE PLOT - LONG PULSES

APPLICANT: AUTOSTART


DUTY CYCLE PLOT - SHORT PULSES

APPLICANT: AUTOSTART

DUTY CYCLE PLOT

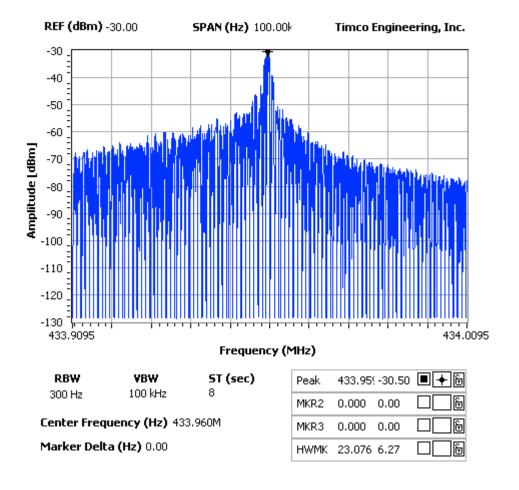
APPLICANT: AUTOSTART FCC ID: NAHAS2501

OCCUPIED BANDWIDTH

Rules Part No.: 15.231(C)

Requirements: The bandwidth of the emission shall be no wider than .25% of the center frequency for devices operating between 70 and 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.

Method Of Measurement: A small sample of the transmitter output was fed into the spectrum analyzer and the following plot was generated. The vertical scale is set to 10 dB per division.


Test Data: The following plot represents the emissions taken for the device.

APPLICANT: AUTOSTART FCC ID: NAHAS2501

OCCUPIED BANDWIDTH PLOT

NOTES: 2284ut6 occupied bandwidth

APPLICANT: AUTOSTART FCC ID: NAHAS2501