

SGS-CSTC Standards Technical Services Co., Ltd. Shanghai Branch

Report No.: SHEM181100991503 Page: 1 of 8

1 Cover Page

RF MPE REPORT

Application No.:	SHEM1811009915CR		
FCC ID:	N82- KOHLER033		
IC:	4554A-KOHLER033		
Applicant:	Kohler Co.		
Address of Applicant:	444 Highland Drive Kohler, WI 53044 United States		
Manufacturer:	Shanghai Kohler Electronics., Ltd.		
Address of Manufacturer:	No. 1955, Fengxiang Road, Baoshan Area, Shanghai, PRC Post code: 200444		
Factory:	Shanghai Kohler Electronics., Ltd.		
Address of Factory:	No. 1955, Fengxiang Road, Baoshan Area, Shanghai, PRC Post code:		
	200444		
Equipment Under Test (EU	Т):		
EUT Name:	RS485 CLOUD MODULE		
Model No.:	1374116		
Trade mark:	KOHLER		
Standard(s) :	FCC Rules 47 CFR §2.1091		
	KDB447498 D01 General RF Exposure Guidance v06		
	RSS-102 Issue 5 (March 2015)		
Date of Receipt:	2018-11-09		
Date of Test:	2018-11-14 to 2019-01-18		
Date of Issue:	2019-02-14		
Test Result:	Pass*		

In the configuration tested, the EUT also complied with the Canadian standards (ICES-003: Issue 6).

parlan share

Parlam Zhan E&E Section Manager

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of SGS International Electrical Approvals or testing done by SGS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by SGS International Electrical Approvals in writing.

Member of the SGS Group (SGS SA)

 Report No.:
 SHEM181100991503

 Page:
 2 of 8

Revision Record			
Version	Description	Date	Remark
00	Original	2019-02-14	/

Authorized for issue by:		
	Vincent Zhu	
	Vincent Zhu / Project Engineer	
	Parlam zhan	
	Parlam Zhan / Reviewer	

NO.588 West Jindu Road, Songjiang District, Shanghai, China 201612 中国・上海・松江区金都西路588号 邮编: 201612

SGS-CSTC Standards Technical Services Co., Ltd. Shanghai Branch

Report No.: SHEM181100991503 Page: 3 of 8

2 Contents

Page

1	COVER PAGE1			
2	CONTENTS			
3	GENERAL INFORMATION			
	3.1	GENERAL DESCRIPTION OF E.U.T		
	3.2	TECHNICAL SPECIFICATIONS		
	3.3	TEST LOCATION		
	3.4	TEST FACILITY		
4	Т	EST STANDARDS AND LIMITS		
	4.1	FCC RADIOFREQUENCY RADIATION EXPOSURE LIMITS:		
	4.2	IC RADIOFREQUENCY RADIATION EXPOSURE LIMITS:		
5	Ν	IEASUREMENT AND CALCULATION7		
	5.1	MAXIMUM TRANSMIT POWER		
	5.2	MPE CALCULATION		

Report No.: SHEM181100991503 Page: 4 of 8

3 General Information

3.1 General Description of E.U.T.

•	
Power supply:	DC 12V

3.2 Technical Specifications

BLE

Antenna Gain	0dBi
Antenna Type	PIFA Antenna
Channel Spacing	2MHz
Modulation Type	GFSK
Number of Channels	40
Operation Frequency	2402MHz to 2480MHz

2.4G WiFi

Antenna Gain	2dBi
Antenna Type	PCB Antenna
Channel Spacing	5MHz
Modulation Type	802.11b: DSSS (CCK, DQPSK, DBPSK) 802.11g/n: OFDM (64QAM, 16QAM, QPSK, BPSK)
Number of Channels	802.11b/g/n(HT20):11
Operation Frequency	802.11b/g/n(HT20): 2412MHz to 2462MHz

Report No.: SHEM181100991503 Page: 5 of 8

3.3 Test Location

All tests were performed at: SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. E&E Lab 588 West Jindu Road, Xinqiao, Songjiang, 201612 Shanghai, China Tel: +86 21 6191 5666 Fax: +86 21 6191 5678

No tests were sub-contracted.

3.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L0599)

CNAS has accredited SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• NVLAP (Certificate No. 201034-0)

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. is accredited by the National Voluntary Laboratory Accreditation Program(NVLAP). Certificate No. 201034-0.

• FCC – Designation Number: CN5033

SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been recognized as an accredited testing laboratory.

Designation Number: CN5033. Test Firm Registration Number: 479755.

• Industry Canada (IC) – IC Assigned Code: 8617A

The 3m Semi-anechoic chamber of SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 8617A-1.

• VCCI (Member No.: 3061)

The 3m Semi-anechoic chamber and Shielded Room of SGS-CSTC Standards Technical Services (Shanghai) Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-13868, C-14336, T-12221, G-10830 respectively.

Report No.: SHEM181100991503 Page: 6 of 8

4 Test Standards and Limits

4.1 FCC Radiofrequency radiation exposure limits:

According to§1.1310, the limit for general population/uncontrolled exposures

Frequency	Power density(mW/cm ²)	Averaging time(minutes)
300MHz~1.5GHz	f/1500	30
1.5GHz~100GHz	1.0	30

4.2 IC Radiofrequency radiation exposure limits:

According to RSS-102 section 2.5.2, RF exposure evaluation is required if the separation distance between the user and/or bystander and the device's radiating element is greater than 20 cm, except when the device operates as follows:

below 20 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1 W (adjusted for tune-up tolerance);

• at or above 20 MHz and below 48 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than $4.49/f^{0.5}$ W (adjusted for tune-up tolerance), where *f* is in MHz;

• at or above 48 MHz and below 300 MHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 0.6 W (adjusted for tune-up tolerance);

• at or above 300 MHz and below 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 1.31 x $10^{-2} f^{0.6834}$ W (adjusted for tune-up tolerance), where *f* is in MHz;

• at or above 6 GHz and the source-based, time-averaged maximum e.i.r.p. of the device is equal to or less than 5 W (adjusted for tune-up tolerance).

For 2.4G device, the limit of worse case is 2.68 W

Report No.: SHEM181100991503 Page: 7 of 8

5 Measurement and Calculation

5.1 Maximum transmit power

The Power Data is based on the RF Test Report SHEM181100991501 & SHEM181100991502.

Test Mode	Test Frequency (MHz)	Output Power (dBm)	Reading Power (mW)
	2402	-1.14	0.77
BLE	2442	-1.24	0.75
	2480	-1.45	0.72

2.4G WiFi

Test Mode	Test Channel	Power [dBm]	Power [mW]
11B	2412	12.86	19.32
11B	2437	13.44	22.08
11B	2462	13.36	21.68
11G	2412	12.89	19.45
11G	2437	13.58	22.80
11G	2462	13.41	21.93
11N20SISO	2412	12.56	18.03
11N20SISO	2437	13.30	21.38
11N20SISO	2462	13.10	20.42

5.2 MPE Calculation

For FCC:

According to the formula $S = \frac{PG}{4R^2\pi}$, we can calculate S which is MPE.

Note:

1) P (Watts) = Power Input to antenna = 10^{10} / 1000

2) G (Antenna gain in numeric) = 10[^] (Antenna gain in dBi /10)

- 3) R = distance to the center of radiation of antenna (in meter) = 20cm
- 4) MPE limit = 1mW/cm²

For BLE

The Max Conducted Peak Output Power is 0.77mW

The best case gain of the antenna is 0dBi. 0dB logarithmic terms convert to numeric result is nearly 1.

S=
$$\frac{PG}{4R^2\pi} = \frac{0.77 \times 1}{4 \times 400 \times 3.14} = 0.0002 \text{ mW/cm}^2$$

For 2.4G WiFi

The Max Conducted Peak Output Power is 22.80mW

The best case gain of the antenna is 2dBi. 2dB logarithmic terms convert to numeric result is nearly 1.58.

$$S = \frac{PG}{4R^2\pi} = \frac{22.80 \text{ x} 1.58}{4 \times 400 \times 3.14} = 0.007 \text{ mW/cm}^2$$

For IC:

E.I.R.P.= P*G= 0.77×1=0.00077W < 2.68W

E.I.R.P.= P^*G = 22.80×1.58=0.036W < 2.68W

The BT and the DTS modules can simultaneous transmitting at frequency 2.4GHz band.But the maximum rate of MPE is $\frac{0.0002}{1.0} + \frac{0.007}{1.0} = 0.0072 \le 1.0$. according to the KDB447498 section 7.2 determine the device is exclusion from SAR test.

--End of the Report--