

Report No.: EED32L00366301 Page 1 of 61

TEST REPORT

Product : Receiver assembly

Trade mark : Kohler

Model/Type reference : 1371930

Serial Number : N/A

Report Number : EED32L00366301 FCC ID : N82-KOHLER041

Date of Issue : Jan. 09, 2020

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Kohler Co.

444 Highland Drive, Kohler, WI 53044 USA

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

mark . chen .

Compiled by:

Report Seal

Sunlight Sun

rootod By.

Mark chen

Sunlight Sun

Reviewed by:

Ware Xin

Sam Chuang

Date:

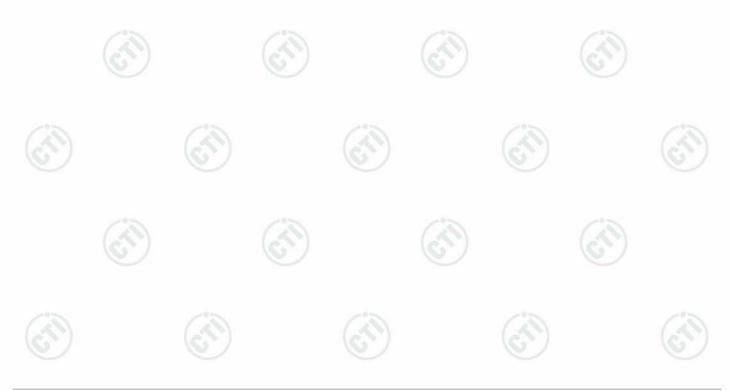
Jan. 09, 2020

Check No.:3096368193

Page 2 of 61

2 Version

Version No.	Date	(6	Description)
00	Jan. 09, 2020		Original	
	*	/°>	75	/05
	(1)	(4°)		


Report No.: EED32L00366301 Page 3 of 61

3 Test Summary

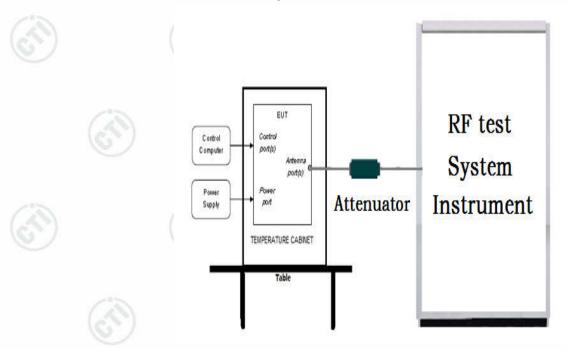
rest Summary			
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	N/A
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample(s) and the sample information are provided by the client.

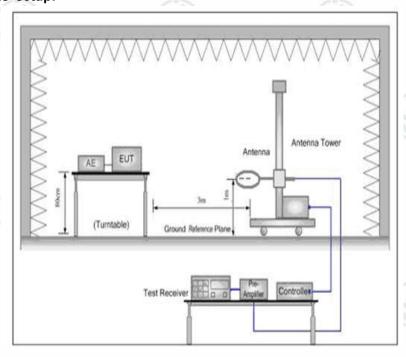
4 Content

1 C	OVER PAGE			•••••	•••••	1
2 V	ERSION		•••••	•••••	•••••	2
3 T	EST SUMMARY		•••••	•••••	•••••	3
4 C	ONTENT				•••••	4
5 T	EST REQUIREMENT					5
į	5.1 TEST SETUP					5
	5.1.1 For Conducted test					
	5.1.2 For Radiated Emiss					
	5.1.3 For Conducted Emis					
	5.2 TEST ENVIRONMENT					
į	5.3 TEST CONDITION					7
6 G	ENERAL INFORMATION			•••••		8
(3.1 CLIENT INFORMATION					8
	6.2 GENERAL DESCRIPTION O					
	3.3 PRODUCT SPECIFICATION					
	6.4 DESCRIPTION OF SUPPOR					
	6.5 TEST LOCATION					_
	6.6 DEVIATION FROM STANDA					
	5.7 ABNORMALITIES FROM STA					
	6.8 OTHER INFORMATION REC					
	6.9 MEASUREMENT UNCERTAI					
	QUIPMENT LIST					
	ADIO TECHNICAL REQUI					
ΕU	T DUTY CYCLE					16
	Appendix A): 6dB Occupie	ed Bandwidth				17
	Appendix B): Conducted I	Peak Output Power				24
	Appendix C): Band-edge					
	Appendix D): RF Conduct					
	Appendix E): Power Spec					
	Appendix F): Antenna Re					
	Appendix G): Restricted b	ands around fundam	nental frequency (Rad	diated)		41
	Appendix H) Radiated Sp	urious Emissions				50
РΗ	OTOGRAPHS OF TEST SE	TUP				54
РΗ	OTOGRAPHS OF EUT CO	NSTRUCTIONAL DE	TAILS			56



Page 5 of 61

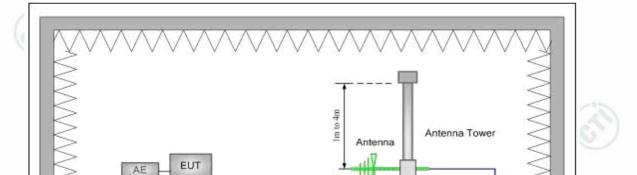
5 Test Requirement


5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:



Ground Reference Plane

Test Receiver

(Turntable)

Figure 2. 30MHz to 1GHz

Controlle

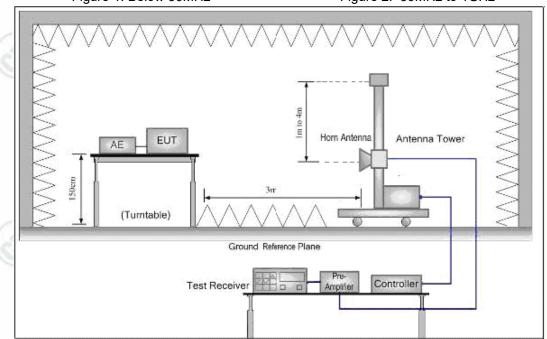
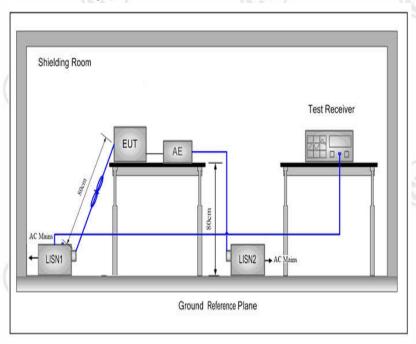


Figure 3. Above 1GHz



5.1.3 For Conducted Emissions test setup **Conducted Emissions setup**

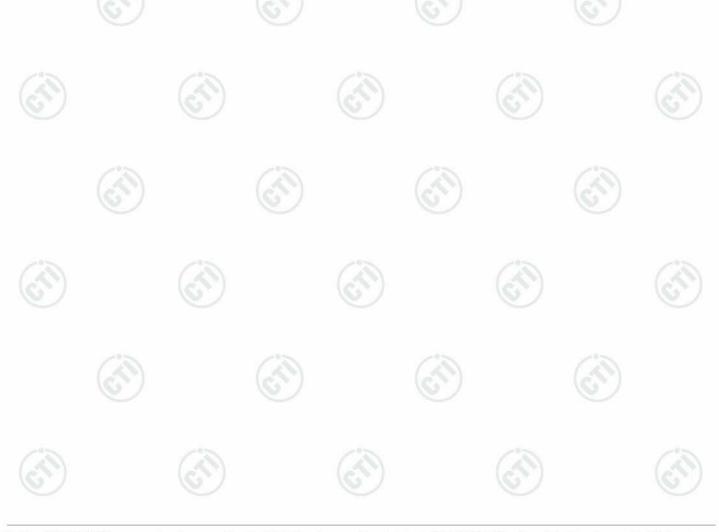
5.2 Test Environment

Operating Environment:			
Temperature:	23.0 °C		
Humidity:	54 % RH		_0~
Atmospheric Pressure:	1010 mbar	(41)	(2)

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel					
rest Mode	TX/KX	Low(L)	Middle(M)	fliddle(M) High(H)			
GFSK	0.400.411						
	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz			
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.						


6 General Information

6.1 Client Information

Applicant:	Kohler Co.
Address of Applicant:	444 Highland Drive, Kohler, WI 53044 USA
Manufacturer:	Kohler Co.
Address of Manufacturer:	444 Highland Drive, Kohler, WI 53044 USA
Factory:	VTech (Dongguan) Communications Ltd.
Address of Factory:	Xia Ling Bei Management Zone, Liaobu Town, Dongguan City ,Guangdong province, China.

6.2 General Description of EUT

Product Name:	Receiver asse	mbly				
Model No.(EUT):	1371930					
Trade mark:	Kohler	Cohler				
EUT Supports Radios application:	BT 4.2 Single	mode, 2402MHz to 2480MHz	(A)			
Power Supply:	Battery	DC 1.5V*4 SIZE +AA	0			
Sample Received Date:	Dec. 03, 2019					
Sample tested Date: Dec. 03, 2019 to Dec. 09, 2019						

Report No.: EED32L00366301 Page 9 of 61

6.3 Product Specification subjective to this standard

100.76	1 Jan 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Operation Frequency:	2402MHz~2480MHz	6		(6)	
Bluetooth Version:	4.2				
Modulation Technique:	DSSS		1000		
Modulation Type:	GFSK				
Number of Channel:	40		(0.)		(0.
Test Power Grade:	Tx Power:5				
Test Software of EUT:	BlueNRG GUI				
Antenna Type and Gain:	Chip Antenna and 2dbi	130		1:0	
Test Voltage:	DC 6V	(6)		(6)	

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

	ssociated pment name	Manufacture	model	S/N serial number	Supplied by	Certification
1	Notebook	DELL	DELL 3490	D245DX2	DELL	CE&FCC
2	Solenoid)	(6)		(C)	(6)
3	Flush Key					
4	Battery 1.5V*4 pcs			>050		
5	Remote actuator	Kohler	1353477	(C)	(6/1))

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

Report No.: EED32L00366301 Page 11 of 61

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nouver conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
2	Dadiated Courieus emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
201	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

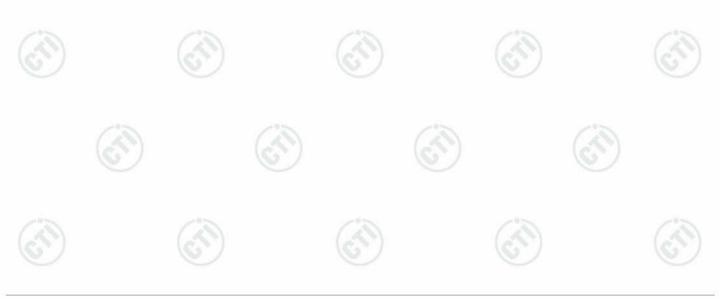
7 Equipment List

		RF test s	system		
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-29-2020
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-29-2020
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	07-26-2019	07-25-2020
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398- 002		01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-09-2019	01-08-2020
DC Power	Keysight	E3642A	MY56376072	03-01-2019	02-29-2020
PC-1	Lenovo	R4960d		03-01-2019	02-29-2020
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-29-2020
RF control unit	JS Tonscend	JS0806-2	158060006	03-01-2019	02-29-2020
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3		03-01-2019	02-29-2020

	3M S	Semi/full-anecho	ic Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019	07-25-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021
Receiver	R&S	ESCI7	100938- 003	10-21-2019	10-20-2020
Multi device Controller	maturo	NCD/070/107 11112	(A)	01-09-2019	01-08-2020
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	07-26-2019	07-25-2020
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5217/6A	01-09-2019	01-08-2020

Report No. : EED32L00366301 Page 14 of 61

			200		700	
	3M full-anechoic Chamber Serial Cal. date					
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-19-2019	06-18-2020	
Receiver	Keysight	N9038A	MY57290136	03-27-2019	03-26-2020	
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-27-2019	03-26-2020	
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-27-2019	03-26-2020	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021	
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-09-2021	
Preamplifier	EMCI	EMC184055SE	980596	05-22-2019	5-21-2020	
Preamplifier	EMCI	EMC001330	980563	05-08-2019	05-07-2020	
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-16-2019	01-15-2020	
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-30-2019	04-29-2020	
Fully Anechoic Chamber	TDK	FAC-3		01-17-2018	01-16-2021	
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021	
Cable line	Times	SFT205-NMSM- 2.50M	394812-0001	01-09-2019	01-08-2020	
Cable line	Times	SFT205-NMSM- 2.50M	394812-0002	01-09-2019	01-08-2020	
Cable line	Times	SFT205-NMSM- 2.50M	394812-0003	01-09-2019	01-08-2020	
Cable line	Times	SFT205-NMSM- 2.50M	393495-0001	01-09-2019	01-08-2020	
Cable line	Times	EMC104-NMNM- 1000	SN160710	01-09-2019	01-08-2020	
Cable line	Times	SFT205-NMSM- 3.00M	394813-0001	01-09-2019	01-08-2020	
Cable line	Times	SFT205-NMNM- 1.50M	381964-0001	01-09-2019	01-08-2020	
Cable line	Times	SFT205-NMSM- 7.00M	394815-0001	01-09-2019	01-08-2020	
Cable line	Times	HF160-KMKM- 3.00M	393493-0001	01-09-2019	01-08-2020	

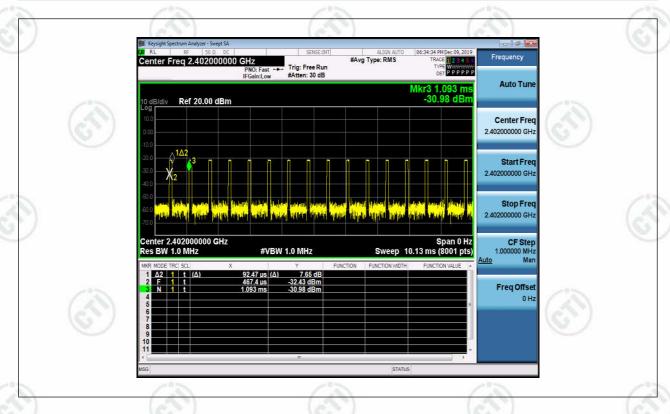

8 Radio Technical Requirements Specification

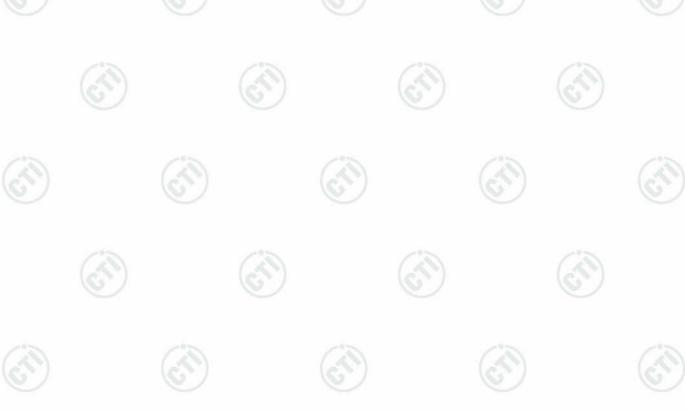
Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10 Conducted Peak Out		PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	N/A	68
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix H)





Report No.: EED32L00366301 Page 16 of 61

EUT DUTY CYCLE

	Duty	Cycle	
Configuration	TX ON(ms)	TX ALL(ms)	Duty Cycle(%)
BLE	0.09247	0.6256	14.78%

Report No.: EED32L00366301 Page 17 of 61

Appendix A): 6dB Occupied Bandwidth Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(a)

6 dB Bandwidth:

		100
Limit	Shall be at least 500kHz	(4
. (6.9.		1/07/

Occupied Bandwidth(99%) : For reporting purposes only.

Test Procedure

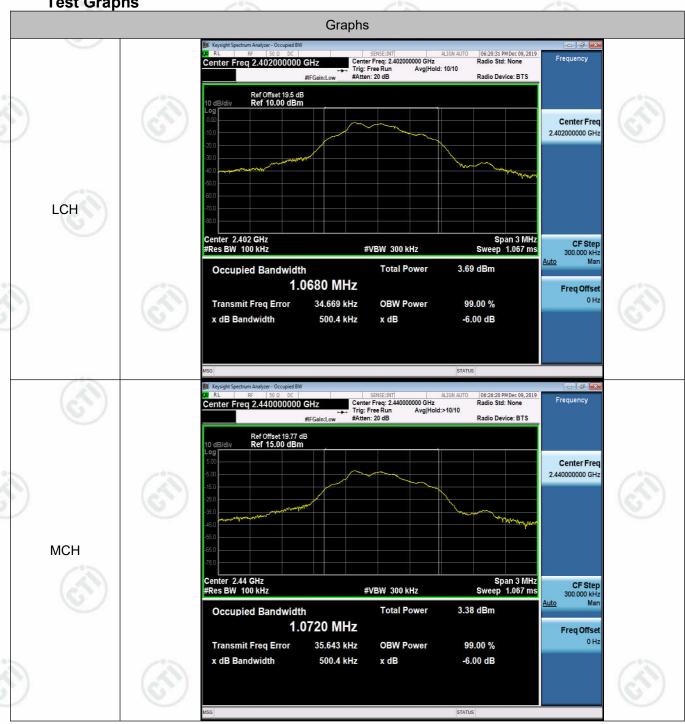
Test method Refer as KDB 558074 D01 v05, section 8.1 and ANSI 63.10:2013 clause 6.9.2 & 6.9.3.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth .
- 4. SA set RBW = 30kHz, VBW = 100kHz and Detector = Peak, to measurement 99% Bandwidth.
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report. **Test Setup**

Page 18 of 61

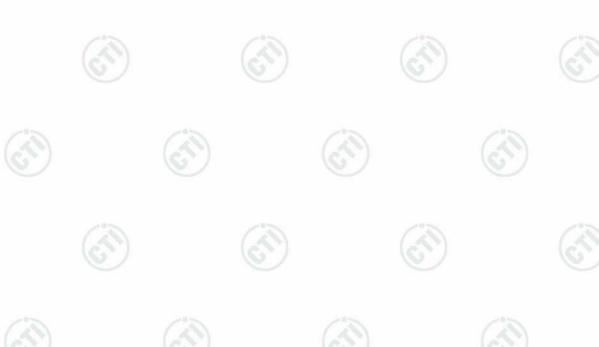
Test Result

Mode	Channel	6dB Bandwidth [MHz]	Verdict
BLE	LCH	0.5004	PASS
BLE	MCH	0.5004	PASS
BLE	HCH	0.5002	PASS



Page 19 of 61 Report No.: EED32L00366301

Test Graphs



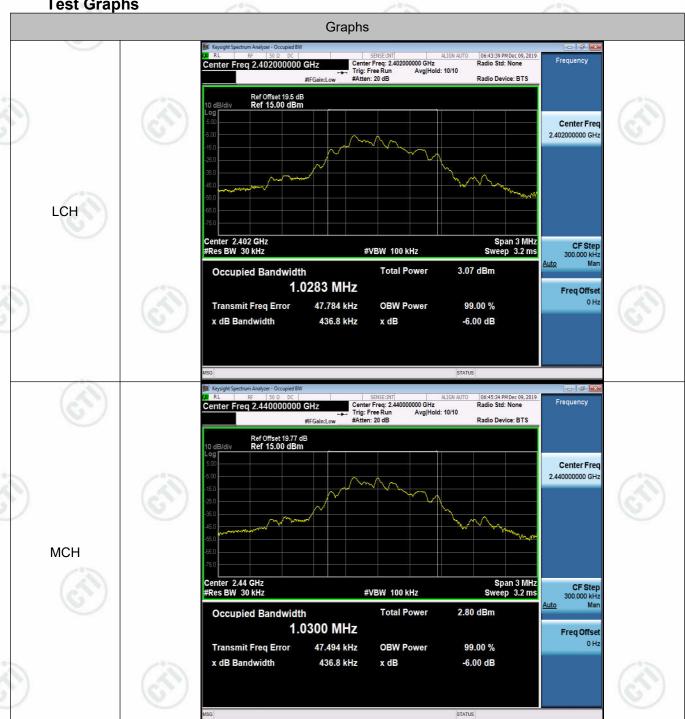
Page 21 of 61

99%OBW

Test Result

10011100111		A SECOND CO. AND	
Mode	Channel	99% OBW[MHz]	Verdict
BLE	LCH	1.0283	PASS
BLE	MCH	1.0300	PASS
BLE	HCH	1.0322	PASS





Test Graphs

Page 23 of 61

Report No. : EED32L00366301 Page 24 of 61

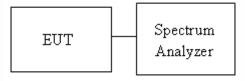
Appendix B): Conducted Peak Output Power

Test Limit

According to §15.247(b) and RSS-247 section 5.4(d)

Peak output power:

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


Limit	 ☐ Antenna with DG greater than 6 dBi [Limit = 30 - (DG - 6)] ☐ Point-to-point operation 	6

Test Procedure

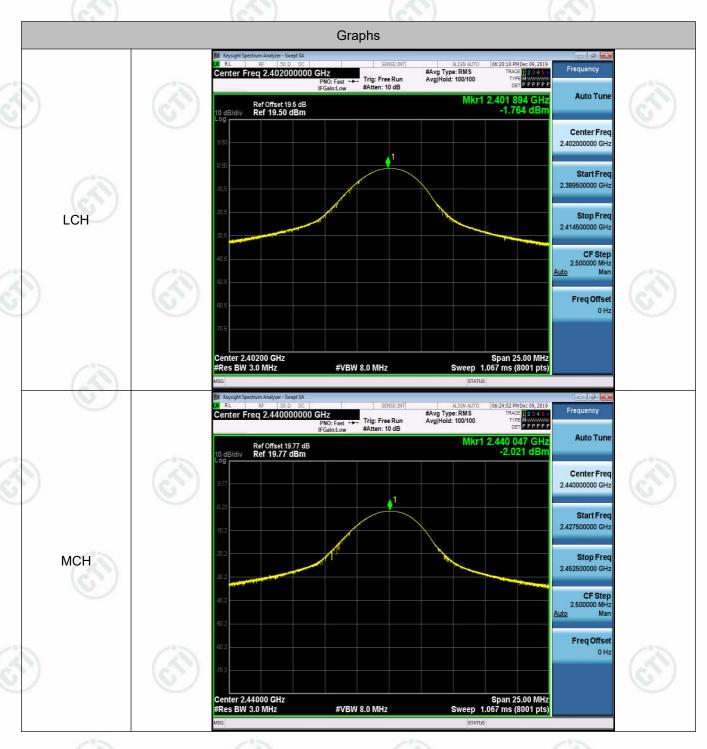
Test method Refer as KDB 558074 D01 v04, section 9.1.2.

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

Test Setup

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-1.764	PASS
BLE	MCH	-2.021	PASS
BLE	HCH	-2.410	PASS



Test Graphs

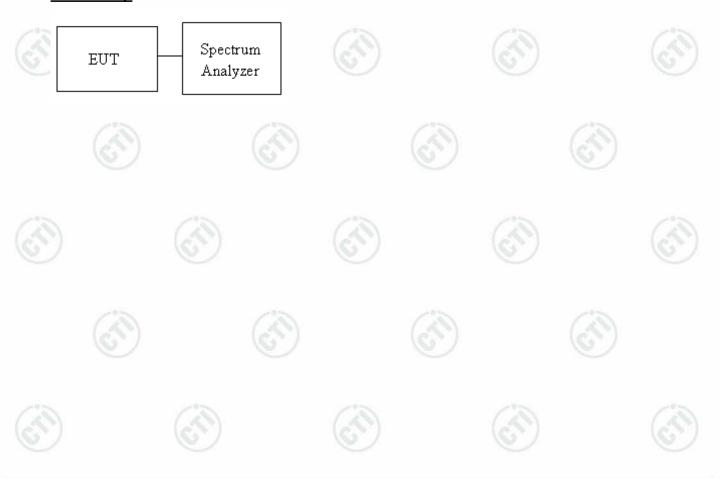
Page 27 of 61

Appendix C): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,


Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup

Page 29 of 61

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	-1.798	-55.355	-21.8	PASS
BLE	HCH	-2.471	-46.385	-22.47	PASS

Test Graphs

Appendix D): RF Conducted Spurious Emissions Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 11.

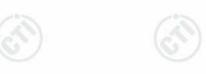
- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

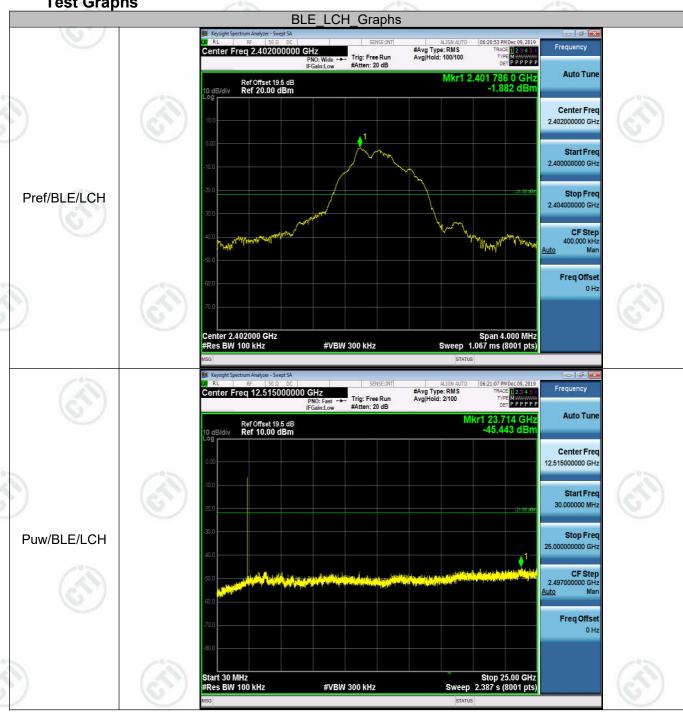
Test Setup

Page 32 of 61

Result Table

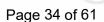
Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-1.882	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-2.131	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	HCH	-2.571	<limit< td=""><td>PASS</td></limit<>	PASS





Test Graphs

Report No.: EED32L00366301



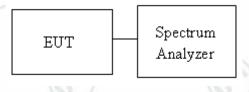
Report No. : EED32L00366301 Page 36 of 61

Appendix E): Power Spectral Density

Test Limit

According to §15.247(e) and RSS-247 section 5.2(b)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


Limit	
	☐ Antenna with DG greater than 6 dBi
	[Limit = $8 - (DG - 6)$]
	☐ Point-to-point operation :

Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 10.2

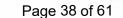
- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 10kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- Mark the maximum level.
 Measure and record the result of power spectral density. in the test report.

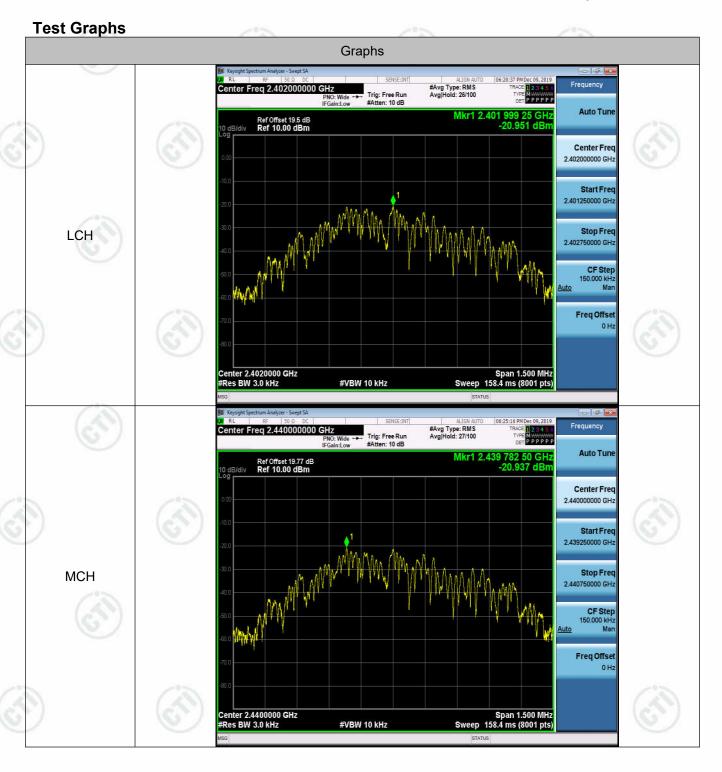
Test Setup

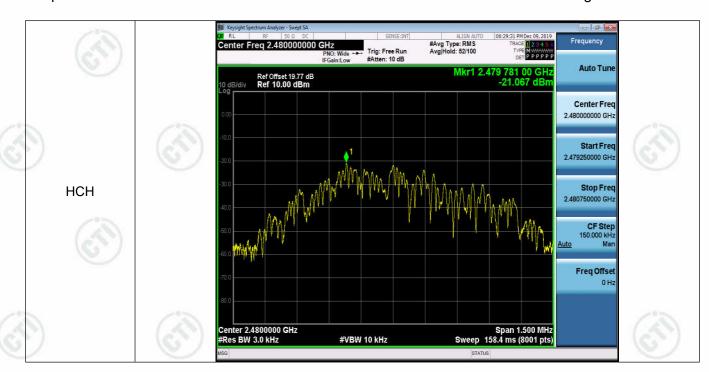
Page 37 of 61

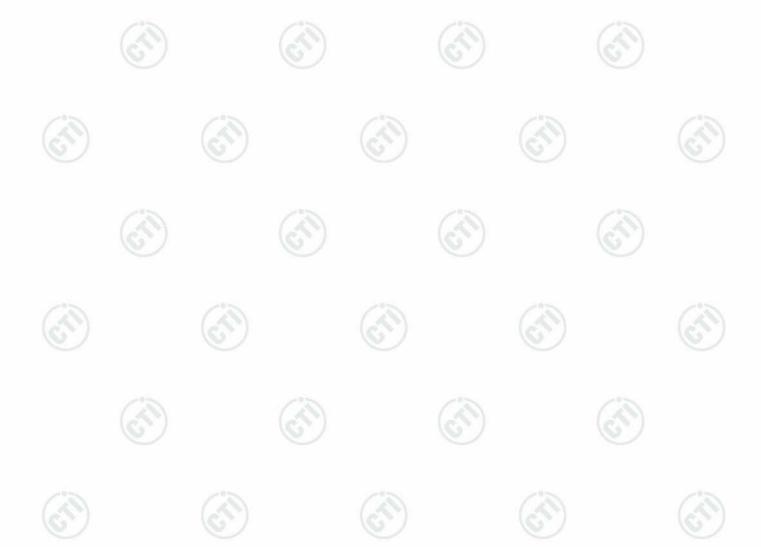
Result Table

Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-20.951	PASS
BLE	MCH	-20.937	PASS
BLE	HCH	-21.067	PASS









Appendix F): Antenna Requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

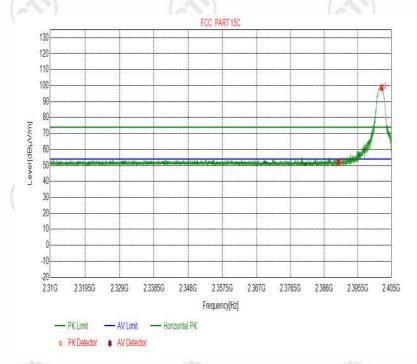
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

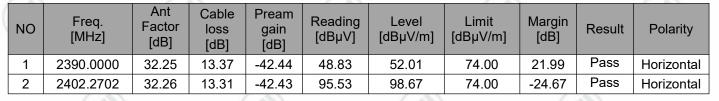
EUT Antenna:

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 2 dBi.

Appendix G): Restricted bands around fundamental frequency (Radiated)

Frequency Detector RBW VBW Remain	1.76.2						1010110110	1
Test Procedure: Peak	VBW R	3W V	r RB	Detecto	Frequency		eceiver Setup:	Rece
Test Procedure: Below 1GHz test procedure as below: Test method Refer as KDB 558074 D01 v04, Section 12.1 a. The EUT was placed on the top of a rotating table 0.8 meters above the at a 3 meter semi-anechoic camber. The table was rotated 360 degree determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving anter was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the determine the maximum value of the field strength. Both horizontal an polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case the antenna was tuned to heights from 1 meter to 4 meters and the ro was turned from 0 degrees to 360 degrees to find the maximum readile. The test-receiver system was set to Peak Detect Function and Specific Bandwidth with Maximum Hold Mode. f. Place a marker at the end of the restricted band closest to the transm frequency to show compliance. Also measure any emissions in the rebands. Save the spectrum analyzer plot. Repeat for each power and refor lowest and highest channel Above 1GHz test procedure as below: g. Different between above is the test site, change from Semi- Anechoic to fully Anechoic Chamber change form table 0.8 meter to 1.5 meter(18GHz the distance is 1 meter and table is 1.5 meter). h. Test the EUT in the lowest channel, the Highest channel i. The radiation measurements are performed in X, Y, Z axis positioning Transmitting mode, and found the X axis positioning which it is worse j. Repeat above procedures until all frequencies measured was comple Frequency Limit (dBµV/m @3m) Remark 30MHz-88MHz 40.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value	300kHz Qua	kHz 30	ak 120I	Quasi-pe	30MHz-1GHz			
Test Procedure: Below 1GHz test procedure as below: Test method Refer as KDB 558074 D01 v04, Section 12.1 a. The EUT was placed on the top of a rotating table 0.8 meters above the at a 3 meter semi-anechoic camber. The table was rotated 360 degree determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving anter was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the determine the maximum value of the field strength. Both horizontal an polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case the antenna was tuned to heights from 1 meter to 4 meters and the ro was turned from 0 degrees to 360 degrees to find the maximum readi e. The test-receiver system was set to Peak Detect Function and Speciff Bandwidth with Maximum Hold Mode. f. Place a marker at the end of the restricted band closest to the transm frequency to show compliance. Also measure any emissions in the re bands. Save the spectrum analyzer plot. Repeat for each power and representation of lowest and highest channel Above 1GHz test procedure as below: g. Different between above is the test site, change from Semi-Anechoic to fully Anechoic Chamber channel for the Highest channel. The radiation measurements are performed in X, Y, Z axis positioning Transmitting mode, and found the X axis positioning which it is worse j. Repeat above procedures until all frequencies measured was completed in the field of the seminary of the procedure was performed in X, Y, Z axis positioning Transmitting mode, and found the X axis positioning which it is worse j. Repeat above procedures until all frequencies measured was completed by the procedure of the procedure was performed in X, Y, Z axis positioning and procedure was performed in X, Y, Z axis positioning transmitting mode, and found the X axis positioning which it is worse j. Repeat above procedures unti	3MHz I	IHz 3ľ	1M	Peak	AL 4011	-		
Test method Refer as KDB 558074 D01 v04, Section 12.1 a. The EUT was placed on the top of a rotating table 0.8 meters above the at a 3 meter semi-anechoic camber. The table was rotated 360 degree determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving anter was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the determine the maximum value of the field strength. Both horizontal an polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case the antenna was tuned to heights from 1 meter to 4 meters and the rowas turned from 0 degrees to 360 degrees to find the maximum readile. The test-receiver system was set to Peak Detect Function and Specifi Bandwidth with Maximum Hold Mode. f. Place a marker at the end of the restricted band closest to the transm frequency to show compliance. Also measure any emissions in the rebands. Save the spectrum analyzer plot. Repeat for each power and infor lowest and highest channel Above 1GHz test procedure as below: g. Different between above is the test site, change from Semi-Anechoic to fully Anechoic Chamber change form table 0.8 meter to 1.5 meter (18GHz the distance is 1 meter and table is 1.5 meter). h. Test the EUT in the lowest channel, the Highest channel in The radiation measurements are performed in X, Y, Z axis positioning Transmitting mode, and found the X axis positioning which it is worse j. Repeat above procedures until all frequencies measured was completed in the sum of the procedures until all frequencies measured was completed. Errequency Limit (BlpV/m @3m) Remark 30MHz-88MHz 40.0 Quasi-peak Value 88MHz-216MHz 43.5 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value	10Hz Av	IHz 1	1M	Peak	Above 1GHz	(65)		
a. The EUT was placed on the top of a rotating table 0.8 meters above the at a 3 meter semi-anechoic camber. The table was rotated 360 degree determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving anter was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the determine the maximum value of the field strength. Both horizontal an polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case the antenna was tuned to heights from 1 meter to 4 meters and the ro was turned from 0 degrees to 360 degrees to find the maximum readi e. The test-receiver system was set to Peak Detect Function and Specific Bandwidth with Maximum Hold Mode. f. Place a marker at the end of the restricted band closest to the transm frequency to show compliance. Also measure any emissions in the rebands. Save the spectrum analyzer plot. Repeat for each power and infor lowest and highest channel Above 1GHz test procedure as below: g. Different between above is the test site, change from Semi- Anechoic to fully Anechoic Chamber change form table 0.8 meter to 1.5 meter(18GHz the distance is 1 meter and table is 1.5 meter). h. Test the EUT in the lowest channel, the Highest channel i. The radiation measurements are performed in X, Y, Z axis positioning Transmitting mode, and found the X axis positioning which it is worse j. Repeat above procedures until all frequencies measured was completed in the same and the same an			v:	lure as belo	1GHz test proce	Belov	st Procedure:	Test
g. Different between above is the test site, change from Semi- Anechoic to fully Anechoic Chamber change form table 0.8 meter to 1.5 meter(18GHz the distance is 1 meter and table is 1.5 meter). h. Test the EUT in the lowest channel , the Highest channel i. The radiation measurements are performed in X, Y, Z axis positioning Transmitting mode, and found the X axis positioning which it is worse j. Repeat above procedures until all frequencies measured was completed. Limit: Frequency Limit (dBµV/m @3m) Remark 30MHz-88MHz 40.0 Quasi-peak Value 88MHz-216MHz 43.5 Quasi-peak Value 216MHz-960MHz 46.0 Quasi-peak Value 960MHz-1GHz 54.0 Average Value	0.8 meters about a rotated 360 deproce-receiving a rotated 360 deprocession and tower. Use of the maximum received to the maximum received to the transpose of	table 0.8 ble was roon. terference antennar to four mrength. Both the meas arranged beter to 4 m to find the etect Fundand close and close re any em	a rotating or. The tab st radiation the intole-height one meter to make EUT was from 1 med degrees to Peak Dede. estricted base measurer plot. Rep	on the top of echoic camber of the higher terms away top of a varies waried from um value of the tenna are semission, the ed to heights grees to 360 tem was set mum Hold Merend of the rempliance. All trum analyzet channel	ne EUT was placed a 3 meter semi-an etermine the position in EUT was set 3 meter set as mounted on the element and the element in the element	a. T a d b. T c. T d p d. F th w e. T f f f		
Limit: Frequency Som Limit (dBµV/m @3m) Remark 30MHz-88MHz 40.0 Quasi-peak Value 88MHz-216MHz 43.5 Quasi-peak Value 216MHz-960MHz 46.0 Quasi-peak Value 960MHz-1GHz 54.0 Average Value	meter to 1.5 me er). channel Y, Z axis positiong which it s w	e 0.8 mete .5 meter). ighest cha in X, Y, Z sitioning v	t site, char form table table is 1. el , the Hiq erformed X axis pos	ove is the test mber change is 1 meter and lowest change ements are pand found the	fferent between ab fully Anechoic Cha GHz the distance est the EUT in the ne radiation measu ansmitting mode, a	g. E to 1 h i. T		
30MHz-88MHz 40.0 Quasi-peak Value 88MHz-216MHz 43.5 Quasi-peak Value 216MHz-960MHz 46.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value 54.0 Average Value				- 1			nit:	Limit
88MHz-216MHz 43.5 Quasi-peak Value 216MHz-960MHz 46.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value 54.0 Average Value								
216MHz-960MHz 46.0 Quasi-peak Value 960MHz-1GHz 54.0 Quasi-peak Value 54.0 Average Value	-					200		
960MHz-1GHz 54.0 Quasi-peak Value 54.0 Average Value		1 1 10		4				
54.0 Average Value		190				9		
Above 1GHz	•							
74.0 Peak Value	 				Above 1GHz			
The Teak value	. Jak valu		18	1				

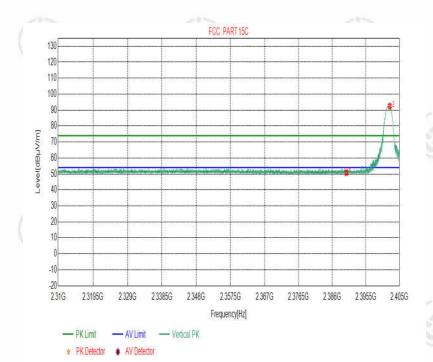



Page 42 of 61

Test plot as follows:

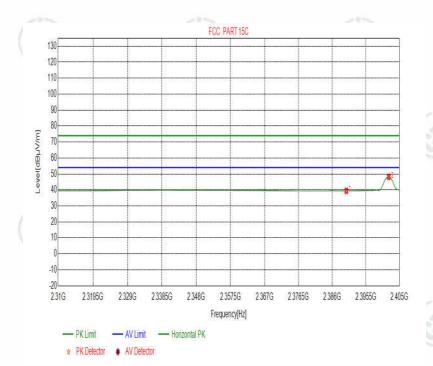
Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph



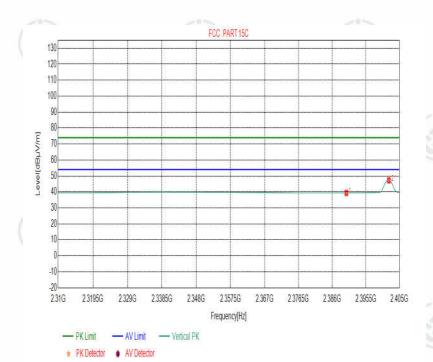
Report No.: EED32L00366301 Page 43 of 61

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		·


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	47.60	50.78	74.00	23.22	Pass	Vertical
2	2402.2955	32.26	13.31	-42.43	89.26	92.40	74.00	-18.40	Pass	Vertical

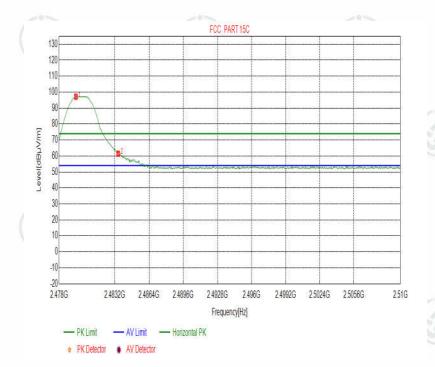
Report No.: EED32L00366301 Page 44 of 61

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV	·	


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	36.26	39.44	54.00	14.56	Pass	Horizontal
2	2402.0105	32.26	13.31	-42.43	45.03	48.17	54.00	5.83	Pass	Horizontal

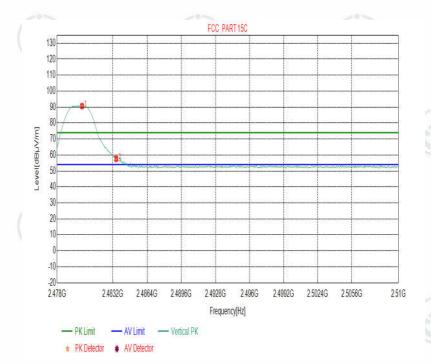
Report No.: EED32L00366301 Page 45 of 61

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		·


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	36.23	39.41	54.00	14.59	Pass	Vertical
2	2402.0295	32.26	13.31	-42.43	44.09	47.23	54.00	6.77	Pass	Vertical

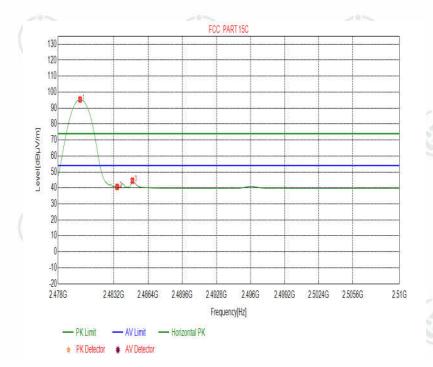
Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		·

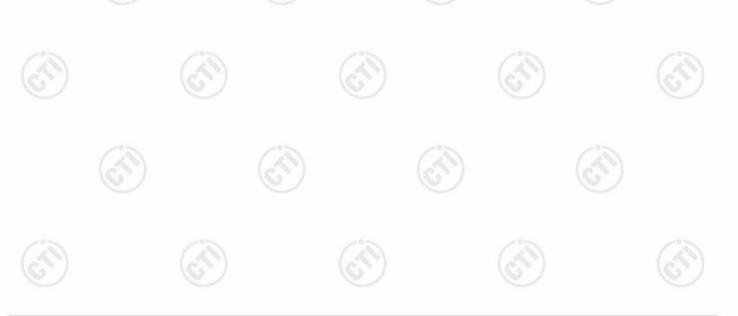
Page 46 of 61


N	10	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2479.5620	32.37	13.39	-42.39	93.72	97.09	74.00	-23.09	Pass	Horizontal
	2	2483.5000	32.38	13.38	-42.40	58.08	61.44	74.00	12.56	Pass	Horizontal

Report No.: EED32L00366301 Page 47 of 61

6.74		1000	
Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK	·	·

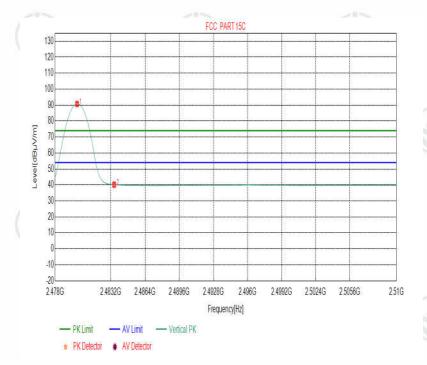

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.3229	32.37	13.39	-42.40	87.26	90.62	74.00	-16.62	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	54.24	57.60	74.00	16.40	Pass	Vertical

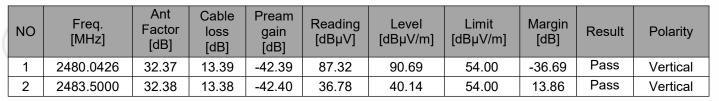


Report No.: EED32L00366301 Page 48 of 61

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV	·	

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0426	32.37	13.39	-42.39	91.99	95.36	54.00	-41.36	Pass	Horizontal
2	2483.5000	32.38	13.38	-42.40	37.29	40.65	54.00	13.35	Pass	Horizontal
3	2484.9287	32.38	13.37	-42.40	41.16	44.51	54.00	9.49	Pass	Horizontal





Report No.: EED32L00366301 Page 49 of 61

67 /	DIE GEOMET :		0.400
Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

Note:

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No. : EED32L00366301 Page 50 of 61

Appendix H) Radiated Spurious Emissions

Frequency	Detector	RBW	VBW	Remark	
0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
Ab 4011-	Peak	1MHz	3MHz	Peak	
Above 1GHZ	Peak	1MHz	10Hz	Average	
	0.009MHz-0.090MHz 0.009MHz-0.090MHz 0.090MHz-0.110MHz 0.110MHz-0.490MHz 0.110MHz-0.490MHz 0.490MHz -30MHz	0.009MHz-0.090MHz Peak 0.009MHz-0.090MHz Average 0.090MHz-0.110MHz Quasi-peak 0.110MHz-0.490MHz Peak 0.110MHz-0.490MHz Average 0.490MHz -30MHz Quasi-peak 30MHz-1GHz Quasi-peak Above 1GHz Peak	0.009MHz-0.090MHz Peak 10kHz 0.009MHz-0.090MHz Average 10kHz 0.090MHz-0.110MHz Quasi-peak 10kHz 0.110MHz-0.490MHz Peak 10kHz 0.110MHz-0.490MHz Average 10kHz 0.490MHz -30MHz Quasi-peak 10kHz 30MHz-1GHz Quasi-peak 120kHz Above 1GHz Peak 1MHz	0.009MHz-0.090MHz Peak 10kHz 30kHz 0.009MHz-0.090MHz Average 10kHz 30kHz 0.090MHz-0.110MHz Quasi-peak 10kHz 30kHz 0.110MHz-0.490MHz Peak 10kHz 30kHz 0.110MHz-0.490MHz Average 10kHz 30kHz 0.490MHz -30MHz Quasi-peak 10kHz 30kHz 30MHz-1GHz Quasi-peak 120kHz 300kHz Above 1GHz Peak 1MHz 3MHz	0.009MHz-0.090MHzPeak10kHz30kHzPeak0.009MHz-0.090MHzAverage10kHz30kHzAverage0.090MHz-0.110MHzQuasi-peak10kHz30kHzQuasi-peak0.110MHz-0.490MHzPeak10kHz30kHzPeak0.110MHz-0.490MHzAverage10kHz30kHzAverage0.490MHz -30MHzQuasi-peak10kHz30kHzQuasi-peak30MHz-1GHzQuasi-peak120kHz300kHzQuasi-peakAbove 1GHzPeak1MHz3MHzPeak

Test Procedure:

Below 1GHz test procedure as below:

Test method Refer as KDB 558074 D01 v04, Section 12.1

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

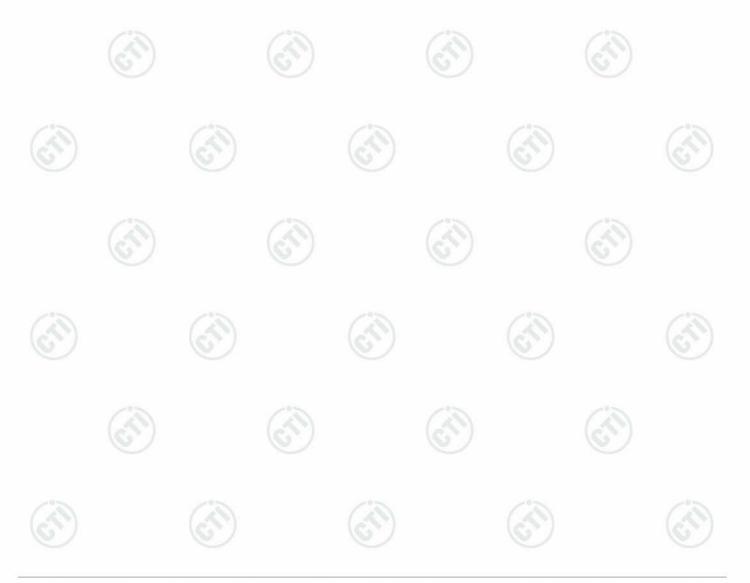
Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

. Repeat above procedures until all frequencies measured was complete.

			٠.	
ı	_ir	n	ıτ	•
L	_!!		ıι	

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	(3)	300
0.490MHz-1.705MHz	24000/F(kHz)	-	(6.5)	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3


Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report No.: EED32L00366301 Page 51 of 61

Radiated Spurious Emissions test Data:

Mode	Mode:			SK Trans	smitting		Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	32.9103	10.62	0.64	-32.12	52.44	31.58	40.00	8.42	Pass	Н	PK
2	40.5741	12.40	0.72	-32.10	51.24	32.26	40.00	7.74	Pass	Н	PK
3	44.9395	13.19	0.75	-32.12	47.00	28.82	40.00	11.18	Pass	Н	PK
4	154.0754	7.69	1.46	-32.00	45.98	23.13	43.50	20.37	Pass	Н	PK
5	600.0290	19.00	2.96	-31.99	42.06	32.03	46.00	13.97	Pass	Н	PK
6	974.9715	22.55	3.75	-30.95	42.47	37.82	54.00	16.18	Pass	Н	PK
7	39.1189	12.02	0.71	-32.12	49.30	29.91	40.00	10.09	Pass	V	PK
8	44.9395	13.19	0.75	-32.12	44.96	26.78	40.00	13.22	Pass	V	PK
9	56.9687	12.09	0.86	-32.07	44.20	25.08	40.00	14.92	Pass	V	PK
10	184.3424	9.41	1.59	-31.98	46.06	25.08	43.50	18.42	Pass	V	PK
11	600.0290	19.00	2.96	-31.99	42.47	32.44	46.00	13.56	Pass	V	PK
12	974.9715	22.55	3.75	-30.95	42.72	38.07	54.00	15.93	Pass	V	PK

	/ 4	DI E OF	OLC T	****					0.400		
Mode	e :	BLE GF	SK Tran	smitting			Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2131.1131	31.88	3.62	-42.55	57.35	50.30	74.00	23.70	Pass	Н	PK
2	4804.0000	34.50	4.55	-40.66	52.05	50.44	74.00	23.56	Pass	Н	PK
3	7205.2804	36.31	5.82	-41.03	54.77	55.87	74.00	18.13	Pass	Н	PK
4	9608.0000	37.64	6.63	-40.76	46.56	50.07	74.00	23.93	Pass	Н	PK
5	12010.0000	39.31	7.60	-41.21	46.92	52.62	74.00	21.38	Pass	Н	PK
6	7205.2804	36.31	5.82	-41.03	49.81	50.91	54.00	3.09	Pass	Н	AV
7	2126.9127	31.88	3.62	-42.56	58.30	51.24	74.00	22.76	Pass	V	PK
8	3994.0663	33.80	4.33	-40.80	52.70	50.03	74.00	23.97	Pass	V	PK
9	4804.0000	34.50	4.55	-40.66	51.97	50.36	74.00	23.64	Pass	V	PK
10	7205.2804	36.31	5.82	-41.03	55.66	56.76	74.00	17.24	Pass	V	PK
11	9608.0000	37.64	6.63	-40.76	48.80	52.31	74.00	21.69	Pass	V	PK
12	12010.0000	39.31	7.60	-41.21	47.68	53.38	74.00	20.62	Pass	V	PK
13	7205.5004	36.31	5.82	-41.02	49.23	50.34	54.00	3.66	Pass	V	AV

Mode	Mode:		SK Tran	smitting			Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1065.4065	27.97	2.53	-42.68	60.21	48.03	74.00	25.97	Pass	Н	PK
2	2129.9130	31.88	3.62	-42.55	58.22	51.17	74.00	22.83	Pass	Н	PK
3	4880.0000	34.50	4.80	-40.60	46.86	45.56	74.00	28.44	Pass	Н	PK
4	7320.0000	36.42	5.85	-40.92	47.11	48.46	74.00	25.54	Pass	Н	PK
5	9760.0000	37.70	6.73	-40.62	47.72	51.53	74.00	22.47	Pass	Н	PK
6	12200.0000	39.42	7.67	-41.17	46.89	52.81	74.00	21.19	Pass	Н	PK
7	2122.7123	31.87	3.61	-42.55	58.89	51.82	74.00	22.18	Pass	V	PK
8	3992.0661	33.79	4.33	-40.79	53.24	50.57	74.00	23.43	Pass	V	PK
9	4880.0000	34.50	4.80	-40.60	46.76	45.46	74.00	28.54	Pass	V	PK
10	7320.0000	36.42	5.85	-40.92	46.96	48.31	74.00	25.69	Pass	V	PK
11	9760.0000	37.70	6.73	-40.62	47.74	51.55	74.00	22.45	Pass	V	PK
12	12200.0000	39.42	7.67	-41.17	45.31	51.23	74.00	22.77	Pass	V	PK

Mode	e:	BLE GF	SK Tran	smitting			Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1066.6067	27.97	2.53	-42.68	57.42	45.24	74.00	28.76	Pass	Н	PK
2	2158.1158	31.92	3.65	-42.54	53.52	46.55	74.00	27.45	Pass	Н	PK
3	4960.1307	34.50	4.82	-40.53	55.89	54.68	74.00	19.32	Pass	Н	PK
4	7440.0000	36.54	5.85	-40.82	51.13	52.70	74.00	21.30	Pass	Н	PK
5	9920.0000	37.77	6.79	-40.48	46.44	50.52	74.00	23.48	Pass	Н	PK
6	12300.6200	39.48	7.73	-41.14	47.46	53.53	74.00	20.47	Pass	Н	PK
7	4960.1307	34.50	4.82	-40.53	50.54	49.33	54.00	4.67	Pass	Н	AV
8	2123.9124	31.87	3.61	-42.55	57.03	49.96	74.00	24.04	Pass	V	PK
9	2664.3664	32.66	4.10	-42.30	57.98	52.44	74.00	21.56	Pass	V	PK
10	4960.1307	34.50	4.82	-40.53	56.80	55.59	74.00	18.41	Pass	V	PK
11	7439.2960	36.54	5.85	-40.82	54.50	56.07	74.00	17.93	Pass	V	PK
12	9920.0000	37.77	6.79	-40.48	46.59	50.67	74.00	23.33	Pass	V	PK
13	12400.0000	39.54	7.86	-41.12	46.85	53.13	74.00	20.87	Pass	V	PK
14	4960.0107	34.50	4.82	-40.53	51.79	50.58	54.00	3.42	Pass	V	AV
15	7440.0360	36.54	5.85	-40.82	47.79	49.36	54.00	4.64	Pass	V	AV

Note:

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

