Hong Kong Accreditation Service (HKAS) has accredited this laboratory under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this report were determined by this laboratory in accordance with its terms of accreditation.

TEST REPORT

Report Number: HK12071404-2

Application for

Class II Permissive Change of 47 CFR Part 15 Certification Reassessment of RSS-210 Issue 8 Equipment Certification

2.4GHz Transceiver_Parent Unit

FCC ID: N7TAC401-R

IC: 5786A-AC401R

Prepared and Checked by:

Approved by:

Koo Wai Ip Senior Lead Engineer Nip Ming Fung, Melvin Assistant Manager August 23, 2012

- The test report only allows to be revised within the retention period unless further standard or the requirement was noticed.

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to permit copying or distribution of this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Hong Kong Accreditation Service (HKAS) has accredited this laboratory under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this report were determined by this laboratory in accordance with its terms of accreditation.

GENERAL INFORMATION

Applicant Name:	Angelcare Monitors Inc.
Applicant Address:	3980, Rue St-Ambroise
	Montreal Quebec
	H4C 2C7 Canada
FCC Specification Standard:	FCC Part 15, October 1, 2010 Edition
FCC ID:	N7TAC401-R
FCC Model(s):	AC401
IC Specification Standard:	RSS-210 Issue 8, December 2010
	RSS-Gen Issue 3, December 2010
IC:	5786A-AC401R
IC Model(s):	AC401-P
Type of EUT:	Transceiver
Description of EUT:	2.4GHz Transceiver_Parent Unit
Serial Number:	N/A
Sample Receipt Date:	July 31, 2012
Date of Test:	August 03 - 15, 2012
Report Date:	August 23, 2012
Environmental Conditions:	Temperature: +10 to 40°C
	Humidity: 10 to 90%

Hong Kong Accreditation Service (HKAS) has accredited this laboratory under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this report were determined by this laboratory in accordance with its terms of accreditation.

Table of Contents

1.0 Test Results Summary & Statement of Compliance	4
1.1 Summary of Test Results	
1.2 Statement of Compliance	
2.0 General Description	6
2.1 Product Description	6
2.2 Purpose of Change	6
2.3 Test Methodology	6
2.4 Test Facility	6
3.0 System Test Configuration	
3.1 Justification	
3.2 EUT Exercising Software	9
3.3 Details of EUT and Description of Accessories	
3.4 Measurement Uncertainty	
4.0 Test Results	
4.1 Field Strength Calculation	
4.2 Radiated Emissions	
4.2.1 Radiated Emission Configuration Photograph	
4.2.2 Radiated Emission Data	13
4.3 Radiated Emission on the Bandedge	17
4.4 AC Power Line Conducted Emission	
4.4.1 AC Power Line Conducted Emission Configuration Photograph	19
4.4.2 AC Power Line Conducted Emission Data	
5.0 Equipment List	

Hong Kong Accreditation Service (HKAS) has accredited this laboratory under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this report were determined by this laboratory in accordance with its terms of accreditation.

EXHIBIT 1 TEST RESULTS SUMMARY & STATEMENT OF COMPLIANCE

Hong Kong Accreditation Service (HKAS) has accredited this laboratory under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this report were determined by this laboratory in accordance with its terms of accreditation.

1.0 Test Results Summary & Statement of Compliance

1.1 Summary of Test Results

Test Items	FCC Part 15 Section	RSS-210/ RSS-Gen [#] / RSS-310^ Section	Results	Details see section
Antenna Requirement	15.203	7.1.2 [#]	Pass	2.1
Radiated Emission Radiated Emission on the Bandedge	15.249(a), 209, & 109 15.249(d)	A2.9(a) A2.9(b)	Pass Pass	4.2 4.3
Radiated Emission in Restricted Bands	15.205	2.2	Pass	4.2
Radiated Emission from Receiver	N/A	2.3	Pass	N/A
AC Power Line Conducted Emission	15.207 & 15.107	7.2.4 [#]	Pass	4.4

Note: Pursuant to FCC Part 15 Section 15.215(c), the 20dB bandwidth of the emission was contained within the frequency band designated (mentioned as above) which the EUT operated. The effects, if any, from frequency sweeping, frequency hopping, other modulation techniques and frequency stability over expected variations in temperature and supply voltage were considered.

1.2 Statement of Compliance

The equipment under test is found to be complying with the following standards:

FCC Part 15, October 1, 2010 Edition RSS-210 Issue 8, December 2010 RSS-Gen Issue 3, December 2010

Hong Kong Accreditation Service (HKAS) has accredited this laboratory under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this report were determined by this laboratory in accordance with its terms of accreditation.

EXHIBIT 2 GENERAL DESCRIPTION

Hong Kong Accreditation Service (HKAS) has accredited this laboratory under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this report were determined by this laboratory in accordance with its terms of accreditation.

2.0 General Description

2.1 Product Description

The AC401-P is a 2.4GHz Transceiver_Parent Unit. It operates at frequency range of 2401.700MHz – 2402.900MHz. The Parent Unit is powered by an adaptor 100-240VAC to 7.5VDC 0.5A and/or 4 x "AAA" Size "Ni-MH" Type 1.2VDC Rechargeable Batteries

For FCC, The Model(s): AC401 is the same as the Model: AC401-P in electronics/electrical designs including software & firmware, PCB layout and construction design/physical design/enclosure. The only differences between these models are model number to be sold for marketing purpose.

The antenna used in parent unit is integral, and the test sample is a prototype.

The circuit description is saved with filename: descri.pdf.

2.2 Purpose of Change

The purpose of change is saved with filename: product change.pdf

2.3 Test Methodology

Both AC power line-conducted and radiated emission measurements were performed according to the procedures in ANSI C63.4 (2009). Preliminary radiated scans and all radiated measurements were performed in Open Area Test Sites. All Radiated tests were performed at an antenna to EUT distance of 3 meters, unless stated otherwise in the "**Justification Section**" of this Application.

2.4 Test Facility

The open area test site and conducted measurement facility used to collect the radiated data and conducted data are at Roof Top and 2nd Floor respectively of Intertek Testing Services Hong Kong Ltd., which is located at Garment Centre, 576 Castle Peak Road, Kowloon, Hong Kong. This test facility and site measurement data have been fully placed on file with the FCC and the Industry Canada.

Hong Kong Accreditation Service (HKAS) has accredited this laboratory under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this report were determined by this laboratory in accordance with its terms of accreditation.

EXHIBIT 3 SYSTEM TEST CONFIGURATION

Hong Kong Accreditation Service (HKAS) has accredited this laboratory under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this report were determined by this laboratory in accordance with its terms of accreditation.

3.0 System Test Configuration

3.1 Justification

For radiated emissions testing, the equipment under test (EUT) was setup to transmit continuously to simplify the measurement methodology. Care was taken to ensure proper power supply voltages during testing. During testing, all cables (if any) were manipulated to produce worst case emissions.

The EUT was powered by a 100-240VAC to 7.5VDC 0.5A adaptor.

For the measurements, the EUT was attached to a plastic stand if necessary and placed on the wooden turntable. If the EUT attached to peripherals, they were connected and operational to simulate typical use.

The signal was maximized through rotation and placement in the three orthogonal axes. The antenna height and polarization were varied during the search for maximum signal level. The antenna height was varied from 1 to 4 meters. Radiated emissions were taken at three meters unless the signal level was too low for measurement at that distance. If necessary, a pre-amplifier was used and/or the test was conducted at a closer distance.

For any intentional radiator powered by AC power line, measurements of the radiated signal level of the fundamental frequency component of the emission was performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage.

For transmitter radiated measurement, the spectrum analyzer resolution bandwidth was 100 kHz for frequencies below 1000 MHz. The resolution bandwidth was 1 MHz for frequencies above 1000 MHz.

For radiated measurement, the spectrum analyzer resolution bandwidth was 100 kHz for frequencies below 1000 MHz.

Radiated emission measurement for transmitter was performed from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

Emission that are directly caused by digital circuits in the transmit path and transmitter portion were measured, and the limit are according to FCC Part 15 Section 15.209.

Hong Kong Accreditation Service (HKAS) has accredited this laboratory under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this report were determined by this laboratory in accordance with its terms of accreditation.

3.1 Justification - Cont'd

Detector function for radiated emissions is in peak mode. Average readings, when required, are taken by measuring the duty cycle of the equipment under test and subtracting the corresponding amount in dB from the measured peak readings.

Pulse desensitization is not applicable for this device. Since the transmitter transmits the RF signal continuously.

For AC line conducted emission test, the EUT along with its peripherals were placed on a 1.0m(W)x1.5m(L) and 0.8m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane. The EUT was connected to power mains through a line impedance stabilization network (LISN), which provided 50ohm coupling impedance for measuring instrument. The LISN housing, measuring instrument case, reference ground plane, and vertical ground plane were bounded together. The excess power cable between the EUT and the LISN was bundled.

All relevant operation modes have been tested, and the worst case data is included in this report.

3.2 EUT Exercising Software

The EUT exercise program used during radiated and conducted testing was designed to exercise the various system components in a manner similar to a typical use.

Hong Kong Accreditation Service (HKAS) has accredited this laboratory under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this report were determined by this laboratory in accordance with its terms of accreditation.

3.3 Details of EUT and Description of Accessories

Details of EUT:

An AC adaptor and/or a battery (provided with the unit) were used to power the device. Their description are listed below.

- (1) An AC adaptor (100-240VAC to 7.5VDC 0.5A, Model: T07505U002) (Supplied by Client)
- (2) 4 x "AAA" Size "Ni-MH" Type 1.2VDC Rechargeable Batteries (Supplied by Client)

Description of Accessories:

There are no special accessories necessary for compliance of this product.

3.4 Measurement Uncertainty

When determining of the test conclusion, the Measurement Uncertainty of test has been considered.

Uncertainty and Compliance - Unless the standard specifically states that measured values are to be extended by the measurement uncertainty in determining compliance, all compliance determinations are based on the actual measured value.

Hong Kong Accreditation Service (HKAS) has accredited this laboratory under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this report were determined by this laboratory in accordance with its terms of accreditation.

Hong Kong Accreditation Service (HKAS) has accredited this laboratory under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this report were determined by this laboratory in accordance with its terms of accreditation.

4.0 Test Results

Data is included of the worst case configuration (the configuration which resulted in the highest emission levels). A sample calculation, configuration photographs and data tables of the emissions are included.

4.1 Field Strength Calculation

The field strength is calculated by adding the reading on the Spectrum Analyzer to the factors associated with preamplifiers (if any), antennas, cables, pulse desensitization and average factors (when specified limit is in average and measurements are made with peak detectors). A sample calculation is included below.

FS = RA + AF + CF - AG + PD + AV

where

FS = Field Strength in $dB\mu V/m$ RA = Receiver Amplitude (including preamplifier) in $dB\mu V$ CF = Cable Attenuation Factor in dB AF = Antenna Factor in dB AG = Amplifier Gain in dB PD = Pulse Desensitization in dB AV = Average Factor in -dB

In the radiated emission table which follows, the reading shown on the data table may reflects the preamplifier gain. An example of the calculations, where the reading does not reflect the preamplifier gain, follows:

FS = RA + AF + CF - AG + PD + AV

Example

Assume a receiver reading of 62.0 dB μ V is obtained. The antenna factor of 7.4 dB and cable factor of 1.6 dB is added. The amplifier gain of 29 dB is subtracted. The pulse desensitization factor of the spectrum analyzer was 0 dB, and the resultant average factor was -10 dB. The net field strength for comparison to the appropriate emission limit is 32 dB μ V/m. This value in dB μ V/m was converted to its corresponding level in μ V/m.

RA = 62.0 dB μ V AF = 7.4 dB CF = 1.6 dB AG = 29 dB PD = 0 dB AV = -10 dB FS = 62 + 7.4 +1.6 -29 +0 + (-10) = 32 dB μ V/m Level in μ V/m = Common Antilogarithm [(32 dB μ V/m)/20] = 39.8 μ V/m

Test Report Number: HK12071404-2 FCC ID: N7TAC401-R IC: 5786A-AC401R Page 12 of 23

Hong Kong Accreditation Service (HKAS) has accredited this laboratory under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this report were determined by this laboratory in accordance with its terms of accreditation.

4.2 Radiated Emissions

4.2.1 Radiated Emission Configuration Photograph

Worst Case Radiated Emission at

Parent Unit: 4803.400 MHz

The worst case radiated emission configuration photographs are saved with filename: config photos.pdf

4.2.2 Radiated Emission Data

The data in tables 1-3 list the significant emission frequencies, the limit and the margin of compliance.

Judgement -

Parent Unit: Passed by 3.6 dB margin

Hong Kong Accreditation Service (HKAS) has accredited this laboratory under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this report were determined by this laboratory in accordance with its terms of accreditation.

Mode: TX-Channel 00

Table 1, Parent Unit

Radiated Emission Data

			Pre-Amp	Antenna	Calculated	Average	
Polari-	Frequency	Reading	Gain	Factor	at 3m	Limit at 3m	Margin
zation	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
V	2401.700	92.8	33	29.4	89.2	94.0	-4.8
V	1200.850	55.3	33	26.1	48.4	54.0	-5.6
V	3602.550	48.6	33	33.3	48.9	54.0	-5.1
V	4803.400	48.5	33	34.9	50.4	54.0	-3.6
V	6004.250	46.3	33	36.9	50.2	54.0	-3.8
V	7205.100	43.5	33	37.9	48.4	54.0	-5.6

NOTES: 1. Peak detector is used for the emission measurement.

- 2. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna is used for the emission over 1000MHz.
- 5. Emission (the row indicated by **bold italic**) within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-210 Section 2.2.

Hong Kong Accreditation Service (HKAS) has accredited this laboratory under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this report were determined by this laboratory in accordance with its terms of accreditation.

Mode: TX-Channel 02

Table 2, Parent Unit

Radiated Emission Data

			Pre-Amp	Antenna	Calculated	Average	
Polari-	Frequency	Reading	Gain	Factor	at 3m	Limit at 3m	Margin
zation	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
V	2402.900	92.9	33	29.4	89.3	94.0	-4.7
V	1201.450	55.2	33	26.1	48.3	54.0	-5.7
V	3604.350	48.3	33	33.3	48.6	54.0	-5.4
V	4805.800	48.3	33	34.9	50.2	54.0	-3.8
V	6007.250	46.3	33	36.9	50.2	54.0	-3.8
V	7208.700	43.6	33	37.9	48.5	54.0	-5.5

NOTES: 1. Peak detector is used for the emission measurement.

- 2. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Horn antenna is used for the emission over 1000MHz.
- 5. Emission (the row indicated by **bold italic**) within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-210 Section 2.2.

Hong Kong Accreditation Service (HKAS) has accredited this laboratory under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this report were determined by this laboratory in accordance with its terms of accreditation.

Mode: Talk

Table 3, Parent Unit

	Radiated Emission Data						
			Pre-	Antenna	Net	Limit	
Polari-	Frequency	Reading	amp	Factor	at 3m	at 3m	Margin
zation	(MHz)	(dBµV)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
V	32.150	39.4	16	10.0	33.4	40.0	-6.6
V	64.300	40.9	16	9.0	33.9	40.0	-6.1
V	96.450	38.4	16	12.0	34.4	43.5	-9.1
Н	128.600	36.6	16	14.0	34.6	43.5	-8.9
Н	160.750	34.2	16	16.0	34.2	43.5	-9.3
Н	192.900	33.5	16	16.0	33.5	43.5	-10.0

Radiated Emission Data

NOTES: 1. Peak detector is used for the emission measurement.

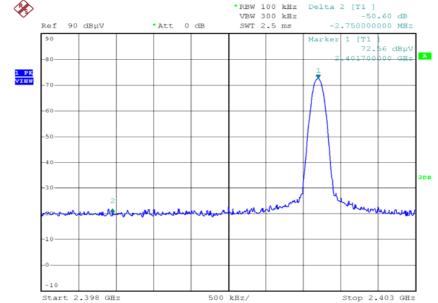
- 2. All measurements were made at 3 meters. Radiated emissions not detected at the 3-meter distance were measured at 0.3-meter and an inverse proportional extrapolation was performed to compare the signal level to the 3-meter limit. No other radiated emissions than those reported were detected at a test distance of 0.3-meter.
- 3. Negative value in the margin column shows emission below limit.
- 4. Emission (the row indicated by *bold italic*) within the restricted band meets the requirement of FCC Part 15 Section 15.205 / RSS-210 Section 2.2.

Hong Kong Accreditation Service (HKAS) has accredited this laboratory under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this report were determined by this laboratory in accordance with its terms of accreditation.

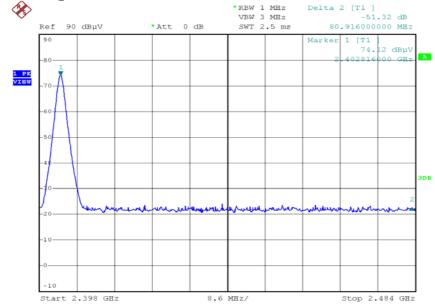
4.3 Radiated Emission on the Bandedge

From the following plots, they show that the fundamental emissions are confined in the specified band (2400MHz and 2483.5MHz). In case of emissions up to two standard bandwidths away from the bandedge, the delta measurement technique is used for determining bandedge compliance. Standard bandwidth is the bandwidth specified by ANSI C63.4 (2009) for frequency being measured.

Emissions radiated outside of the specified frequency bands, except harmonics, are attenuated by 50 dB below the level of the fundamental or to the general radiated emission limits in FCC Part 15 Section 15.209 / Table 5 of RSS-Gen, whichever is the lesser attenuation, which meet the requirement of FCC Part 15 Section 15.249(d) / RSS-210 A2.9(b).


Plots of Radiated Emission on Bandedge are showing below.

Hong Kong Accreditation Service (HKAS) has accredited this laboratory under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this report were determined by this laboratory in accordance with its terms of accreditation.



Plots of Radiated Emission on Bandedge

Parent Unit, Lowest Channel

Parent Unit, Highest Channel

Test Report Number: HK12071404-2 FCC ID: N7TAC401-R IC: 5786A-AC401R

Hong Kong Accreditation Service (HKAS) has accredited this laboratory under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this report were determined by this laboratory in accordance with its terms of accreditation.

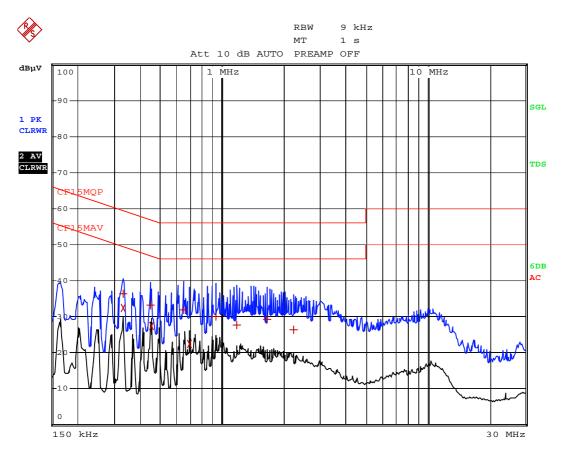
4.4 AC Power Line Conducted Emission

- [] Not applicable EUT is only powered by battery for operation.
- [x] EUT connects to AC power line. Emission Data is listed in following pages.
- [] Baby Unit connects to AC power line and has transmission. Parent connects to AC power line but has no transmission. Emission Data of Base Unit is listed in following pages.
- 4.4.1 AC Power Line Conducted Emission Configuration Photograph

Worst Case Line-Conducted Configuration at

0.330 MHz

The worst case line conducted configuration photographs are saved with filename: config photos.pdf


4.4.2 AC Power Line Conducted Emission Data

The plot(s) and data in the following pages list the significant emission frequencies, the limit and the margin of compliance.

Passed by 17.05 dB margin compare with average limit

Hong Kong Accreditation Service (HKAS) has accredited this laboratory under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this report were determined by this laboratory in accordance with its terms of accreditation.

Worst Case: Transmission Mode

Date: 3.AUG.2012 15:02:43

Hong Kong Accreditation Service (HKAS) has accredited this laboratory under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this report were determined by this laboratory in accordance with its terms of accreditation.

Worst Case: Transmission Mode

		EDIT PEAK LI	IST (Final	Measure	ment Resul	ts)
Tra	cel:	CF15MQP				
Tra	ce2:	CF15MAV				
Tra	ce3:					
	TRACE	FRE	QUENCY	LEVEL d	BμV	DELTA LIMIT dB
1	Quasi Pe	ak 330 kHz		36.34	N gnd	-23.11
2	CISPR Av	erage330 kHz		32.39	N gnd	-17.05
1	Quasi Pe	ak 447 kHz		33.31	L1 gnd	-23.61
2	CISPR Av	erage451.5 kl	Hz	27.44	L1 gnd	-19.40
1	Quasi Pe	ak 649.5 kl	Hz	31.85	L1 gnd	-24.14
2	CISPR Av	erage694.5 kl	Hz	22.38	N gnd	-23.61
1	Quasi Pe	ak 937.5 kl	Hz	30.17	N gnd	-25.82
1	Quasi Pe	ak 1.1805 I	MHz	27.76	N gnd	-28.23
1	Quasi Pe	ak 1.662 M	Hz	29.14	L1 gnd	-26.85
1	Quasi Pe	ak 2.2335 I	MHz	26.41	N gnd	-29.58

Date: 3.AUG.2012 15:02:05

Hong Kong Accreditation Service (HKAS) has accredited this laboratory under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this report were determined by this laboratory in accordance with its terms of accreditation.

Hong Kong Accreditation Service (HKAS) has accredited this laboratory under the Hong Kong Laboratory Accreditation Scheme (HOKLAS) for specific laboratory activities as listed in the HOKLAS directory of accredited laboratories. The results shown in this report were determined by this laboratory in accordance with its terms of accreditation.

5.0 Equipment List

1) Radiated Emissions Test

Equipment	Biconical Antenna 20MHz to 200MHz	Log Periodic Antenna	Double Ridged Guide Abtenna
			(1GHz – 18GHz)
Registration No.	EW-2512	EW-0446	EW-1133
Manufacturer	EMCO	EMCO	EMCO
Model No.	3104C	3146	3115
Calibration Date	Nov. 15, 2011	Oct. 31, 2011	Mar. 02, 2011
Calibration Due Date	May. 13, 2013	Apr. 30, 2013	Sep. 02, 2012

Equipment	EMI Test Receiver	Spectrum Analyzer	Digital Multimeter
Registration No.	EW-2500	EW-2188	EW-1237
Manufacturer	ROHDESCHWARZ	AGILENTTECH	FLUKE
Model No.	ESCI	E4407B	179
Calibration Date	Feb. 24, 2012	Sep. 26, 2011	Sep. 05, 2011
Calibration Due Date	Feb. 24, 2013	Sep. 26, 2012	Oct. 01, 2012

2) Conducted Emissions Test

Equipment	EMI Test Receiver	LISN	Pulse Limiter
Registration No.	EW-2666	EW-0192	EW-0698
Manufacturer	ROHDESCHWARZ	R&S	R&S
Model No.	ESC17	ESH3-Z5	ESH3-Z2
Calibration Date	May. 21, 2012	Apr. 11, 2012	Apr. 06, 2012
Calibration Due Date	May. 21, 2013	Apr. 11, 2013	Apr. 06, 2013

3) Conductive Measurement Test

Equipment	Spectrum Analyzer 40GHz
Registration No.	EW-2253
Manufacturer	ROHDESCHWARZ
Model No.	FSP40
Calibration Date	Jan. 12, 2012
Calibration Due Date	Jan. 12, 2013

END OF TEST REPORT

Test Report Number: HK12071404-2 FCC ID: N7TAC401-R IC: 5786A-AC401R