

REPORT OF MEASUREMENTS
PART 15C - INTENTIONAL RADIATOR

DEVICE: REMOTE CAR ALARM STARTER (Remote)

MODEL: COMPUSTAR SHF 2W (Remote)

MANUFACTURER: FIRSTTECH, INC.

ADDRESS: 230 EAST POTTER SUITE 8
ANCHORAGE AK 99518

THE DATA CONTAINED IN THIS REPORT WAS
COLLECTED ON 29 SEPTEMBER 1998 AND COMPILED BY:

PAUL G. SLAVENS
CHIEF EMC ENGINEER

WORK ORDER: 10601

1. GENERAL.....	4
1.1 PURPOSE.....	4
1.2 MANUFACTURER	4
1.3 TEST LOCATION	4
1.4 TEST PERSONNEL.....	4
2. TEST RESULTS SUMMARY.....	5
3. DESCRIPTION OF EQUIPMENT AND PERIPHERALS	6
3.1 EQUIPMENT UNDER TEST (EUT)	6
3.2 EUT PERIPHERALS	6
3.3 DESCRIPTION OF INTERFACE CABLES.....	6
3.4 MODE OF OPERATION DURING TESTS.....	6
3.5 MODIFICATIONS REQUIRED FOR COMPLIANCE.....	6
4. ANTENNA REQUIREMENT	7
4.1 REGULATION.....	7
4.2 RESULT.....	7
5. CONDUCTED EMISSIONS TESTS	8
5.1 TEST EQUIPMENT.....	8
5.2 PURPOSE.....	8
5.3 TEST PROCEDURES	8
5.4 TEST RESULTS	8
6. PERIODIC OPERATION	9
6.1 REGULATION.....	9
6.2 RESULT.....	9
7. MANUALLY OPERATED TRANSMITTER DEACTIVATION	10
7.1 REGULATION.....	10
7.2 RESULT.....	10
8. AUTOMATICALLY OPERATED TRANSMITTER DEACTIVATION.....	11
8.1 REGULATION.....	11
8.2 RESULT.....	11
9. PROHIBITION OF PERIODIC TRANSMISSION.....	12
9.1 REGULATION.....	12
9.2 RESULT.....	12
10. CONTINUOUS TRANSMISSION DURING AN ALARM CONDITION.....	13
10.1 REGULATION.....	13
10.2 RESULT.....	13
11. RADIATED SPURIOUS EMISSIONS	14
11.1 REGULATION.....	14
11.2 TEST EQUIPMENT.....	15
11.3 TEST PROCEDURES	16
11.4 CALCULATION OF FIELD STRENGTH LIMITS	16
11.5 CALCULATION OF AVERAGE CORRECTION FACTOR	16
11.6 TEST RESULTS	17
12. 20 DB BANDWIDTH	18
12.1 REGULATION.....	18

12.2	TEST EQUIPMENT.....	18
12.3	CALCULATION OF 20 DB BANDWIDTH AND RESULT	18
13.	RECEIVER VERIFICATION.....	19
13.1	REGULATION.....	19
13.2	TEST EQUIPMENT.....	19
13.3	TEST PROCEDURES	20
13.4	TEST RESULTS	20
14.	MISCELLANEOUS COMMENTS AND NOTES.....	21

1. General

1.1 Purpose

The purpose of this report is to show compliance to the FCC regulations for unlicensed devices operating under section 15.231 of the Code of Federal Regulations title 47.

1.2 Manufacturer

Company Name: Firstech, Inc.
Contact: Jason Lee, President
Street Address: 230 East Potter Street Suite 8
City/State/Zip: Anchorage AK 99518
Telephone: 907 563-8648
Fax: 907 563-8642

1.3 Test location

Company: Acme Testing Inc.
Street Address: 2002 Valley Highway
Mailing Address: PO Box 3
City/State/Zip: Acme WA 98220-0003
Laboratory: Test Site 2
Telephone: 888 226-3837
Fax: 360 595-2722
E-mail: acmetest@acmetesting.com
Web: www.acmetesting.com

1.4 Test Personnel

Paul G. Slavens, Chief EMC Engineer

2. Test Results Summary

Summary of Test Results
Remote Car Alarm Starter, model CompuStar SHF 2W (Remote)

Requirement	CFR Section	Test Result
Antenna Requirement	15.203	Pass
Radiated Spurs < 15.209	15.205(b)	Pass
Conducted Emissions < 48.0 dBuV	15.207	Pass
Periodic Operation Characteristics	15.231(a)	Pass
Field Strength Limits	15.231(b)	Pass
20 dB Bandwidth	15.231(c)	Pass

The signed original of this report, supplied to the client, represents the only “official” copy. Retention of any additional copies (electronic or non-electronic media) is at Acme Testing’s discretion to meet internal requirements only. The client has made the determination that EUT Condition, Characterization, and Mode of Operation are representative of production units, and meet the requirements of the specifications referenced herein.

The measurements contained in this report were made in accordance with the procedure ANSI C63.4 - 1992 and all applicable Public Notices received prior to the date of testing. All emissions from the device were found to be within the limits outlined in this report. Acme Testing assumes responsibility only for the accuracy and completeness of this data as it pertains to the sample tested.

Paul G. Slavens
Chief EMC Engineer

Date of Issuance

3. Description of Equipment and Peripherals

3.1 Equipment Under Test (EUT)

Device: Remote Car Alarm Starter (Remote)
Model Number: CompuStar SHF 2W
Serial Number: None
FCC ID: None
Power: 1.5 Vdc
Grounding: Local
Antenna Distance: 3 meter

3.2 EUT Peripherals

Not applicable, the EUT is a stand-alone device.

3.3 Description of Interface Cables

Not applicable, the EUT is a stand-alone device.

3.4 Mode of Operation During Tests

The EUT was exercised by constantly transmitting.

3.5 Modifications Required for Compliance

1. None.

4. Antenna requirement

4.1 Regulation

15.203 An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of Part 15C. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

4.2 Result

The antenna is permanently attached to the equipment. There is no antenna connector.

5. Conducted Emissions Tests

Test Requirement: FCC CFR47, Part 15C

Test Procedure: ANSI C63.4:1992

5.1 Test Equipment

Spectrum Analyzer: Hewlett-Packard 8566B, Serial Number 2410A-00168, Calibrated: 31 December 1997, Calibration due Date: 31 December 1998

RF Preselector: Hewlett-Packard 85685A, Serial Number 2648A-00519, Calibrated: 31 December 1997, Calibration due Date: 31 December 1998

Quasi Peak Adapter: Hewlett-Packard 85650A, Serial Number 2043A-00327, Calibrated: 31 December 1997, Calibration due Date: 31 December 1998

Line Impedance Stabilization Network: EMCO 3825/2, Serial Number 9002-1601, Calibrated: 27 August 1997, Calibration due Date: 31 December 1998

5.2 Purpose

The purpose of this test is to evaluate the level of conducted noise the EUT imposes on the AC mains.

5.3 Test Procedures

For tabletop equipment, the EUT is placed on a 1 meter by 1.5 meters wide and 0.8 meter high nonconductive table that is placed above the groundplane. Floor standing equipment is placed directly on the groundplane. Any supplemental grounding mechanisms are connected, if appropriate. The EUT is connected to its associated peripherals, with any excess I/O cabling bundled to approximately 1 meter. The EUT is connected to a dedicated LISN and all peripherals are connected to a second separate LISN circuit. The LISNs are bonded to the groundplane.

Preview tests are performed to determine the “worst case” mode of operation. With the EUT operating in “worst case” mode, final conducted measurements are taken. Conducted measurements are made on each current carrying conductor with respect to ground.

Conducted Emissions Test Characteristics

Frequency range	0.45 MHz - 30.0 MHz
Test instrumentation resolution bandwidth	9 kHz
Lines Tested	Line 1/Line 2

5.4 Test Results

Not applicable the EUT is DC powered.

6. Periodic Operation

6.1 Regulation

15.231(a) The provisions of this Section are restricted to periodic operation within the band 40.66 - 40.70 MHz and above 70 MHz. Except as shown in paragraph (e) of this Section, the intentional radiator is restricted to the transmission of a control signal such as those used with alarm systems, door openers, remote switches, etc. Radio control of toys is not permitted. Continuous transmissions, such as voice or video, and data transmissions are not permitted. The prohibition against data transmissions does not preclude the use of recognition codes. Those codes are used to identify the sensor that is activated or to identify the particular component as being part of the system.

6.2 Result

The operating characteristics of the device meets the requirement of this section.

7. Manually Operated Transmitter Deactivation

7.1 Regulation

15.231(a1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

7.2 Result

The operating characteristics of the device meets the requirement of this section.

8. Automatically Operated Transmitter Deactivation

8.1 Regulation

15.231(a2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.

8.2 Result

The device does not have a manual transmitter activation.

9. Prohibition of Periodic Transmission

9.1 Regulation

15.231(a3) Periodic transmissions at regular predetermined intervals are not permitted. However, polling or supervision transmissions to determine system integrity of transmitters used in security or safety applications are allowed if the periodic rate of transmission does not exceed one transmission of not more than one second duration per hour for each transmitter.

9.2 Result

The operating characteristics of the device meets the requirement of this section.

10. Continuous Transmission During an Alarm Condition

10.1 Regulation

15.231(a4) Intentional radiators which are employed for radio control purposes during emergencies involving fire, security, and safety of life, when activated to signal an alarm, may operate during the pendency of the alarm condition.

10.2 Result

The operating characteristics of the device meets the requirement of this section.

11. Radiated Spurious Emissions

11.1 Regulation

15.231(b) In addition to the provisions of Section 15.205, the field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

Fundamental Frequency (MHz)	Field Strength of Fundamental (microvolts/meter)	Field Strength of Spurious Emissions (microvolts/meter)
40.66 - 40.70	2,250	225
70 - 130	1,250	125
130 - 174	1,250 to 3,750 **	125 to 375 **
174 - 260	3,750	75
260 - 470	3,750 to 12,500 **	375 to 1,250 **
Above 470	12,500	1,250

** linear interpolations.

[Where F is the frequency in MHz, the formulas for calculating the maximum permitted fundamental field strengths are as follows: for the band 130-174 MHz, $\mu\text{V/m}$ at 3 meters = $56.81818(F) - 6136.3636$; for the band 260-470 MHz, $\mu\text{V/m}$ at 3 meters = $41.6667(F) - 7083.3333$. The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level.]

(1) The above field strength limits are specified at a distance of 3 meters. The tighter limits apply at the band edges.

(2) Intentional radiators operating under the provisions of this Section shall demonstrate compliance with the limits on the field strength of emissions, as shown in the above table, based on the average value of the measured emissions. As an alternative, compliance with the limits in the above table may be based on the use of measurement instrumentation with a CISPR quasi-peak detector. The specific method of measurement employed shall be specified in the application for equipment authorization. If average emission measurements are employed, the provisions in Section 15.35 for averaging pulsed emissions and for limiting peak emissions apply. Further, compliance with the provisions of Section 15.205 shall be demonstrated using the measurement instrumentation specified in that section.

(3) The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in Section 15.209, whichever limit permits a higher field strength

11.2 Test Equipment

Spectrum Analyzer: Hewlett-Packard 8566B, Serial Number 2410A-00168, Calibrated: 31 December 1997, Calibration due Date: 31 December 1998

RF Preselector: Hewlett-Packard 85685, Serial Number 2648A-00519, Calibrated: 31 December 1997, Calibration due Date: 31 December 1998

Quasi Peak Adapter: Hewlett-Packard 85650A, Serial Number 2043A-00327, Calibrated: 31 December 1997, Calibration due Date: 31 December 1998

Line Impedance Stabilization Network: Rhode & Schwarz ESH2-Z5, Calibrated: 4 June 1997, Calibration due Date: 31 December 1998

Broadband Biconical Antenna (20 MHz to 200 MHz): EMCO 3110, Serial Number 1115, Calibrated: 27 July 1997, Calibration due Date: 31 December 1998

Broadband Log Periodic Antenna (200 MHz to 1000 MHz): EMCO 3146, Serial Number 2853, Calibrated: 27 July 1997, Calibration due Date: 31 December 1998

EUT Turntable Position Controller: EMCO 1061-3M 9003-1441, No Calibration Required

Antenna Mast: EMCO 1051 9002-1457, No Calibration Required

2 GHz to 10 GHz Low Noise Preamplifier: Milliwave 593-2898, Serial Number 2494, Calibrated: 19 June 1997, Calibration due Date: 31 December 1998

Double Ridge Guide Horn Antenna: EMCO 3115, Serial Number 5534, Calibrated: 21 July 1998, Calibration due Date: 21 November 1999

11.3 Test Procedures

For tabletop equipment, the EUT is placed on a 1 meter by 1.5 meters wide and 0.8 meter high nonconductive table that sits on a flush mounted metal turntable. Floor standing equipment is placed directly on the flush mounted metal turntable. The EUT is connected to its associated peripherals with any excess I/O cabling bundled to approximately 1 meter.

Preview tests are performed to determine the “worst case” mode of operation. With the EUT operating in “worst case” mode, emissions from the unit are maximized by adjusting the polarization and height of the receive antenna and rotating the EUT on the turntable. Manipulating the system cables also maximizes EUT emissions.

Radiated Emissions Test Characteristics

Frequency range	30 MHz - 5000 MHz
Test distance	3 m
Test instrumentation resolution bandwidth	120 kHz (30 MHz - 1000 MHz) 1 MHz (1000 MHz - 5000 MHz)
Receive antenna scan height	1 m - 4 m
Receive antenna polarization	Vertical/Horizontal

11.4 Calculation of Field Strength Limits

Fundamental field strength limits for the band 260-470 MHz, uV/m at 3 meters = $41.6667(F) - 7083.3333$. = $41.6667*447.7 - 7083.3 = 11,571$ uV = 81.3 dBuV/m.

The maximum permitted unwanted emission level is 20 dB below the maximum permitted fundamental level = 61.3 dBuV/m.

11.5 Calculation of Average Correction Factor

The average correction factor is computed by analyzing the “worst case” on time in **any** 100 mSec time period and using the formula:

Correction Factor (dB) = $20*\log(\text{worst case on time}/100 \text{ mSec})$.

Analysis of the remote transmitter worst case on time in any 100 mSec time period is an on time of 61.1 mSec. Therefore the correction factor is $20*\log(61.1/100) = -4.3$ dB.

The maximum correction factor to be applied is 20 dB per section 15.35 of the FCC rules.

11.6 Test Results

**PRODUCT EMISSIONS
AVERAGE DATA
15.231 BANDS**

No	EMISSION FREQUENCY MHz	SPEC LIMIT dBuV/m	MEASUREMENTS				SITE HGT cm	AZM deg
			ABS	dLIM dB	MODE	POL		
1	149.209	61.3	32.4	-28.9	AVG	V	111	359
2	298.702	61.3	35.3	-26.0	AVG	V	105	018
3	348.28	61.3	34.5	-26.8	AVG	V	105	245
4	398.1	61.3	39.2	-22.1	AVG	V	107	262
5	447.7	81.3	74.2	-7.1	AVG	V	107	062
6	795.9	61.3	42.9	-18.4	AVG	V	111	062
7	845.8	61.3	40.8	-20.5	AVG	V	108	000
8	895.34	61.3	40.9	-20.4	AVG	V	100	000
9	1293.0	61.3	38.8	-22.5	AVG	V	100	239

**PRODUCT EMISSIONS
PEAK DATA
15.205 BANDS**

No	EMISSION FREQUENCY MHz	SPEC LIMIT dBuV/m	MEASUREMENTS				SITE HGT cm	AZM deg
			ABS	dLIM dB	MODE	POL		
1	1343.0	54.0	42.2	-11.8	PK	V	135	023
2	1393.0	54.0	42.6	-11.4	PK	V	135	343
3	1442.0	54.0	41.8	-12.2	PK	V	129	023
4	1492.0	54.0	38.7	-15.3	PK	V	107	023
5	1592.0	54.0	37.0	-17.0	PK	V	100	156

12. 20 dB bandwidth

12.1 Regulation

15.231(c) The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

12.2 Test Equipment

Spectrum Analyzer: Hewlett-Packard 8566B, Serial Number 2410A-00168, Calibrated: 31 December 1997, Calibration due Date: 31 December 1998

RF Preselector: Hewlett-Packard 85685, Serial Number 2648A-00519, Calibrated: 31 December 1997, Calibration due Date: 31 December 1998

Quasi Peak Adapter: Hewlett-Packard 85650A, Serial Number 2043A-00327, Calibrated: 31 December 1997, Calibration due Date: 31 December 1998

Broadband Biconical Antenna (20 MHz to 200 MHz): EMCO 3110, Serial Number 1115, Calibrated: 27 July 1997, Calibration due Date: 31 December 1998

Broadband Log Periodic Antenna (200 MHz to 1000 MHz): EMCO 3146, Serial Number 2853, Calibrated: 27 July 1997, Calibration due Date: 31 December 1998

12.3 Calculation of 20 dB Bandwidth and Result

The 20 dB bandwidth limit = $0.0025 * 447.7 \text{ MHz}$
1.1 MHz

The Measured 20 dB bandwidth is 14.0 kHz.

13. Receiver Verification

13.1 Regulation

15.109(a) Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency of Emission (MHz)	Field Strength (microvolts/meter)
30 - 88	100
88 - 216	150
216 - 960	200
Above 960	500

13.2 Test Equipment

Spectrum Analyzer: Hewlett-Packard 8566B, Serial Number 2410A-00168, Calibrated: 31 December 1997, Calibration due Date: 31 December 1998

RF Preselector: Hewlett-Packard 85685, Serial Number 2648A-00519, Calibrated: 31 December 1997, Calibration due Date: 31 December 1998

Quasi Peak Adapter: Hewlett-Packard 85650A, Serial Number 2043A-00327, Calibrated: 31 December 1997, Calibration due Date: 31 December 1998

Line Impedance Stabilization Network: Rhode & Schwarz ESH2-Z5, Calibrated: 4 June 1997, Calibration due Date: 31 December 1998

Broadband Biconical Antenna (20 MHz to 200 MHz): EMCO 3110, Serial Number 1115, Calibrated: 27 July 1997, Calibration due Date: 31 December 1998

Broadband Log Periodic Antenna (200 MHz to 1000 MHz): EMCO 3146, Serial Number 2853, Calibrated: 27 July 1997, Calibration due Date: 31 December 1998

EUT Turntable Position Controller: EMCO 1061-3M 9003-1441, No Calibration Required

Antenna Mast: EMCO 1051 9002-1457, No Calibration Required

2 GHz to 10 GHz Low Noise Preamplifier: Milliwave 593-2898, Serial Number 2494, Calibrated: 19 June 1997, Calibration due Date: 31 December 1998

Double Ridge Guide Horn Antenna: EMCO 3115, Serial Number 5534, Calibrated: 21 July 1998, Calibration due Date: 21 November 1999

13.3 Test Procedures

For tabletop equipment, the EUT is placed on a 1 meter by 1.5 meters wide and 0.8 meter high nonconductive table that sits on a flush mounted metal turntable. Floor standing equipment is placed directly on the flush mounted metal turntable. The EUT is connected to its associated peripherals with any excess I/O cabling bundled to approximately 1 meter.

Preview tests are performed to determine the “worst case” mode of operation. With the EUT operating in “worst case” mode, emissions from the unit are maximized by adjusting the polarization and height of the receive antenna and rotating the EUT on the turntable. Manipulating the system cables also maximizes EUT emissions.

Radiated Emissions Test Characteristics

Frequency range	30 MHz - 5000 MHz
Test distance	3 m
Test instrumentation resolution bandwidth	120 kHz (30 MHz - 1000 MHz) 1 MHz (1000 MHz - 5000 MHz)
Receive antenna scan height	1 m - 4 m
Receive antenna polarization	Vertical/Horizontal

13.4 Test Results

PRODUCT EMISSIONS RECEIVER DATA

No	EMISSION FREQUENCY MHz	SPEC LIMIT	MEASUREMENTS				SITE HGT cm	SITE AZM deg
			ABS dBuV/m	dLIM dB	MODE	POL		
1	38.58	40.0	19.2	-20.8	PK	H	100	359
2	47.40	40.0	34.7	-5.3	PK	H	100	359
3	94.703	43.5	23.8	-19.7	PK	H	100	359
4	142.112	43.5	31.3	-12.2	PK	H	100	359
5	236.89	46.0	31.1	-14.9	PK	V	109	101
6	284.172	46.0	37.3	-8.7	PK	V	109	351
7	379.0	46.0	27.9	-18.1	PK	V	109	0
8	426.7	46.0	34.6	-11.4	PK	V	109	0
9	473.682	46.0	33.1	-12.9	PK	V	132	360
10	1088.0	54.0	34.8	-21.2	PK	H	100	359
11	1136.0	54.0	38.2	-15.8	PK	H	100	359
12	1231.0	54.0	36.5	-17.5	PK	H	100	359

14. Miscellaneous Comments and Notes

1. None.