APPLICATION CERTIFICATION On Behalf of Smart Technologies & Investment Ltd.

DOOR/WINDOW SENSOR Model No.: WS102

FCC ID: N9KSMARTWS102G25

Prepared for Address	:	Smart Technologies & Investment Ltd. Units C & D, 18/F Spectrum Tower, No.53 Hung To Road, Kwun Tong, Kowloon, Hong Kong
Prepared by Address	:	ACCURATE TECHNOLOGY CO., LTD F1, Bldg. A, Changyuan New Material Port, Keyuan Rd. Science & Industry Park, Nanshan, Shenzhen, Guangdong P.R. China
		Tel: (0755) 26503290 Fax: (0755) 26503396

Report Number	:	ATE20120731
Date of Test	:	April 15-23, 2012
		A 102 0010

Date of Test	:	April 15-23, 2012
Date of Report	:	April 23, 2012

TABLE OF CONTENTS

Description

Test Report Certification	
1. GENERAL INFORMATION	4
	4
L	5
1.3. Measurement Uncertainty	5
2. MEASURING DEVICE AND TEST EQ	QUIPMENT6
3. SUMMARY OF TEST RESULTS	7
4. THE FIELD STRENGTH OF RADIAT	ION EMISSION8
4.1. Block Diagram of Test Setup	8
	n Measurement Limits
4.3. Configuration of EUT on Measurement.	ç
	ç
4.6. The Field Strength of Radiation Emission	1 Measurement Results11
5. 20DB OCCUPIED BANDWIDTH	
	ding To FCC Part 15 Section 15.231(c)
	14
e	
5.6. Measurement Result	
6. RELEASE TIME MEASUREMENT	
	o FCC Part 15 Section 15.231(a)
7. AVERAGE FACTOR MEASUREMEN	T
	o ANSI 63.4: 200319
e	
1 0	
-	
1	

APPENDIX I (TEST CURVES) (10 pages)

Page

Test Report Certification

Applicant	:	Smart Technologies & Investment Ltd.
Manufacturer	:	Smart Electronic Industrial (Dong Guan) Co., Ltd.
EUT Description	:	DOOR/WINDOW SENSOR
		(A) MODEL NO.: WS102
		(B) SERIAL NO.: N/A
		(C) POWER SUPPLY: DC 3V ("AAA battery" 2×)

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.231 ANSI 63.4: 2003

The device described above is tested by ACCURATE TECHNOLOGY CO., LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.231. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO., LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO., LTD.

Date of Test :

Prepared by :

April 15-23, 2012

(Engineer)

Approved & Authorized Signer :

(Manager)

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT Model Number	:	DOOR/WINDOW SENSOR WS102
Power Supply	:	DC 3V ("AAA battery" 2×)
Operation Frequency	:	433.92MHz
Applicant Address	:	Smart Technologies & Investment Ltd. Units C & D, 18/F Spectrum Tower, No.53 Hung To Road, Kwun Tong, Kowloon, Hong Kong
Manufacturer Address	:	Smart Electronic Industrial (Dong Guan) Co., Ltd. Qing Long Road, Long Jian Tian-Cun, Huang Jiang-zhen, Dongguan, Guangdong, China
Date of sample received	:	April 15, 2012
Date of Test	:	April 15-23, 2012

1.2.Description of Test Facility

EMC Lab	:	Accredited by TUV Rheinland Shenzhen
		Listed by FCC The Registration Number is 752051
		Listed by Industry Canada The Registration Number is 5077A-2
		Accredited by China National Accreditation Committee for Laboratories The Certificate Registration Number is L3193
Name of Firm Site Location	:	ACCURATE TECHNOLOGY CO., LTD F1, Bldg. A, Changyuan New Material Port, Keyuan Rd. Science & Industry Park, Nanshan, Shenzhen, Guangdong P.R. China

1.3.Measurement Uncertainty

Conducted Emission Expanded Uncertainty	=	2.23dB, k=2
Radiated emission expanded uncertainty (9kHz-30MHz)	=	3.08dB, k=2
Radiated emission expanded uncertainty (30MHz-1000MHz)	=	4.42dB, k=2
Radiated emission expanded uncertainty (Above 1GHz)	=	4.06dB, k=2

2. MEASURING DEVICE AND TEST EQUIPMENT

Kind of equipment	Manufacturer	Туре	S/N	Calibrated date	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 8, 2012	Jan. 7, 2013
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 8, 2012	Jan. 7, 2013
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 8, 2012	Jan. 7, 2013
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 8, 2012	Jan. 7, 2013
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 8, 2012	Jan. 7, 2013
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 8, 2012	Jan. 7, 2013
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 8, 2012	Jan. 7, 2013
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 8, 2012	Jan. 7, 2013
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 8, 2012	Jan. 7, 2013
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 8, 2012	Jan. 7, 2013

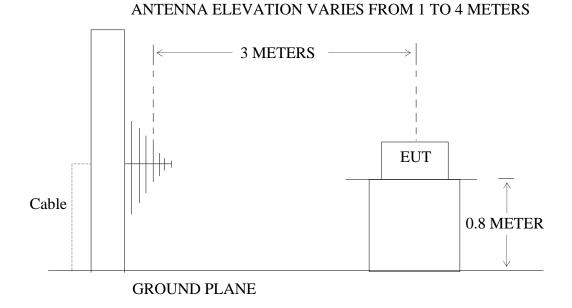
Table 1: List of Test and Measurement Equipment

3. SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
Section 15.207	Conducted Emission	N/A
Section 15.231(b)	Radiated Emission	Compliant
Section 15.231(c)	20dB Bandwidth	Compliant
Section 15.231(a)(1)	Release Time Measurement	Compliant
Section 15.203	Antenna Requirement	Compliant

The product is a manually operated Remote Control transmitter. Section 15.231 (a) (2), (3), (4) and (5) are not applicable.

4. THE FIELD STRENGTH OF RADIATION EMISSION


4.1.Block Diagram of Test Setup

4.1.1.Block diagram of connection between the EUT and simulators

(EUT: DOOR/WINDOW SENSOR)

4.1.2.Semi-Anechoic Chamber Test Setup Diagram

(EUT: DOOR/WINDOW SENSOR)

4.2. The Field Strength of Radiation Emission Measurement Limits

Frequency Range of Fundamental [MHz]	Field Strength of Fundamental Emission [Average] [µV/m]	Field Strength of Spurious Emission [Average] [µV/m]
40.66-40.70	2250	225
70-130	1250	125
130-174	1250-3750	125-375
174-260	3750	375
260-470	3750-12500	375-1250
Above 470	12500	1250

4.2.1.Radiation Emission Measurement Limits According to FCC Part 15 Section 15.231(b)

Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz, uV/m at 3 meters = 56.81818(F) - 6136.3636; for the band 260-470 MHz, uV/m at 3 meters = 41.6667(F) - 7083.3333. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.

4.2.2. Restricted Band Radiation Emission Measurement Limits According to FCC part 15 Section 15.205 and Section15.209.

4.3.Configuration of EUT on Measurement

The following equipment is installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

4.3.1. DOOR/WINDOW SENSOR (EUT)

Model Number	:	WS102
Serial Number	:	N/A
Manufacturer	:	Smart Electronic Industrial (Dong Guan) Co., Ltd.

4.4.Operating Condition of EUT

4.4.1.Setup the EUT and simulator as shown as Section 4.1.

4.4.2.Turn on the power of all equipment.

4.4.3. Let the EUT work in TX mode measure it.

4.5.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate WS102 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI 63.4 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

The bandwidth of test receiver is set at 120 kHz in 30-1000 MHz, and 1 MHz in 1000-5000 MHz.

The frequency range from 30 MHz to 5000 MHz is checked.

4.6. The Field Strength of Radiation Emission Measurement Results **PASS.**

The frequency range 30MHz to 5000MHz is investigated.

Date of Test:	April 20, 2012	Temperature:	25°C
EUT:	DOOR/WINDOW SENSOR	Humidity:	50%
Model No.:	WS102	Power Supply:	DC 3V
Test Mode:	TX	Test Engineer:	Pei

Frequency (MHz)	Reading (dBµV/m)	Factor Corr.	Average Factor	Result(o	lBμV/m)	Limit(o	dBµV/m)	Margi	n(dB)	Polarization
	PEAK	(dB)	(dB)	AV	PEAK	AV	PEAK	AV	PEAK	
433.9200	60.99	22.95	-4.48	79.46	83.94	80.8	100.8	-1.34	-16.86	
866.5300	22.13	28.63	-4.48	46.28	50.76	60.8	80.8	-14.52	-30.04	
1299.795	64.70	-12.20	-4.48	48.02	52.50	60.8	80.8	-12.78	-28.30	
1733.080	60.45	-10.39	-4.48	45.58	50.06	60.8	80.8	-15.22	-30.74	Horizontal
2166.327	54.71	-8.41	-4.48	41.82	46.30	60.8	80.8	-18.98	-34.50	
2599.606	50.71	-6.72	-4.48	39.51	43.99	60.8	80.8	-21.29	-36.81	
433.9200	59.50	22.95	-4.48	77.97	82.54	80.8	100.8	-2.83	-18.35	
866.5300	20.15	28.63	-4.48	44.30	48.78	60.8	80.8	-16.50	-32.02	
1299.795	64.54	-12.20	-4.48	47.86	52.34	60.8	80.8	-12.94	-28.46	
1733.080	60.74	-10.39	-4.48	45.87	50.35	60.8	80.8	-14.93	-30.45	Vertical
2166.327	57.33	-8.41	-4.48	44.44	48.92	60.8	80.8	-16.36	-31.88	
2599.606	53.09	-6.72	-4.48	41.89	46.37	60.8	80.8	-18.91	-34.43	

Note:

- 1. Emissions attenuated more than 20 dB below the permissible value are not reported.
- 2. *: Denotes restricted band of operation.

Measurements were made using a peak detector and average detector. Any emission falling within the restricted bands of FCC Part 15 Section 15.205 were compliance with the emission limit of FCC Part 15 Section 15.209.

3. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows:

Result = Reading + Corrected Factor

Where Corrected Factor = Antenna Factor + Cable Loss + High Pass Filter Loss - Amplifier Gain

- 4. FCC Limit for Average Measurement = $41.6667(433.92)-7083.3333 = 10996.68116 \,\mu\text{V/m} = 80.8 \,d\text{B}\mu\text{V/m}$
- 5. Pulse Desensitization Correction Factor

Pulse Width (PW) = 21.97ms

1/PW = 1/21.97ms = 0.04552 kHz

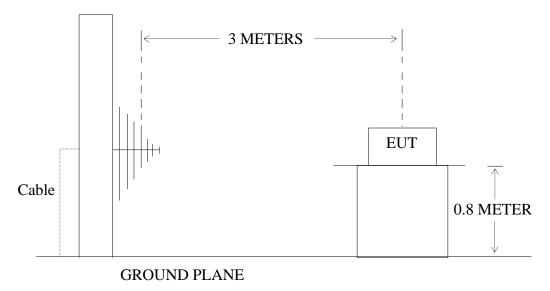
RBW (100 kHz) > 1/PW (0.04552 kHz)

Therefore PDCF is not needed

6. The spectral diagrams in appendix I display the measurement of peak values.

5. 20DB OCCUPIED BANDWIDTH

5.1.Block Diagram of Test Setup


5.1.1.Block diagram of connection between the EUT and simulators

(EUT: DOOR/WINDOW SENSOR)

5.1.2.Semi-Anechoic Chamber Test Setup Diagram

ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS

(EUT: DOOR/WINDOW SENSOR)

5.2. The Bandwidth of Emission Limit According To FCC Part 15 Section

15.231(c)

The bandwidth of emission shall be no wider than 0.25% of the center frequency. Therefore, the bandwidth of the emission limit is 433.92 MHz \times 0.25% = 1084.80 kHz. Bandwidth is determined at the two points 20 dB down from the top of modulated carrier.

5.3.EUT Configuration on Measurement

The following equipment are installed on the bandwidth of emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.3.1.DOOR/WINDOW SENSOR (EUT)

Model Number	:	WS102
Serial Number	:	N/A
Manufacturer	:	Smart Electronic Industrial (Dong Guan) Co., Ltd.

5.4. Operating Condition of EUT

5.4.1.Setup the EUT and simulator as shown as Section 5.1.

5.4.2.Turn on the power of all equipment.

5.4.3.Let the EUT work in TX mode measure it.

5.5.Test Procedure

- 5.5.1.Set SPA Center Frequency = Fundamental frequency, RBW = 10 kHz, VBW = 30 kHz, Span = 500 kHz.
- 5.5.2.Set SPA Max hold, Mark peak, -20 dB.

5.6.Measurement Result

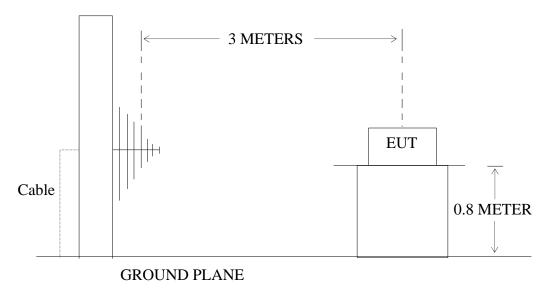
The EUT does meet the FCC requirement.

-20 dB bandwidth = 66.00 kHz <1084.80 kHz.

The spectral diagrams in appendix I.

6. RELEASE TIME MEASUREMENT

6.1.Block Diagram of Test Setup


6.1.1.Block diagram of connection between the EUT and simulators

(EUT: DOOR/WINDOW SENSOR)

6.1.2.Semi-Anechoic Chamber Test Setup Diagram

ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS

(EUT: DOOR/WINDOW SENSOR)

6.2. Release Time Measurement According To FCC Part 15 Section 15.231(a)

Section 15.231(a) (1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

6.3.EUT Configuration on Measurement

The following equipment are installed on Release Time Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.3.1. DOOR/WINDOW SENSOR (EUT)

Model Number	:	WS102
Serial Number	:	N/A
Manufacturer	:	Smart Electronic Industrial (Dong Guan) Co., Ltd.

6.4. Operating Condition of EUT

6.4.1.Setup the EUT and simulator as shown as Section 6.1.

6.4.2.Turn on the power of all equipment.

6.4.3.Let the EUT work in TX mode measure it.

6.5.Test Procedure

6.5.1.Set SPA Center Frequency = Fundamental frequency, RBW = 100 kHz, VBW = 300 kHz, Span = 0 Hz. Sweep time = 5 s.

6.5.2.Set EUT as normal operation and press Transmitter button.

6.5.3.Set SPA View. Delta Mark time.

6.6. Measurement Result

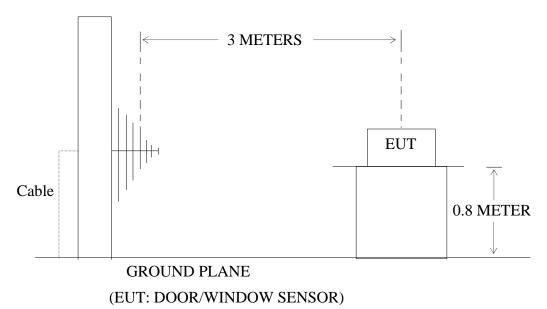
The release time less than 5 seconds.

Release Time= 2.73s

The spectral diagrams in appendix I.

7. AVERAGE FACTOR MEASUREMENT

7.1.Block Diagram of Test Setup


7.1.1.Block diagram of connection between the EUT and simulators

(EUT: DOOR/WINDOW SENSOR)

7.1.2.Semi-Anechoic Chamber Test Setup Diagram

ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS

7.2. Average factor Measurement according to ANSI 63.4: 2003

ANSI 63.4: 2003 Section 13.1.4.2 Devices transmitting pulsed emissions and subject to a limit requiring an average detector function for radiated emissions shall initially be measured with an instrument that uses a peak detector. A radiated emission measured with a peak detector may then be corrected to a true average using the appropriate factor for emission duty cycle. This correction factor relates the measured peak level to the average limit and is derived by averaging absolute field strength over one complete pulse train that is 0.1 s, or less, in length. If the pulse train is longer than 0.1 s, the average shall be determined from the average absolute field strength during the 0.1 s interval in which the field strength is at a maximum. Instructions on calculating the duty cycle of a transmitter with pulsed emissions are provided in ANSI 63.4 H.4, step j.

Average factor in dB = 20 log (duty cycle)

7.3.EUT Configuration on Measurement

The following equipment are installed on average factor Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.3.1. DOOR/WINDOW SENSOR (EUT)

Model Number	:	WS102
Serial Number	:	N/A
Manufacturer	:	Smart Electronic Industrial (Dong Guan) Co., Ltd.

7.4. Operating Condition of EUT

7.4.1.Setup the EUT and simulator as shown as Section 7.1.

7.4.2.Turn on the power of all equipment.

7.4.3.Let the EUT work in TX mode measure it.

7.5.Test Procedure

- 7.5.1.The time period over which the duty cycle is measured is 100 milliseconds, or the repetition cycle, whichever is a shorter time frame. The worst case (highest percentage on) duty cycle is used for the calculation.
- 7.5.2.Set SPA Center Frequency = Fundamental frequency, RBW = 100 kHz, VBW = 300 kHz, Span = 0 Hz.
- 7.5.3.Set EUT as normal operation.
- 7.5.4.Set SPA View. Delta Mark time.

7.6. Measurement Result

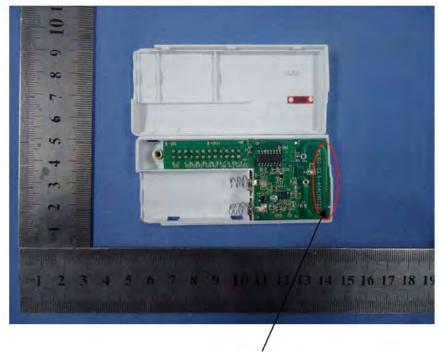
The duty cycle is simply the on time divided by the period:

The duration of one cycle = 36.80 msEffective period of the cycle = $(0.51 \times 17) + (0.95 \times 14) \text{ms} = 21.97 \text{ ms}$

DC = 21.97 ms/36.80 ms = 0.597

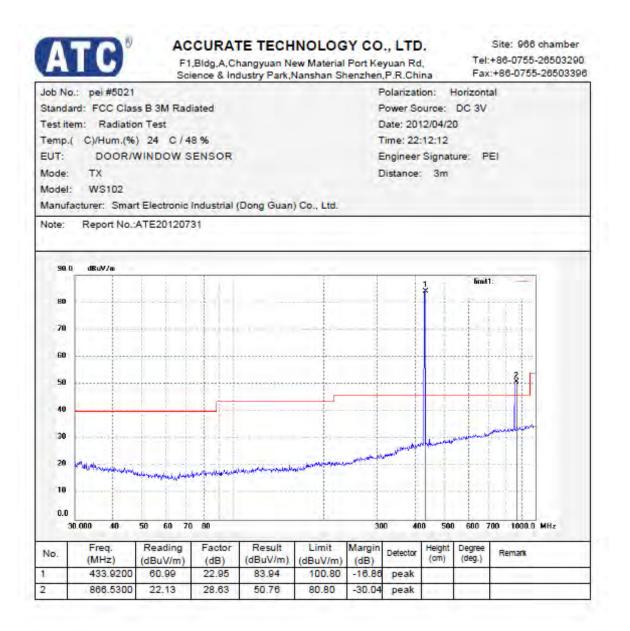
Therefore, the average factor is found by 20log0.597 = -4.48dB

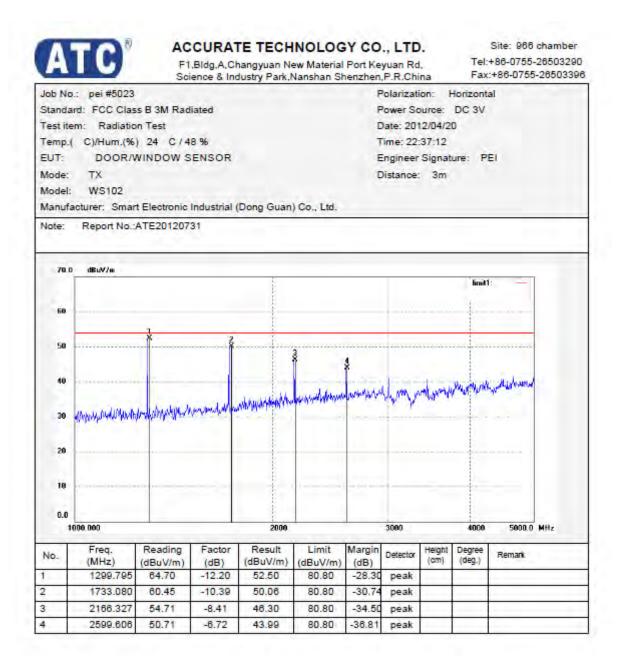
The spectral diagrams in appendix I.

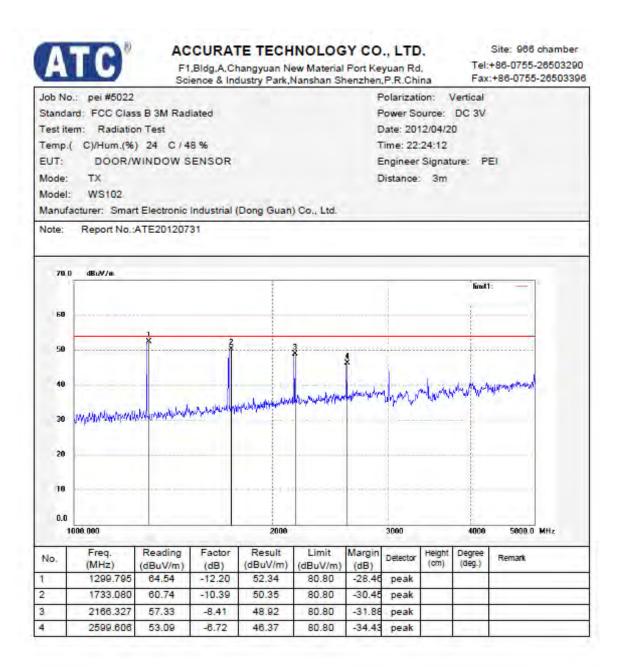

8. ANTENNA REQUIREMENT

8.1. The Requirement

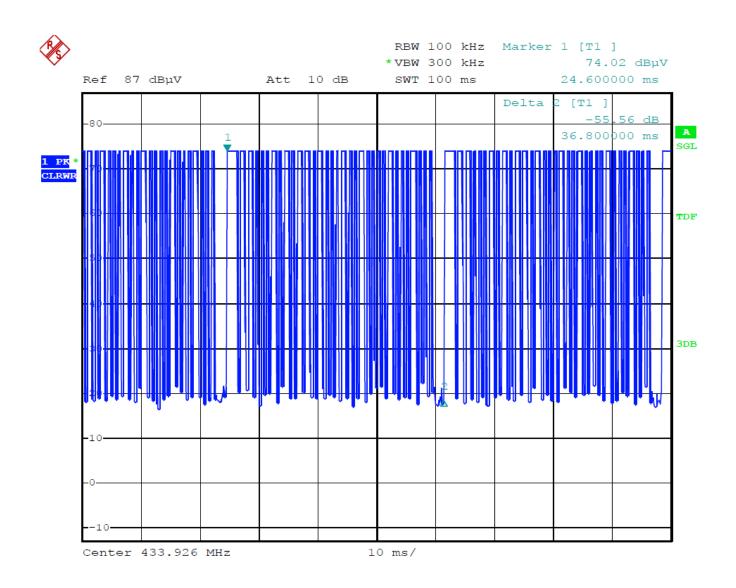
According to Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

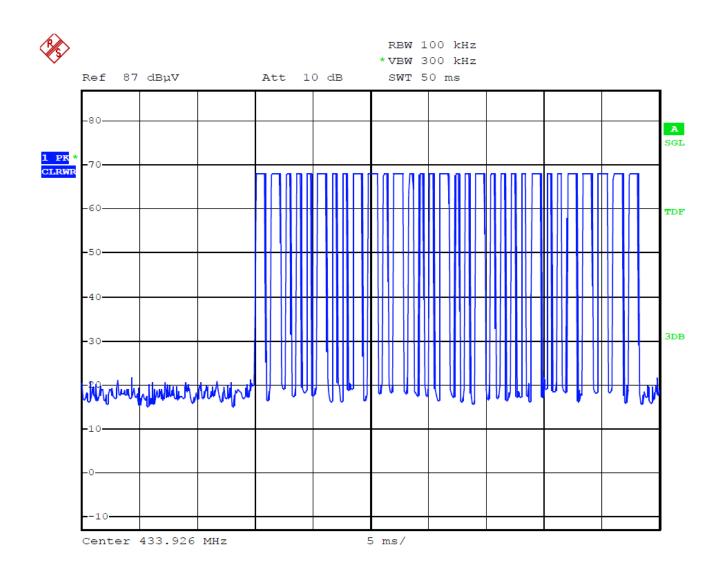

8.2. Antenna Construction


Device is equipped with unique antenna, which isn't displaced by other antenna. Therefore, the equipment complies with the antenna requirement of Section 15.203.

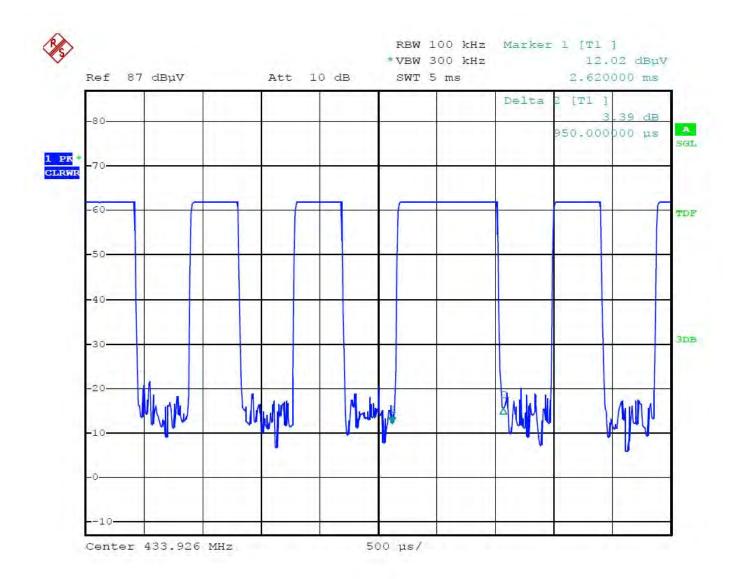

ANT

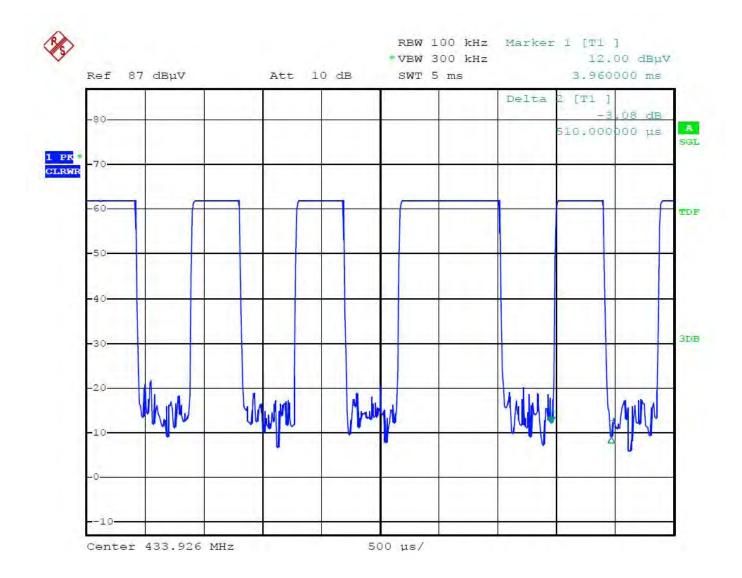
APPENDIX I (Test Curves)





Ref 87 dBµV	Att 10 dB	*SWT 5 ms	22.00000000 kH
	z (Marker 1 [TI] 74.02 dBp
-80		*	433.926000000 MH Delta 2 [T1]
-70			-44.00000000 kH
-60	2/	3	
-50-D1 53.9 dBp			
	and the second		
An Marken Marken	www.	formen	manare
30	-		- Marine - M
-20			
-10			
		_	
-0			
-10-			


Ref 87 dBµV	Att 10 dB	*VBW 300 kHz SWT 5 s	1.22 2.730510
			Marker 1 [T1]
-80			733.960000
-70			
-60			
-50			
-40			
-30			
wyhumaunt			
ninghabertalt			Millham Mahard manuful
-10-			
-0			


The graph shows the pattern of coding during the signal transmission. The duration of one cycle = 36.8 ms.

The graph shows the pattern of coding during the signal transmission.

The graph shows the duration of 'on' signal. From marker 1 to marker 2, duration is 0.95 ms.

The graph shows the duration of 'on' signal. From marker 1 to marker 2, duration is 0.51 ms.