

FCC PART 15, SUBPART C TEST METHOD: ANSI C63.4-1992

for

AIR I/O

Model: MN900DS

Prepared for

TELXON CORPORATION 8302 NEW TRAILS DRIVE THE WOODLANDS, TEXAS 77381

Prepared by: Kyle Fyjimoto

KYLE FUJIMOTO

Scott MEbotil Approved by:

SCOTT McCUTCHAN

COMPATIBLE ELECTRONICS INC. 114 OLINDA DRIVE BREA, CALIFORNIA 92823 (714) 579-0500

DATE: FEBRUARY 14, 1999

	REPORT		APPEN	S	TOTAL	
	BODY	A	B	С	D	
PAGES	24	3	2	13	42	84

This report shall not be reproduced except in full, without the written approval of Compatible Electronics.

TABLE OF CONTENTS

Section	/ Title	PAGE
GENER	AL REPORT SUMMARY	4
1. PU	JRPOSE	6
2. Al	DMINISTRATIVE DATA	7
2.1	Location of Testing	7
2.2	Traceability Statement	7
2.3	Cognizant Personnel	7
2.4	Date Test Sample was Received	7
2.5	Disposition of the Test Sample	7
2.6	Abbreviations and Acronyms	7
3. Al	PPLICABLE DOCUMENTS	8
4. De	escription of Test Configuration	9
4.1	Description of Test Configuration - EMI	9
4.1.1	Cable Construction and Termination	10
5. LI	STS OF EUT, ACCESSORIES AND TEST EQUIPMENT	11
5.1	EUT and Accessory List	11
5.2	EMI Test Equipment	12
5.3	Processing Gain Test Equipment	13
6. TI	EST SITE DESCRIPTION	14
6.1	Test Facility Description	14
6.2	EUT Mounting, Bonding and Grounding	14
7. CI	HARACTERISTICS OF THE TRANSMITTER	15
7.1	Transmitter Power	15
7.2	Channel Number and Frequencies	15
7.3	Chipping Rate	15
7.4	Spreading Gain	15
7.5	Antenna Gain	15
7.6	Manufacturer of the Spread Spectrum Chip	15
7.7	Antenna Requirements per section 15.203	15
7.8	Description of Transmitter	16
7.9	Processing Gain	17
8. Te	est Procedures	18
8.1	RF Emissions	18
8.1.1	Conducted Emissions Test	18
8.1.2	Radiated Emissions (Spurious and Harmonics) Test	19
8.2	6 dB Bandwidth for Direct Sequence Systems	21
8.3	Peak Output Power	21
8.4 8.5	Spectral Density Output RF Antenna Conducted Test	21 22
8.5 8.6	RF Band Edges	22
8.0 8.7	Processing Gain	22 23
	-	
9. CO	ONCLUSIONS	24

LIST OF APPENDICES

APPENDIX	TITLE			
А	Modifications to the EUT			
В	Additional Models Covered Under This Report			
С	Diagrams, Charts and Photos			
	Test Setup Diagrams			
	Radiated and Conducted Emissions Photos			
	Antenna and Effective Gain Factors			
D	Data Sheets			

LIST OF FIGURES

FIGURE	TITLE
1	Conducted Emissions Test Setup
2	Plot Map And Layout of Test Site

GENERAL REPORT SUMMARY

This electromagnetic emission test report is generated by Compatible Electronics Inc., which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced in any form unless done so in full with the written permission of Compatible Electronics.

This report must not be used to claim product endorsement by NVLAP or any other agency of the U.S. Government.

Device Tested:	Air I/O Model: MN900DS S/N: N/A
Modifications:	The EUT was modified in order to meet the specifications. Please see the list located in Appendix A.
Manufacturer:	VTech Wireless, Inc. 1 Corporate Park Drive, Suite 100 Irvine, California 92606
Test Dates:	February 2 and 9, 1999
File # For Canada	IC2154-D
Test Specifications:	EMI requirements FCC Title 47, Part 15 Subpart B; and Subpart C, sections 15.205, 15.207, 15.209, and 15.247
Test Procedure:	ANSI C63.4: 1992
Test Deviations:	The test procedure was not deviated from during the testing.

SUMMARI OF IESI RESULTS	SUMMARY	OF	TEST	RESULTS
-------------------------	---------	----	------	---------

TEST	DESCRIPTION	RESULTS
1	Conducted RF Emissions, 450 kHz – 30 MHz	Complies with the Class B limits of FCC Title 47, Part 15 Subpart B; and Subpart C, section 15.207
2	Spurious Radiated RF Emissions, 10 kHz – 1000 MHz	Complies with the relevant requirements of FCC Title 47, Part 15, Subpart C, section 15.209(a)
3	Fundamental and Emissions produced by the intentional radiator in non-restricted bands, 10 kHz – 9.3 GHz	Complies with the relevant requirements of FCC Title 47, Part 15, Subpart C, section 15.247(c)
4	Emissions produced by the intentional radiator in restricted bands, 10 kHz – 9.3 GHz	Complies with the relevant requirements of FCC Title 47, Part 15, Subpart C, section 15.209(a)
5	6 dB Bandwidth	Complies with the relevant requirements of FCC Title 47, Part 15, Subpart C, section 15.247 (a)(2)
6	Maximum Peak Output Power	Complies with the relevant requirements of FCC Title 47, Part 15, Subpart C, section 15.247 (b)(1)
7	RF Antenna Conducted	Complies with the relevant requirements of FCC Title 47, Part 15, Subpart C, section 15.247 (c)
8	Peak Power Spectral Density Conducted from the Intentional Radiator to the Antenna	Complies with the relevant requirements of FCC Title 47, Part 15, Subpart C, section 15.247 (d)
9	Processing Gain	Complies with the relevant requirements of FCC Title 47, Part 15, Subpart C, section 15.247 (e)

1. PURPOSE

This document is a qualification test report based on the Electromagnetic Interference (EMI) tests performed on the Air I/O Model: MN900DS. The EMI measurements were performed according to the measurement procedure described in ANSI C63.4: 1992. The tests were performed in order to determine whether the electromagnetic emissions from the Air I/O, referred to as EUT hereafter, are within the <u>specification limits defined by FCC Title 47, Part 15, Subpart C, sections 15.207, 15.209, and 15.247.</u>

2. ADMINISTRATIVE DATA

2.1 Location of Testing

The EMI tests described herein were performed at the test facility of Compatible Electronics, 114 Olinda Drive, Brea, California 92823.

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

Telxon Corporation

Aaron Angle Vice President Product Development

Compatible Electronics Inc.

Kyle FujimotoTest EngineerScott McCutchanLab Manager

2.4 Date Test Sample was Received

The test sample was received on February 1, 1999

2.5 Disposition of the Test Sample

The test sample was returned to VTech Wireless, Inc. on February 10, 1999.

2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

RF	Radio Frequency
EMI	Electromagnetic Interference
EUT	Equipment Under Test
P/N	Part Number
S/N	Serial Number
HP	Hewlett Packard
ITE	Information Technology Equipment
CML	Corrected Meter Limit
LISN	Line Impedance Stabilization Network

3. APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this EMI Test Report.

SPEC	TITLE
FCC Title 47, Part 15 Subpart C.	FCC Rules - Radio frequency devices (including digital devices) – Intentional Radiators.
ANSI C63.4 1992	Methods of measurement of radio-noise emissions from low-voltage electrical and electronic equipment in the range of 9 kHz to 40 GHz.
FCC Title 47, Part 15 Subpart B	FCC Rules - Radio frequency devices (including digital devices) – Unintentional Radiators.

4. DESCRIPTION OF TEST CONFIGURATION

4.1 Description of Test Configuration - EMI

Specifics of the EUT and Peripherals Tested

The Air I/O Model: MN900DS (EUT) was installed inside the Toshiba laptop computer and connected to a right angle adjustable antenna that is a ¹/₂ wave dipole via its RF output port. The laptop computer was connected to the printer, modem, and AC Adapter via its parallel, serial, and DC IN ports, respectively. The low (channel 1), medium (channel 3), and high (channel 5) channels were tested. The EUT was constantly transmitting and receiving. The EUT was investigated for emissions in both receiving and transmitting modes with the antenna being placed in three different orthogonal axis. The final radiated as well as conducted data was taken when the EUT emissions were at their highest level, which was when the EUT was constantly transmitting and the antenna in its X-axis (parallel with the wooden table). The cables were bundled and routed as shown in the photographs in Appendix A.

4.1.1 Cable Construction and Termination

- <u>Cable 1</u> This is a 1 foot braid shielded cable connecting the EUT to the ½ wave dipole antenna. It has a metallic MMCX connector at the EUT end and a reverse TNC metallic connector at the antenna end. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cable 2</u> This is a 5 foot braid and foil shielded cable connecting the printer to the laptop computer. It has a Centronics metallic type connector at the printer end and a D-25 pin metallic connector at the laptop computer end. The cable was bundled to a length of bundled to a length of 1 meter. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cable 3</u> This is a 6 foot braid and foil shielded cable connecting the modem to the laptop computer. It has a D-25 pin metallic connector at the modem end and a D-9 pin metallic connector at the laptop computer end. The cable was bundled to a length of bundled to a length of 1 meter. The shield of the cable was grounded to the chassis via the connectors.
- <u>Cable 4</u> This is a 6 foot unshielded cable connecting the EUT to the AC Adapter. It has a 1/8 inch power connector at the EUT end and a two pin power connector at the AC Adapter end.

5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT

5.1 EUT and Accessory List

EQUIPMENT	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	FCC ID
AIR I/O (EUT)	VTECH WIRELESS, INC.	MN900DS	N/A	N7R-MN900DS
LAPTOP COMPUTER	TOSHIBA	PA1241U XCD	87142725-1	DoC
MODEM	HAYES	07-00038	A0115003033	BFJ9D907-00038A
PRINTER	CITIZEN	LSP-10	11300-6073	DLK66TLSP-10
AC ADAPTER	TOSHIBA	PA2450U	N/A	N/A

5.2 EMI Test Equipment

EQUIPMENT TYPE	MANU- FACTURER	MODEL NUMBER	SERIAL NUMBER	CAL. DATE	CAL. DUE DATE
Spectrum Analyzer	Hewlett Packard	8566B	3638A08784	Nov. 16, 1998	May 16, 1999
Preamplifier	Com Power	PA-102	1017	Jan. 16, 1999	Jan. 16, 2000
Quasi-Peak Adapter	Hewlett Packard	85650A	3303A01688	June 23, 1998	June 23, 1999
RF Attenuator	Com-Power	412-10	N/A	Nov. 20, 1998	Nov. 20, 1999
LISN	Com Power	LI-200	1764	Jan. 3, 1999	Jan. 3, 2000
LISN	Com Power	LI-200	1771	Jan. 3, 1999	Jan. 3, 2000
LISN	Com Power	LI-200	1775	Jan. 3, 1999	Jan. 3, 2000
LISN	Com Power	LI-200	1780	Jan. 3, 1999	Jan. 3, 2000
Biconical Antenna	Com Power	AB-100	1548	Oct. 15, 1998	Oct. 15, 1999
Log Periodic Antenna	Com Power	AL-100	1117	Oct. 15, 1998	Oct. 15, 1999
Antenna Mast	Com Power	AM-100	N/A	N/A	N/A
Turntable	Com Power	TT-100	N/A	N/A	N/A
Computer	Hewlett Packard	D5251A 888	US74458128	N/A	N/A
Printer	Hewlett Packard	C5886A	SG7CM1P090	N/A	N/A
Monitor	Hewlett Packard	D5258A	DK74889705	N/A	N/A
Loop Antenna	Com-Power	AL-130	25309	Feb. 5, 1998	Feb. 5, 1999
Horn Antenna	Antenna Research	DRG-118/A	1053	Dec. 8, 1995	N/A
Microwave Preamplifier	Hewlett Packard	8449B	3008A008766	Jan. 30, 1999	Jan. 30, 2000

EQUIPMENT TYPE	MANU- FACTURER	MODEL NUMBER	SERIAL NUMBER	CAL. DATE	CAL. DUE DATE
Signal Generator	Hewlett Packard	8656B	2530A02271	Jan. 22, 1999	Jan. 22, 2000
Attenuator	Pasternack	PE7036-3	N/A	Prior to Test	Prior to Test
Power Combiner	MCC Mini Circuits	15542	ZFSC-2-2500	Prior to Test	Prior to Test
Laptop Computer	Toshiba	PA124OU VCD	X7345171	N/A	N/A
Laptop Computer	IBM	2635-6EU	78-CT37797/08	N/A	N/A
Accessory AIR I/O	VTech Wireless, Inc.	MN900DS	N/A	N/A	N/A

5.3 Processing Gain Test Equipment

6. TEST SITE DESCRIPTION

6.1 Test Facility Description

Please refer to section 2.1 and 8.1.2 of this report for EMI test location.

6.2 EUT Mounting, Bonding and Grounding

The EUT was mounted on a 1.0 by 1.5 meter non-conductive table 0.8 meters above the ground plane.

The EUT was not grounded.

7. CHARACTERISTICS OF THE TRANSMITTER

7.1 Transmitter Power

Transmit power is herein defined as the power delivered to a 50 Ohm load at the antenna port of the T/R switch.

Power Accuracy

23.0 dBm +3/-3 dB

7.2 Channel Number and Frequencies

Channel Number Channel center Frequency (MHz)

1	908.5
2	912.5
3	915.0
4	919.2
5	922.2

7.3 Chipping Rate

The transceiver uses a chipping rate of 2.38 M Chips/second, with a spreading code of 11 chips per bit.

7.4 Spreading Gain

The theoretical spreading gain, is 13.45 dB.

7.5 Antenna Gain

The antenna gain is 2.15 dBi. Please see the antenna exhibit for more information.

7.6 Manufacturer of the Spread Spectrum Chip

The transciever uses a custom ASIC manufactured by LSI Logic. The manufacturers part number is TSSCIII.

7.7 Antenna Requirements per section 15.203

The transceiver module uses an MMCX connector for it's RF input/output connection. The antenna connects to the transceiver module via a short pig tail cable that has an MMCX plug on one end and a reverse-sex TNC on the other. The antenna uses the opposite reverse-sex TNX to connect to the pig tail. No standard RF connectors are used in the equipment.

7.8 Description of Transmitter

The spread spectrum transmitter uses a custom ASIC manufactured by LSI Logic to generate 37.83 MHz, BPSK, DSSS signal. The carrier for this signal is derived from a 75.6589 MHz crystal oscillator. The ASIC contains the pseudo-random code generator, mod 2 adder, and BPSK modulator, and receiver correlator. The user interface is a serial clock and data line that operate at the "over the air" baud rate of 215 Kb/s.

The 37.83 MHz DSCC signal passes through a buffer amplifier and bandpass filter, then to a linear up-converter. The local oscillator for the up-converter is derived from a VCO whose center frequency tunes over the 864 to 890 MHz range. The VCO's center frequency in maintained by a phaselocked loop synthesizer.

The output of the buffer amplifier passes through a SAW bandpass filter with a center frequency of 915 MHz. A gain-controlled amplifier follows the SAW. This stage is used to set the final output power of the transmitter. A driver amplifier follows the gain controlled amplifier then another SAW bandpass filter. The two SAW filters remove the local oscillator and transmit image frequencies for the output. The driver amplifier excites the output power stage. The output stage increases the transmit power level to maximum of +27 dBm. The output of the power stage drives a two-section lowpass filter and third harmonic trap. The transmit signal then passes through a transmit/receiver switch, and finally to the RF output at the transceiver's MMCX coax connector.

7.9 Processing Gain

The transceiver uses BPSK modulation with its process gain described by

 $Gp(in dB) = 10 Log (Bandwidth_{RF}/R_{info})$ = 10 Log (2 x Chip Rate)/(Data Rate)= 10 Log (2 x 2.38MHz)/(215Kb/s)= 13.45dB

In demonstrating that the radio has the proper amount of process gain we selected a maximum bit error rate of 1 in 10^{-4} . This bit error rate is the minimum acceptable for the intended application of this product. At this bit error rate the system requires a Peak Signal to RMS Noise ratio of 17.4 dB (*Information Transmission Modulation and Noise*, Mischa Swartz, 1980, Figure 5.5). We used this number for the (S/N)o entry of the Gp equation described in Section Part 15.247 (e),(2), that is:

Gp = (S/N)o + Mj + Lsys, all in dB

A balanced data stream (equal number of 1's and 0's) was sent from a transmitter to the test receiver. The transmitter operated at a data rate of 215,000 bits per second. Each data frame was exactly one second long and contained 215,000 data bits. At the end of each frame a bit error rate was calculated by taking the number of incorrect bits and dividing by 215,000. This resulted in a minimum resolution of about 0.5 in 10^{-5} BER for any single one second frame. The nominal un-jammed signal level at the test receiver's input connector was adjusted to – 60dBm. At this level the BER was essentially zero, with no errors observed over many seconds of operation. At 50 KHz increments across the occupied spectrum, the level of the jammer was increased until the BER exceeded 1.0 x 10^{-4} . We noted the jammer level at which the drop in BER occurred and computed Mj.

8. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

8.1 **RF Emissions**

8.1.1 Conducted Emissions Test

The spectrum analyzer was used as a measuring meter along with the quasi-peak adapter. The data was collected with the spectrum analyzer in the peak detect mode with the "Max Hold" feature activated. The quasi-peak detector was used only where indicated in the data sheets. A 10 dB attenuation pad was used for the protection of the spectrum analyzer input stage, and the spectrum analyzer offset was adjusted accordingly to read the actual data measured. The LISN output was read by the spectrum analyzer. The output of the second LISN was terminated by a 50 ohm termination. The effective measurement bandwidth used for the conducted emissions test was 9 kHz.

Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The EUT was powered through the LISN, which was bonded to the ground plane. The LISN power was filtered and the filter was bonded to the ground plane. The EUT was set up with the minimum distances from any conductive surfaces as specified in ANSI C63.4: 1992. The excess power cord was wrapped in a figure eight pattern to form a bundle not exceeding 0.4 meters in length.

The initial test data was taken in manual mode while scanning the frequency ranges of 0.45 MHz to 1.6 MHz, 1.6 MHz to 5 MHz and 5 MHz to 30 MHz. The conducted emissions from the EUT were maximized for operating mode as well as cable placement. Once a predominant frequency (within 12 dB of the limit) was found, it was more closely examined with the spectrum analyzer span adjusted to 1 MHz.

The final data was collected under program control by the HP 9000/300 in several overlapping sweeps by running the spectrum analyzer at a minimum scan rate of 10 seconds per octave.

Conducted Emissions Data Sheets

8.1.2 Radiated Emissions (Spurious and Harmonics) Test

The spectrum analyzer was used as a measuring meter along with the quasi-peak adapter. Amplifiers were used to increase the sensitivity of the instrument. The Com Power Preamplifier Model: PA-102 was used for frequencies from 30 MHz to 1 GHz, and the Hewlett Packard Microwave Amplifier Model: 8449B was used for frequencies above 1 GHz. The spectrum analyzer was used in the peak detect mode with the "Max Hold" feature activated. In this mode, the spectrum analyzer records the highest measured reading over all the sweeps. The quasi-peak adapter was used only for those readings which are marked accordingly on the data sheets. The measurement bandwidths and transducers used for the radiated emissions test were:

FREQUENCY RANGE	EFFECTIVE MEASUREMENT BANDWIDTH	TRANSDUCER
10 kHz to 150 kHz	200 Hz	Active Loop Antenna
150 kHz to 30 MHz	9 kHz	Active Loop Antenna
30 MHz to 300 MHz	120 kHz	Biconical Antenna
300 MHz to 1 GHz	120 kHz	Log Periodic Antenna
1 GHz to 9.3 GHz	1 MHz	Horn Antenna

The open field test site of Compatible Electronics, Inc. was used for radiated emission testing. This test site is set up according to ANSI C63.4: 1992. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength). The gunsight method was used when measuring with the horn antenna in order to ensure accurate results.

Radiated Emissions (Spurious and Harmonics) Test (con't)

The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT. The EUT was tested at a 3 meter test distance to obtain final test data.

Radiated Emissions Data Sheets

8.2 6 dB Bandwidth for Direct Sequence Systems

The 6 dB Bandwidth was taken through an attenuation pad using the spectrum analyzer. The bandwidth was measured using a direct connection from the RF out on the RF board. The resolution bandwidth was 100 kHz, and the video bandwidth 1 MHz.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.209 (a)(2). The bandwidth is at least 500 kHz. Please see the data sheets located in Appendix D.

6dB Bandwidth Data Sheets

8.3 Peak Output Power

The peak output power was taken through an attenuation pad using the spectrum analyzer. The peak output power was measured using a direct connection from the RF out on the RF board. The resolution bandwidth was 3 MHz, and the video bandwidth 1 MHz.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.209 (b)(1). The maximum peak output power is less than 1 watt.

Peak Output Power Data Sheets

8.4 Spectral Density Output

The spectral density output was using the spectrum analyzer. The spectral density output power was measured using a direct connection from the RF out on the RF board into the input of the analyzer. The resolution bandwidth was 3 kHz, and the video bandwidth 10 kHz. The highest 2 MHz of the signal was used as the frequency span with the sweep rate being 1 second for every 3 kHz of span.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.209 (d). The spectral density output does not exceed 8 dBm in any 3 KHz band.

Spectral Density Output Data Sheets

8.5 RF Antenna Conducted Test

The RF antenna conducted test was taken using the spectrum analyzer. The RF antenna conducted test was measured using a direct connection from the RF out on the RF board into the input of the analyzer. The resolution bandwidth was 100 kHz, and the video bandwidth 1 MHz. The spans were wide enough to include all the harmonics and emissions that were produced by the intentional radiator.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.209 (c). The RF power that is produced by the intentional radiator is at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of desired power.

RF Antenna Conducted Test Data Sheets

8.6 **RF Band Edges**

The RF band edges were taken at the edges of the ISM spectrum (902 MHz when the EUT was on channel 1 and 928 MHz when the EUT was on channel 5) using the spectrum analyzer. The RF band edges were measured using a direct connection from the RF out on the RF board into the input of the analyzer. The resolution bandwidth was 100 kHz, and the video bandwidth 300 kHz. The marker was placed at 902 MHz (for channel 1) and 928 MHz (for channel 5). This frequency was then checked to see that it was 20 dB below the band that contained the highest level of desired power.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15.209 (c). The RF power at the band edges is at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of desired power.

RF Band Edges Data Sheets

8.7 Processing Gain

The EUT was installed inside the Toshiba laptop with the RF output of the EUT being sent to input #2 of the combiner. A signal generator was used to generate the jamming signal. The jamming signal was then sent to input #1 of the combiner. The combined signal (signal and jammer) was then sent through an attenuator to the receiving DSSS transceiver which was installed inside the IBM laptop. The signal generator was incremented 50 kHz in each direction across the 6 dB bandwidth of the signal. The level of the jammer was increased until the BER on the IBM laptop exceeded 1.0×10^{-4}

The signal level and jammer level were measured using a spectrum analyzer AFTER the attenuator and combiner in order to prevent having to take these losses into account. The analyzer was offset 2.1 dB for the loss of the measuring coax cable into the input of the spectrum analyzer.

Note: The signal level was measured with the jamming signal turned off. The jamming level was measured with the signal level turned off.

Processing Gain Data Sheets

9. CONCLUSIONS

The Air I/O Model: MN900DS meets all of the specification limits defined in FCC Title 47, Part 15, Subpart B; and Subpart C, sections 15.205, 15.207, 15.209, and 15.247.

APPENDIX A

MODIFICATIONS TO THE EUT

MODIFICATIONS TO THE EUT

The modifications listed below were made to the EUT to pass FCC Subpart B and C specifications.

All the rework described below was implemented during the test in a method that could be reproduced in all the units by the manufacturer.

Modifications:

Please see Modification Letter on the next page.

VTech Group of Companies

To Whom It May Concern:

To successfully meet the spurious radiated emission requirements of FCC Part 15.247 it was necessary to add a 2700 MHz, third harmonic trap, and additional shielding to the test PC card. Several non-RF circuit board traces in the area of the output RF power amplifier were conducting third harmonic energy from the PA's unfiltered output to the area of the final RF output connector. These traces provided a parasitic path around the PA's output lowpass filter. During the test we temporarily relocated the offending circuitry to a different part of the board. In addition we covered the area vacated by the moved circuitry with copper tape, which we connected to circuit ground. For the production circuit boards all of the circuitry associated with this problem has been moved permanently to another area of the pc card away from the PA, and the effected area replaced with a solid ground plane. To provide additional margin for third harmonic spurious output signals, a series resonant trap (1pF in series with 3.3nH) has been added to the circuit board directly at the RF output connector.

The housing for the RF output connector is covered by a shield. However the shield had a notch through which the RF output connector protruded. During testing we bridged the small gap between the shield and the RF output connector with a piece of copper tape. For the production radios, we have changed the shield tooling to create a small tab on the shield that now solders directly to the top of the MMCX RF output connector thereby eliminating the gap.

The above two changes allowed the UUT to pass the radiated spurious emissions.

Thank you,

Terry Floch

Terry Flach

Chief Engineer VTech Wireless, Inc.

VTech Wireless, Inc.

APPENDIX B

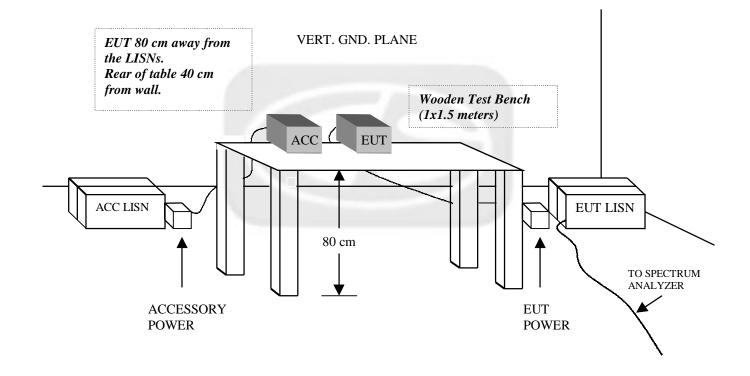
ADDITIONAL MODELS COVERED UNDER THIS REPORT

ADDITIONAL MODELS COVERED UNDER THIS REPORT

USED FOR THE PRIMARY TEST

Air I/O Model: MN900DS S/N: N/A

There were no additional models covered under this report.



APPENDIX C

DIAGRAMS, CHARTS AND PHOTOS

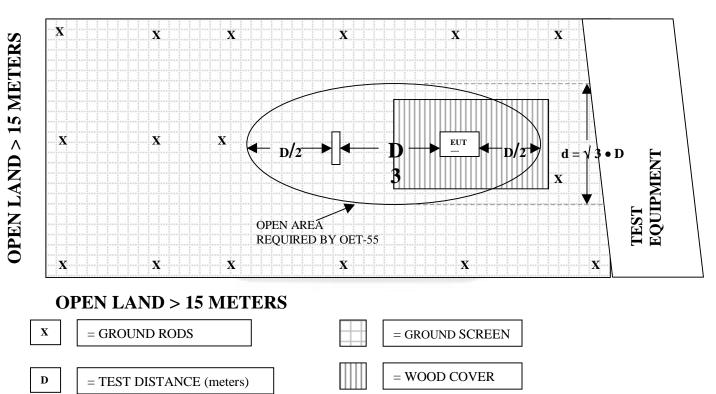


FIGURE 1: CONDUCTED EMISSIONS TEST SETUP

FIGURE 2: PLOT MAP AND LAYOUT OF RADIATED SITE

OPEN LAND > 15 METERS

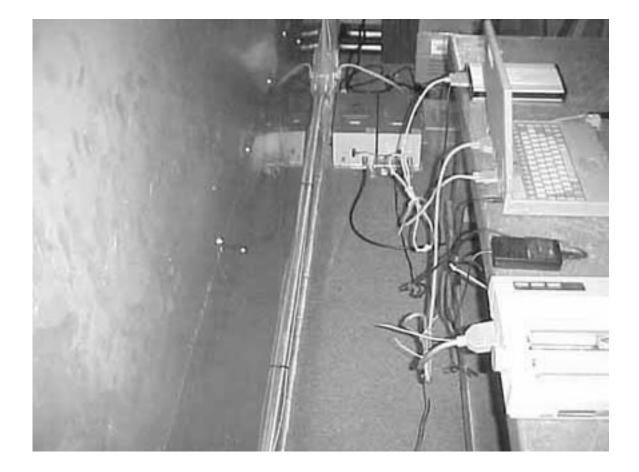
FRONT VIEW

TELXON CORPORATION AIR I/O Model: MN900DS FCC SUBPART B and C - RADIATED EMISSIONS – 2-2-99

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

REAR VIEW

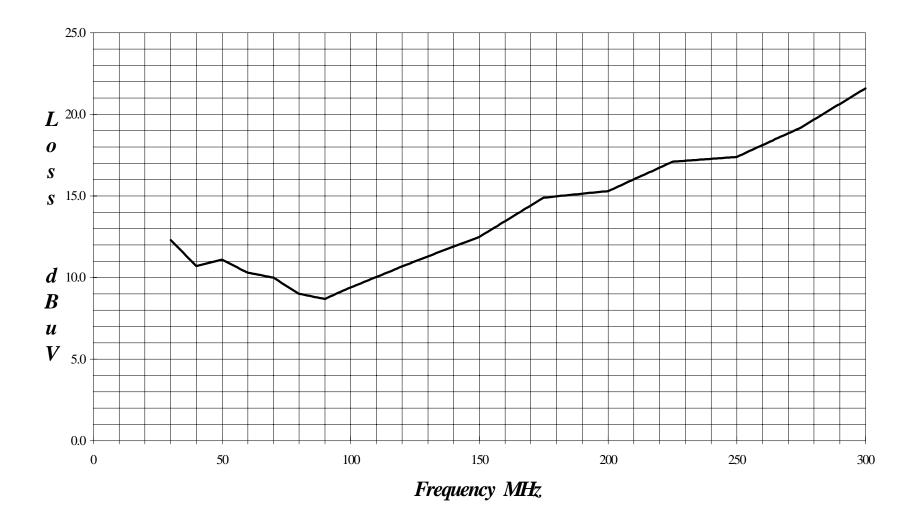
TELXON CORPORATION AIR I/O Model: MN900DS FCC SUBPART B and C - RADIATED EMISSIONS – 2-2-99


PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

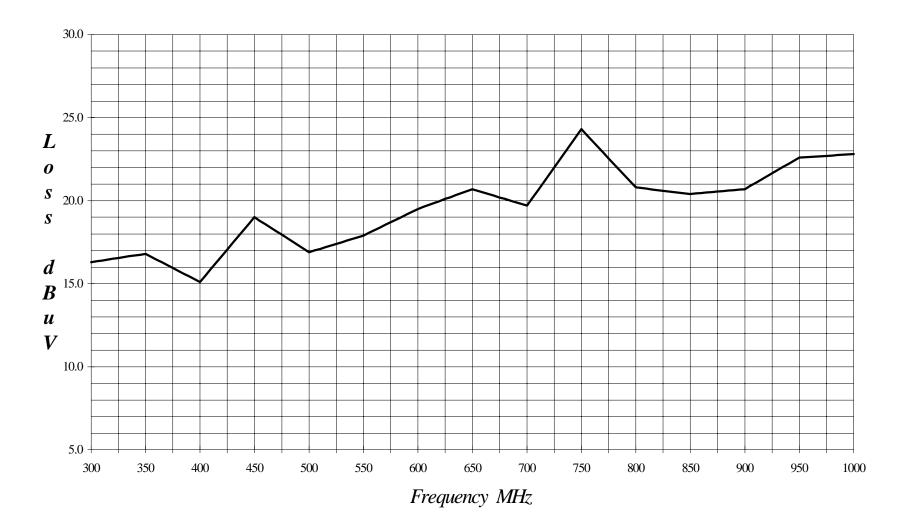
FRONT VIEW

TELXON CORPORATION AIR I/O Model: MN900DS FCC SUBPART B and C - CONDUCTED EMISSIONS – 2-2-99

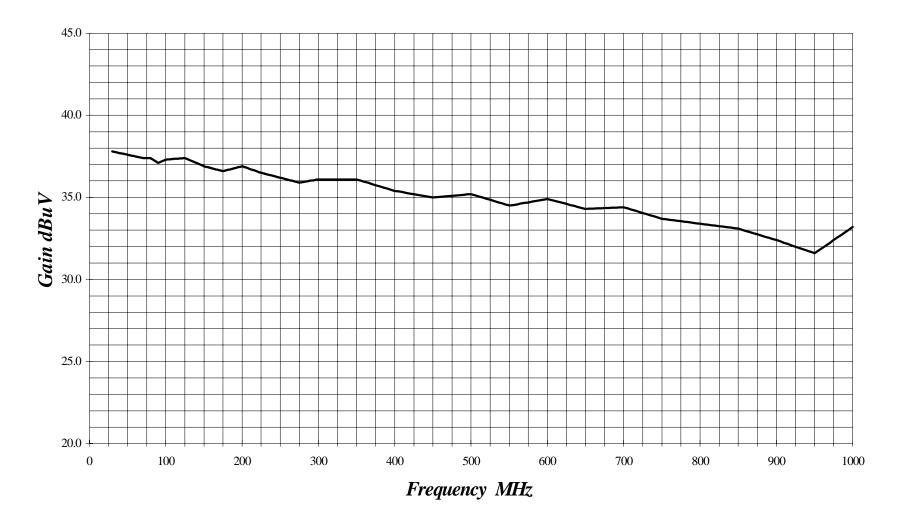
PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS


REAR VIEW TELXON CORPORATION AIR I/O Model: MN900DS FCC SUBPART B and C - CONDUCTED EMISSIONS – 2-2-99

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS


Cal: 10/15/98

LAB 'D' BICONICAL ANTENNA AB-100 S/N 01548



Cal: 10/15/98

LAB 'D' LOG PERIODIC ANTENNA AL-100 S/N 01117

PREAMPLIFIER EFFECTIVE GAIN AT 3 METERS PA-102 S/N: 1017

HEWLETT PACKARD 8449B

MICROWAVE PREAMPLIFIER

S/N: 3008A008766

CALIBRATION DATE: JANUARY 30, 1999

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(GHz)	(dB)	(GHz)	(dB)
1.0	36.9	9.5	34.3
1.1	36.3	10.0	33.7
1.2	36.4	10.5	34.1
1.3	36.2	11.0	33.7
1.4	36.3	11.5	34.0
1.5	35.7	12.0	33.9
1.6	35.9	12.5	34.4
1.7	35.7	13.0	32.9
1.8	35.6	13.5	31.6
1.9	35.5	14.0	31.8
2.0	35.4	14.5	31.9
2.5	35.6	15.0	32.2
3.0	35.2	15.5	32.8
3.5	35.2	16.0	32.4
4.0	34.3	16.5	32.1
4.5	34.1	17.0	32.3
5.0	34.3	17.5	30.3
5.5	33.0	18.0	31.5
6.0	34.1	18.5	31.2
6.5	34.5	19.0	32.2
7.0	34.3	19.5	32.0
7.5	33.9	20.0	32.0
8.0	34.5	20.5	33.2
8.5	34.5	21.0	30.9
9.0	34.4	22.0	32.1

••

E-FIELD ANTENNA FACTOR CALIBRATION

E(dB V/m) = Vo(dB V) + AFE(dB/m)

Model number : DRG-118/A

Frequency GHz	AFE dB/m	Gain dBi
1	22.3	8.0
2	26.7	9.5
3	29 .7	10.1
4	29.5	12.8
5	32 .3	12.0
6	32.4	13.4
7	36.1	11.0
8	37.4	10.9
9	36.8	12.5
10	39 .5	10.7
11	39 .6	11.5
12	39.8	12.0
13	39.7	12.8
14	41.8	11.3
15	41.9	11.9
16	38.1	16.3
17	41.0	13.9
18	46.5	8.9

	Temperature : Humidity : Traceability : Date :	56 %
		· · ·

Calibrated By

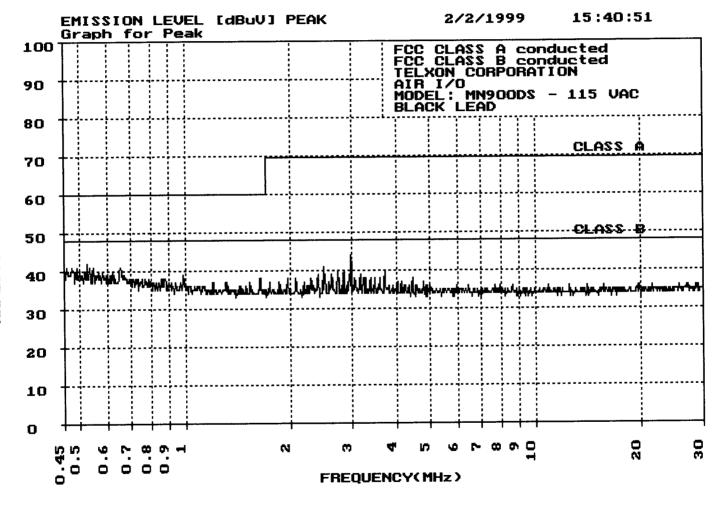
<u>а</u>л. :

Com-Power Corporation								
	(714) 587-9800							
	Antenna Calibration							
Intenna Type: fodel: erial Number: 'alibration Date:		Loop Antenna AL-130 25309 2/5/98						
Frequency MHz	Magnetic (dB/m)	Electric dB/m						
0.01	10.5	11.0						
0.01	-40.5	9.9						
0.02	-41.6	11.5						
0.03	-40.0	11.2						
0.04	-41.6	9.9						
0.06	-41.1	10.4						
0.00	-41.3	10.2						
0.08	-41.6	9.9						
0.09	-41.7	9.8						
0.1	-41.8	9.7						
0.2	-44.0	7.5						
0.3	-41.6	9.9						
0.4	-41.7	9.8						
0.5	-41.7	9.8						
0.6	-41.5	10.0						
0.7	-41.5	10.0						
0.8	-41.6	9.9						
0.9	-41.6	9.9						
1	-41.1	10.4						
2	-40.7	10.8						
3	-40.7	10.8						
4	-40.9	10.6						
5	-40.1	11.4						
6		11.5						
7	_40.3	11.2						
8	-39.8	11.7						
9	-38.8	12.7						
10	-40.8	10.7						
12	-41.4	10.1						
14	-41.4	10.1						
15	-40.9	10.6						
16	-40.8	<u> </u>						
18	-41.5	10.0						
<u>20</u> 25	<u>-41.5</u> -41.2	10.0						
30	-41.2	10.3						
20		1						

APPENDIX D

DATA SHEETS

CONDUCTED EMISSIONS DATA SHEETS

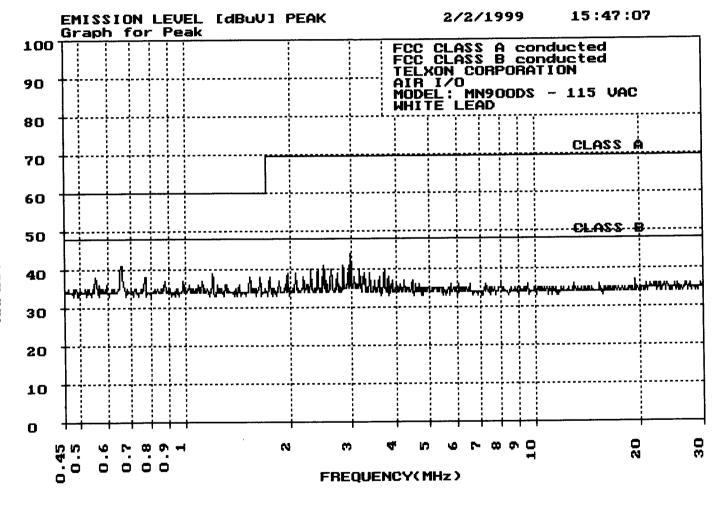

RETURN TO TEST PROCEDURES

	COMPATIBLE
	ELECTRONICS
TELXON CORI	PORATION

AIR 1/0 MODEL: MN900DS - 115 VAC FCC C - BLACK LEAD TEST ENGINEER : <u>Jule Fujimoto</u> KYLE FUJIMOTO

-----20 highest peaks above -50.00 dB of CLASS B limit line Peak criteria : 0.50 dB, Curve : Peak Peak# Freq(Mhz) Amp(dBuV) Limit(dB) Delta(dB) 1 2.968 44.50 48.00 -3.50 2 -5.91 0.524 42.09 48.00 3 2.478 41.80 48.00 -6.20 4 0.489 41.79 48.00 -6.21 5 0.652 41.59 48.00 -6.41 6 0.458 41.59 48.00 -6.41 7 41.39 48.00 -6.61 0.546 8 0.535 41.19 48.00 -6.81 9 41.19 48.00 -6.81 0.476 10 2.729 40.90 48.00 -7.10 40.79 48.00 -7.21 0.482 11 12 0.454 40.79 48.00 -7.21 13 0.498 40.69 48.00 -7.31 14 3.706 40.60 48.00 -7.40 15 2.833 40.60 48.00 -7.40 48.00 -7.61 16 0.581 40.39 40.39 48.00 -7.61 17 0.567 18 0.622 40.19 48.00 -7.81 19 40.19 48.00 -7.81 0.517 20 39.99 48.00 -8.01 0.594 -----_____

2/2/1999 15:40:51


COMPATIBLE

AMPLITUDE(dBuU)

CO	MP.	AT	Ι	B		Ε	
FI	FC	TR	O	Ν	T	CS	

TELXON CORPORATION AIR I/O MODEL: MN900DS - 115 VAC FCC C - WHITE LEAD Kyle Fi TEST ENGINEER :_ KYLE FWIMOTO _____ 20 highest peaks above -50.00 dB of CLASS B limit line Peak criteria : 0.50 dB, Curve : Peak Peak# Freq(Mhz) Amp(dBuV) Limit(dB) Delta(dB) 44.23 48.00 -3.77 2.968 1 -6.10 48.00 2 0.655 41.90 48.00 -6.38 41.62 3 2.478 41.33 48.00 -6.67 4 2.821 -6.97 48.00 5 2.931 41.03 -7.17 48.00 2.605 40.83 6 -7.28 7 2.395 40.72 48.00 -7.47 48.00 8 3.147 40.53 9 2.288 40.22 48.00 -7.78 48.00 -7.86 10 3.706 40.14 -7.97 48.00 2.499 40.03 11 12 3.256 39.93 48.00 -8.07 -8.28 13 2.068 39.72 48.00 1.959 39.72 48.00 -8.28 14 39.63 48.00 -8.37 15 2.718 -8.59 48.00 39.41 16 1.198 48.00 -8.66 17 3.365 39.34 -9.37 18 3.229 38.63 48.00 48.00 -9.38 1.740 38.62 19 48.00 -9.66 20 3.803 38.34 _____ -----_____ ____

2/2/1999 15:47:07

COMPATIBLE ELECTRONIC

AMPL.I TUDE(dBuU)

ſ٨

RADIATED EMISSIONS DATA SHEETS

RETURN TO TEST PROCEDURES

RADIATED EMISSIONS

COMPANY TELXON CORPORATION	DATE 2/2/99
EUT AIR I/O	ANTENNAS LOG PERIODIC AND HORN
MODEL MN900DS	POLARIZATION SEE BELOW
S/N N/A	TEST DISTANCE 3 METERS
EUT MODE LOW CHANNEL	LAB

Comments	Spec Limit (dBuV/m)	Delta ** (dB)	*Corrected Reading (dBuV/m)	Amplifier Gain (dB)	Cable Loss (dB)	Antenna Factor (dB)	Distance Factor (dB)	Azimuth (degrees)	Antenna Height (meters)	Average or Quasi-Peak (dBuV)	Peak Reading (dBuV)	Frequency MHz
Vertical Polarization	N_11	11_11	97.2	27.2							NNEL	LOW CHA
Vertical Polarization	77.2	-38.8		37.3	5.0	20.8	0.0	180	1.0	108.7	114.7	908.50
Vertical Polarization	54.0		38.4	35.6	3.9	24.5	0.0	90	1.0	45.6	51.6	1817.00
Vertical Polarization	54.0	-5.1	48.9	35.6	5.6	28.2	0.0	90	1.0	50.7	56.7	2725.50
Vertical Polarization	54.0		41.2	35.2	7.0	29.6	0.0	90	1.0	39.8	45.8	3634.00
Vertical Polarization		-10.1	43.9	34.1	8.0	30.9	0.0	90	1.0	39.1	45.1	4542.50
Vertical Polarization	54.0	-13.7	40.3	33.0	9.2	32.4	0.0	90	1.0	31.7	37.7	5451.00
Vertical Polarization	77.2	-31.9	45.3	34.5	9.8	34.3	0.0	90	1.0	35.7	41.7	6359.50
Vertical Polarization	54.0	-7.0	47.0	33.9	10.8	36.8	0.0	90	1.0	33.3	39.3	7268.00
Vertical Polarization	54.0	-2.5	51.5	34.5	11.2	37.4	0.0	90	1.0	37.4	43.4	8176.50
vertical rolarization	54.0	-5.5	48.5	34.4	12.1	36.8	0.0	90	1.0	34.0	40.0	9085.00
Horizontal Polarization	<u> </u>										ANNEL	LOW CH
Horizontal Polarization	"	""	97.2	37.3	5.0	20.8	0.0	90	2.0	108.7	114.7	908.50
	77.2	-39.2	38.0	35.6	3.9	24.5	0.0	90	1.0	45.2	51.2	1817.00
Horizontal Polarization	54.0		46.6	35.6	5.6	28.2	0.0	180	3.0	48.4	54.4	2725.50
Horizontal Polarization	54.0	-12.8	41.2	35.2	7.0	29.6	0.0	180	2.0	39.8	45.8	3634.00
Horizontal Polarization	54.0	-11.6	42.4	34.1	8.0	30.9	0.0	180	2.0	37.6	43.6	4542.50
Horizontal Polarization	54.0	-14.0	40.0	33.0	9.2	32.4	0.0	270	2.0	31.4	37.4	5451.00
Horizontal Polarization	77.2		46.8	34.5	9.8	34.3	0.0	180	2.0	37.2	43.2	6359.50
Horizontal Polarizatio	54.0	-6.4	47.6	33.9	10.8	36.8	0.0	0	1.0	33.9	39.9	7268.00
Horizontal Polarizatio	54.0	-6.2	47.8	34.5	11.2	37.4	0.0	90	1.0	33.7	39.7	8176.50
Horizontal Polarizatio	54.0	-3.4	50.6	34.4	12.1	36.8	0.0	90	1.0	36.1	42.1	9085.00
									1.0	50.1	42.1	9083.00
						<u> </u>	<u> </u>				<u>↓</u>	
				<u>† </u>					<u> </u>			

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

*** BELOW 1 GHz, QUASI-PEAK MEASUREMENT IS EMPLOYEED, ABOVE 1 GHz, AVERAGE MEASUREMENT IS EMPLOYED

RADIATED EMISSIONS

COMPANY	TELXON CORPORATION	DATE	2/2/99
EUT	AIR I/O	ANTENNAS	LOG PERIODIC AND HORN
MODEL	MN900DS	POLARIZATION	SEE BELOW
S/N	N/A	TEST DISTANCE	3 METERS
EUT MODE	MIDDLE CHANNEL	LAB	D

Frequency MHz	Peak Reading (dBuV)	Average or Quasi-Peak (dBuV)	Antenna Height (meters)	Azimuth (degrees)	Distance Factor (dB)	Antenna Factor (dB)	Cable Loss (dB)	Amplifier Gain (dB)	*Corrected Reading (dBuV/m)	Delta ** (dB)	Spec Limit (dBuV/m)	Comments
MIDDLE	CHANNE	L										
915.00	114.2	108.2	1.0	180	0.0	21.3	5.0	37.1	97.4	""	"_"	Vertical Polarization
1830.00	50.0	44.0	1.0	90	0.0	24.5	3.9	35.6	36.8	-40.6	77.4	Vertical Polarization
2745.00	60.5	54.5	1.0	90	0.0	28.2	5.6	35.6	52.7	-1.3	54.0	Vertical Polarization
3660.00	53.7	47.7	1.0	90	0.0	29.6	7.0	35.2	49.1	-4.9	54.0	Vertical Polarization
4575.00	45.0	39.0	1.0	90	0.0	30.9	8.0	34.1	43.8	-10.2	54.0	Vertical Polarization
5490.00	40.1	34.1	1.0	90	0.0	32.4	9.2	33.0	42.7	-11.3	54.0	Vertical Polarization
6405.00	41.9	35.9	1.0	90	0.0	34.3	9.8	34.5	45.5	-31.9	77.4	Vertical Polarization
7320.00	43.5	37.5	1.0	90	0.0	36.8	10.8	33.9	51.2	-2.8	54.0	Vertical Polarization
8235.00	42.7	36.7	1.0	90	0.0	37.1	11.5	34.5	50.8	-3.2	54.0	Vertical Polarization
9150.00	40.1	34.1	1.0	90	0.0	36.8	12.1	34.4	48.6	-5.4	54.0	Vertical Polarization
MIDDLE	CHANNE	L										
915.00	114.0	108.0	1.0	90	0.0	21.3	5.0	37.1	97.2	""	""	Horizontal Polarization
1830.00	50.7	44.7	3.0	90	0.0	24.5	3.9	35.6	37.5	-39.7	77.2	Horizontal Polarization
2745.00	55.7	49.7	3.0	90	0.0	28.2	5.6	35.6	47.9	-6.1	54.0	Horizontal Polarization
3660.00	45.9	39.9	1.0	180	0.0	29.6	7.0	35.2	41.3	-12.7	54.0	Horizontal Polarization
4575.00	41.4	35.4	1.0	270	0.0	30.9	8.0	34.1	40.2	-13.8	54.0	Horizontal Polarization
5490.00	40.5	34.5	1.0	270	0.0	32.4	9.2	33.0	43.1	-10.9	54.0	Horizontal Polarization
6405.00	40.2	34.2	1.0	90	0.0	34.3	9.8	34.5	43.8	-33.4	77.2	Horizontal Polarization
7320.00	40.5	34.5	1.0	90	0.0	36.8	10.8	33.9	48.2	-5.8	54.0	Horizontal Polarization
8235.00	41.1	35.1	1.0	90	0.0	37.1	11.5	34.5	49.2	-4.8	54.0	Horizontal Polarization
9150.00	40.7	34.7	3.0	180	0.0	36.8	12.1	34.4	49.2	-4.8	54.0	Horizontal Polarization

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

*** BELOW 1 GHz, QUASI-PEAK MEASUREMENT IS EMPLOYEED, ABOVE 1 GHz, AVERAGE MEASUREMENT IS EMPLOYED

RADIATED EMISSIONS

COMPANY	TELXON CORPORATION	DATE 2/2/99	
EUT	AIR I/O	ANTENNAS LOG PERIODIC AND HORN	
MODEL	MN900DS	POLARIZATION SEE BELOW	
S/N	N/A	TEST DISTANCE 3 METERS	
EUT MODE	HIGH CHANNEL	LAB	

Frequency MHz	Peak Reading (dBuV)	Average or Quasi-Peak (dBuV)	Antenna Height (meters)	Azimuth (degrees)	Distance Factor (dB)	Antenna Factor (dB)	Cable Loss (dB)	Amplifier Gain (dB)	*Corrected Reading (dBuV/m)	Delta ** (dB)	Spec Limit (dBuV/m)	Comments
HIGH CH	ANNEL									<u> </u>	(dout this)	
922.20	114.4	108.4	3.0	90	0.0	21.7	5.0	36.9	98.2	"_"	""	Vertical Polarization
1844.40	50.6	44.6	1.0	90	0.0	24.5	3.9	35.6	37.4	-40.8	78.2	Vertical Polarization
2766.60	57.9	51.9	1.0	90	0.0	29.7	6.4	35.2	52.8	-1.2	54.0	Vertical Polarization
3688.80	48.6	42.6	1.0	90	0.0	29.6	7.0	35.2	44.0	-10.0	54.0	Vertical Polarization
4611.00	43.6	37.6	1.0	90	0.0	30.9	8.0	34.1	42.4	-11.6	54.0	Vertical Polarization
5533.20	39.6	33.6	1.0	90	0.0	32.4	9.2	33.0	42.2	-11.8	54.0	Vertical Polarization
6455.40	42.4	36.4	1.0	90	0.0	34.3	9.8	34.5	46.0	-32.2	78.2	Vertical Polarization
7377.60	42.8	36.8	1.0	90	0.0	36.8	10.8	33.9	50.5	-3.5	54.0	Vertical Polarization
8299.80	42.6	36.6	1.0	90	0.0	37.1	11.5	34.5	50.7	-3.3	54.0	Vertical Polarization
9222.00	40.1	34.1	1.0	90	0.0	36.8	12.1	34.4	48.6	-5.4	54.0	Vertical Polarization
HIGH CH	ANNEL											
922.20	114.3	108.3	1.0	90	0.0	21.7	5.0	36.9	98.1	""	"_"	Horizontal Polarization
1844.40	49.1	43.1	2.0	90	0.0	24.5	3.9	35.6	35.9	-42.2	78.1	Horizontal Polarization
2766.60	55.2	49.2	2.0	0	0.0	29.7	6.4	35.2	50.1	-3.9	54.0	Horizontal Polarization
3688.80	46.1	40.1	2.0	0	0.0	29.6	7.0	35.2	41.5	-12.5	54.0	Horizontal Polarization
4611.00	42.6	36.6	2.0	180	0.0	30.9	8.0	34.1	41.4	-12.6	54.0	Horizontal Polarization
5533.20	42.6	36.6	2.0	90	0.0	32.4	9.2	33.0	45.2	-8.8	54.0	Horizontal Polarization
6455.40	42.2	36.2	2.0	90	0.0	34.3	9.8	34.5	45.8	-32.3	78.1	Horizontal Polarization
7377.60	40.3	34.3	2.0	270	0.0	36.8	10.8	33.9	48.0	-6.0	54.0	Horizontal Polarization
8299.80	42.4	36.4	2.0	180	0.0	37.1	11.5	34.5	50.5	-3.5	54.0	Horizontal Polarization
9222.00	40.4	34.4	2.0	90	0.0	36.8	12.1	34.4	48.9	-5.1	54.0	Horizontal Polarization

* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

** DELTA = SPEC LIMIT - CORRECTED READING

*** BELOW 1 GHz, QUASI-PEAK MEASUREMENT IS EMPLOYEED, ABOVE 1 GHz, AVERAGE MEASUREMENT IS EMPLOYED

Test location: Compatible Electronics		
Customer : TELXON CORPORATION	Date :	2/ 2/1999
Manufacturer : VTECH WIRELESS	Time :	14.15
EUT name : AIR I/O		MN900DS
Specification: Fcc_B Test distance: 3.0 mtrs	Lab:	D
Distance correction factor(20*log(test/spec))	:	0.00
Test Mode : TEMPERATURE 74 DEGREES F.		
RELATIVE HUMIDITY 65%		
TESTED BY: Kycinoto	_	
KYLE FUJÍMOTO		

K	Y	LE	F	UJ	[]	MÇ)T	(

Pol	Freq MHz	Rdng dBuV	Cable loss dB	Ant factor dB	Amp gain dB	Cor'd rdg = R dBuV	limit = L dBuV/m	Delta R-L dB
1V	32.03	45.80	0.82	11.98	38.60	20.00	40.00	-20.00
2V	48.13	45.20	0.98	11.03	38.60	18.61	40.00	-21.39
3V	75.70	57.00	1.20	9.43	38.60	29.03	40.00	-10.97
4V	95.27	61.20	1.30	9.07	38.51	33.06	43.50	-10.44
5V	96.11	55.30	1.30	9.13	38.52	27.21	43.50	-16.29
6V	99.54	54.40	1.30	9.37	38.59	26.48	43.50	-17.02
7V	127.92	54.10	1.42	11.18	38.76	27.93	43.50	-15.57
8V	132.69	61.70	1.46	11.46	38.71	35.92	43.50	-7.58
9V	140.39	56.90	1.52	11.92	38.62	31.73	43.50	-11.77
10V	145.41	63.10	1.56	12.22	38.56	38.33	43.50	-5.17
11V	151.38	49.10	1.61	12.63	38.49	24.85	$\begin{array}{r} 43.50 \\ 43.50 \\ 43.50 \\ 46.00 \\ 46.00 \end{array}$	-18.65
12V	189.48	45.50	1.86	15.13	38.63	23.86		-19.64
13V	199.02	56.10	1.90	15.28	38.78	34.50		-9.00
14V	227.02	41.00	1.83	17.12	38.31	21.65		-24.35
15V	298.52	46.20	2.41	21.46	38.49	31.57		-14.43
16V	331.62	54.00	2.46	16.62	38.56	34.52	46.00	-11.48
17V	340.88	53.70	2.48	16.71	38.58	34.31	46.00	-11.69
18V	364.84	59.50	2.59	16.30	38.48	39.90	46.00	-6.10
19V	431.10	62.20	2.80	17.53	37.95	44.57	46.00	-1.43
20V	431.10	61.53	2.80	17.53	37.95	43.90Qp	46.00	-2.10
21V	441.06	41.40	2.80	18.30	37.87	24.63	46.00	-21.37
22V	576.60	54.90	3.45	18.75	38.17	38.94	46.00	-7.06
23V	795.79	50.20	4.09	21.09	37.52	37.87	46.00	-8.13
24V	870.71	42.90	4.65	20.52	37.46	30.61	46.00	-15.39
25V	946.36	48.90	4.91	22.46	36.57	39.70	46.00	-6.30

Manufacturer : VTECH WIRELESS T EUT name : AIR I/O M Specification: Fcc_B Test distance: 3.0 mtrs Distance correction factor(20*log(test/spec)) Test Mode : TEMPERATURE 74 DEGREES F. RELATIVE HUMIDITY 65%	Time : Model:	MN900DS D
TESTED BY: <u>Marke Furnet</u> KYLE FUJIMOTO		

Pol	Freq MHz	Rdng dBuV	Cable loss dB	Ant factor dB	Amp gain dB	Cor'd rdg = R dBuV	limit = L dBuV/m	Delta R-L dB
1H 2H 3H 4H 5H	32.05 48.06 64.06 66.42 75.69	43.80 46.30 43.40 48.70 53.60	0.82 0.98 1.14 1.16 1.20	11.97 11.02 10.18 10.11 9.43	38.60 38.60 38.60 38.60 38.60 38.60	17.99 19.70 16.12 21.37 25.63	40.00 40.00 40.00 40.00 40.00	-22.01 -20.30 -23.88 -18.63 -14.37
6H	110.99	49.60	1.34	10.10	38.69	22.36	43.50	-21.14
7H	145.46	60.80	1.56	12.23	38.55	36.04	43.50	-7.46
8H	151.39	55.80	1.61	12.63	38.49	31.55	43.50	-11.95
9H	162.65	49.70	1.70	13.71	38.45	26.67	43.50	-16.83
10H	199.00	62.30	1.90	15.28	38.78	40.70	43.50	-2.80
11H	199.00	61.95	1.90	15.28	38.78	40.35Qp	$\begin{array}{r} 43.50 \\ 43.50 \\ 46.00 \\ 46.00 \\ 46.00 \end{array}$	-3.15
12H	200.53	57.10	1.90	15.34	38.79	35.55		-7.95
13H	226.99	37.20	1.83	17.12	38.31	17.85		-28.15
14H	232.20	59.40	1.92	17.19	38.33	40.17		-5.83
15H	331.63	41.60	2.46	16.62	38.56	22.12		-23.88
16H	364.79	47.50	2.59	16.30	38.48	27.90	46.00	-18.10
17H	464.25	50.40	2.89	18.40	37.94	33.74	46.00	-12.26
18H	577.15	48.70	3.45	18.77	38.17	32.75	46.00	-13.25

Page: 1 of 1

KYLE FUJIMOTO	Customer : Manufacturer : EUT name : Specification: Distance correc Test Mode :	VTECH WIRELESS AIR I/O Fcc_B Test distance: 3.0 mtrs tion factor(20*log(test/spec)) RECEIVING MODE ABOVE 1GHz TEMPERATURE 65 DEGREES F. RELATIVE HUMIDITY 65% TESTED BY: <u>We Juma</u>	Time : Model:	MN900DS
		KYLE FUJIMOTO		

Pol	Freq	Rdng	Cable loss	Ant factor	gain	Cor'd rdg = R	limit = L dBuV/m	Delta R-L dB
	MHz	dBuV	dB	dB	dB	dBuV		uв
	1194.00 1194.00	52.20 57.50	3.20 3.20	22.30 22.30	36.40 36.40	41.30 46.60	54.00 54.00	-12.70 -7.40

COMPATIBLE ELECTRONICS							I	PAGE	of	-
ELECTRONICSRADIATED EMISSIONS										
COMPANY NAME: TELXON CORPORATION DATE: 2-2-99										
EUT:	AI	<u>e I/</u>	0			E	U T S/N :	N/A		
								SILVERAI	ο Πα	GOURA
	-							3M		
								TION:		
OUALIFI	CATION		NEERING	MFG .	AUDIT	ENGI	NEER:	Kyle F.		
NOTES:										
Frequency	Peak			Azimuth			-	* Corrected	Delta	Spec
(GHz)	Reading (dBuV)	Reading (dBuV)		(degrees)	Factor (dB)	Loss (dB)	Gain (dB)	Reading (dBuV)	(dB)	Limit (dBuV)
			No	EMISS	IONS	FOUR	10			
			BETW	EN I	DKHZ	-30	MHZ			
·			·		t	1				

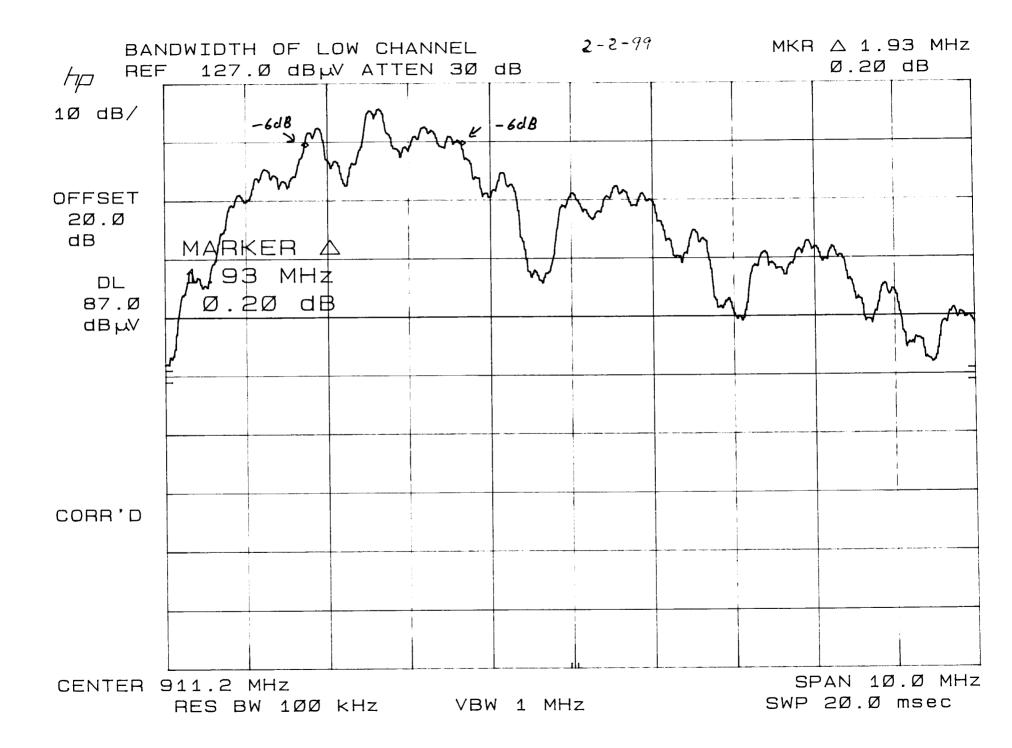
(GHz)	(dBuV)	(dBuV)	(meters)	(degrees)	(dB)	(dB)	(dB)	(dBuV)	(dB)	(dBuV)
			No	EMISS	IONS	FOUN	10			
			BETW	EN I	ОкНг	-30	MHZ			
			IN C	ITHER	POLA	ITAFI	0~			

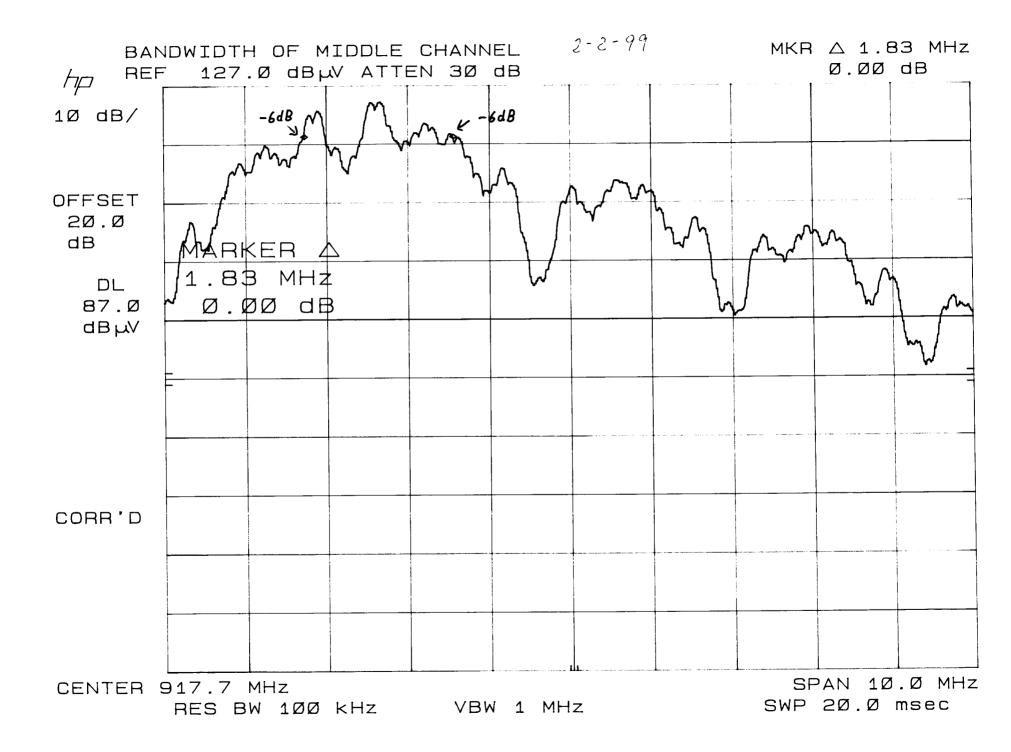
* CORRECTED READING = METER READING + ANTENNA FACTOR + CABLE LOSS - AMPLIFIER GAIN

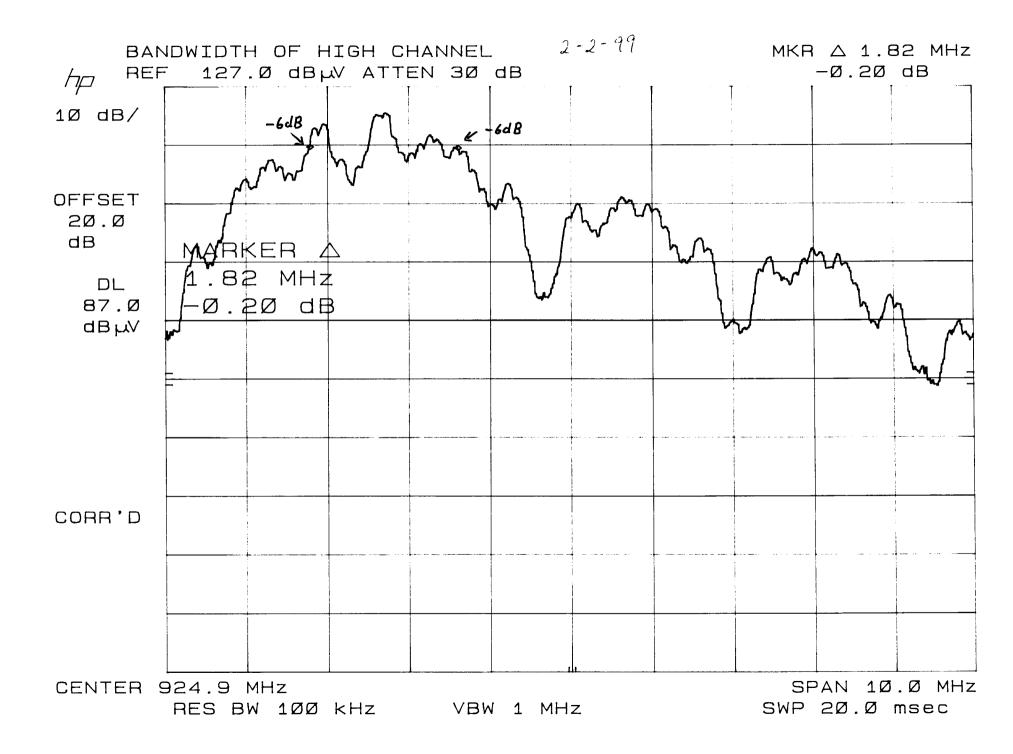
** DELTA = CORRECTED READING - SPECIFICATION LIMIT

BREA (714) 579-0500

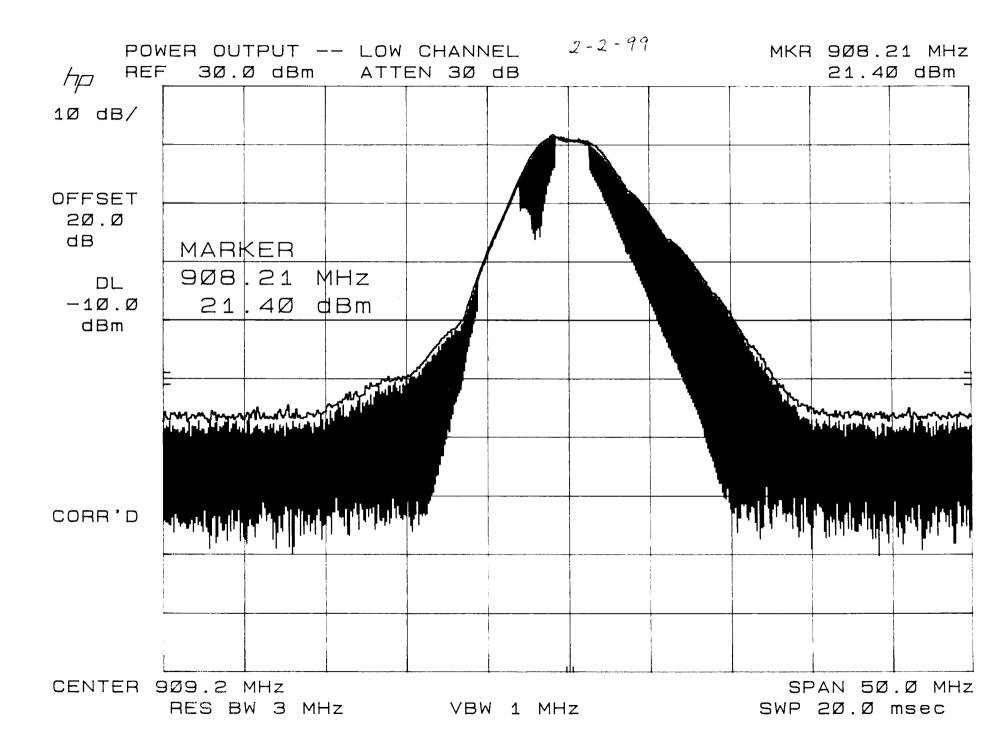
SILVERADO (714) 589-0700

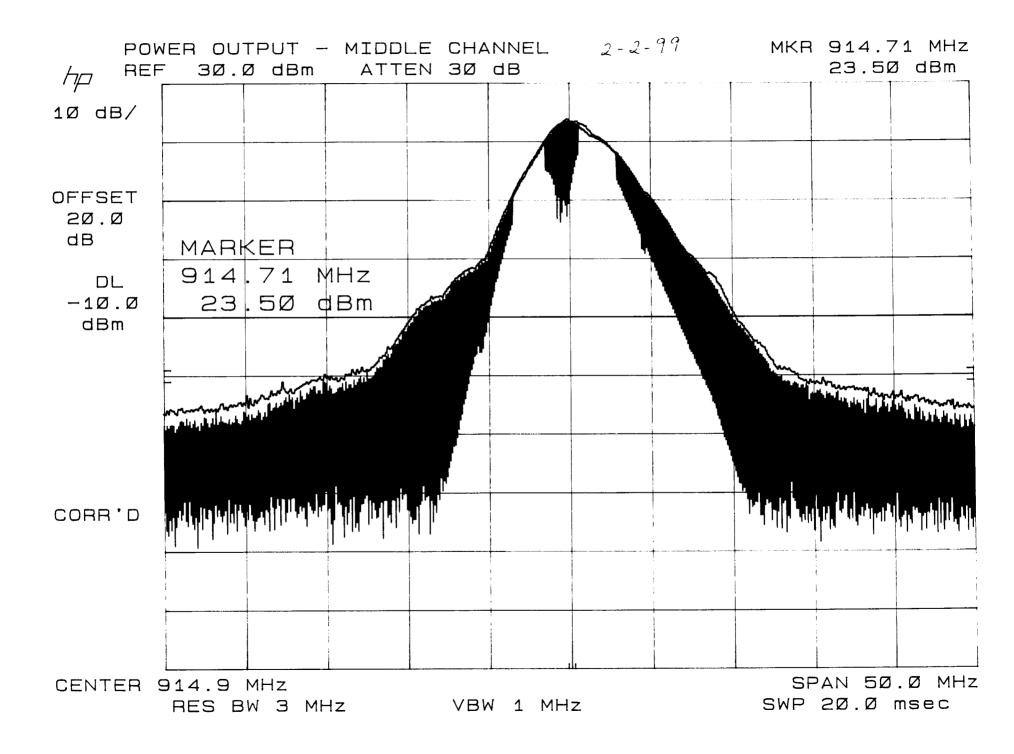

AGOURA (818) 597-0600

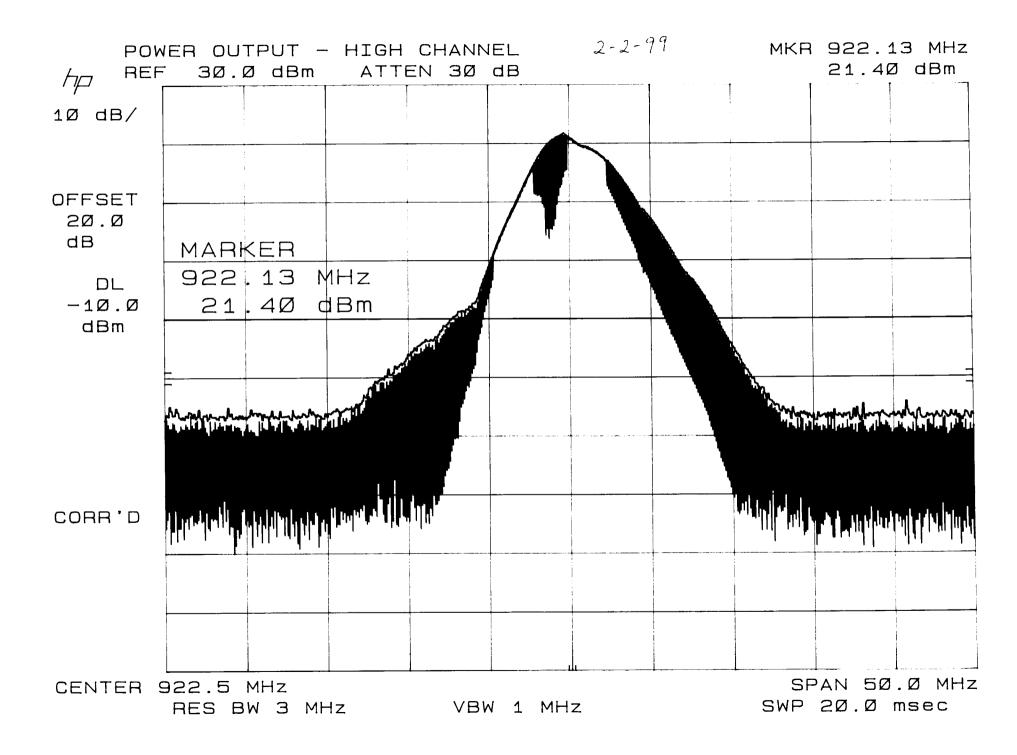



6 dB BANDWIDTH DATA SHEETS

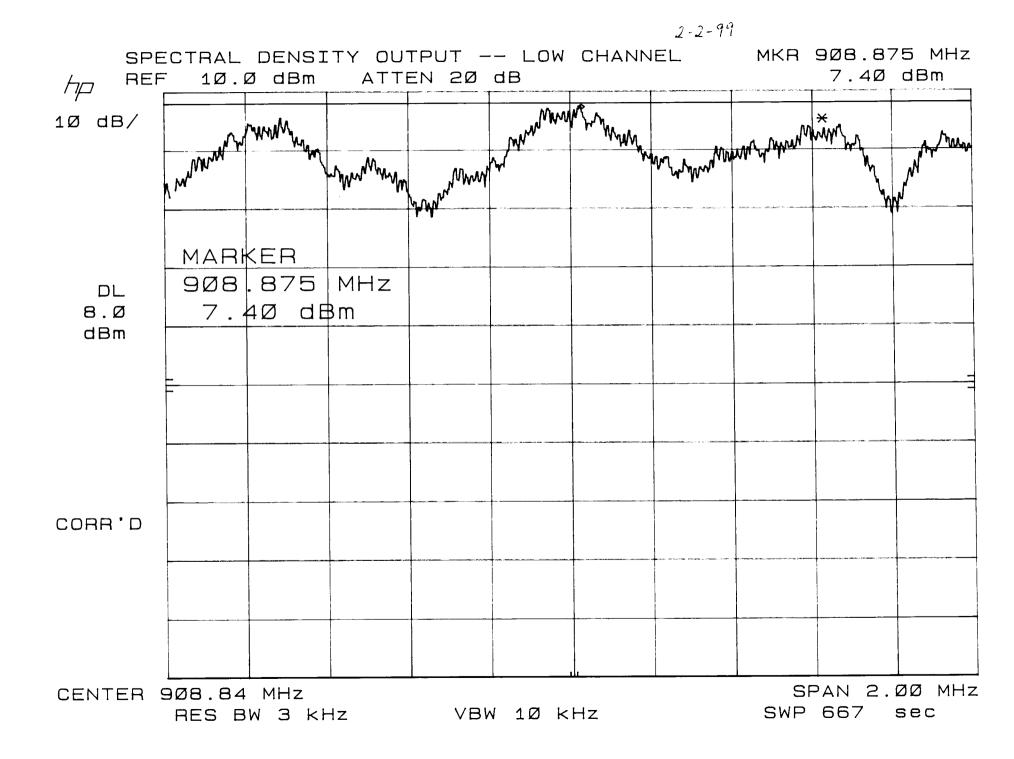
RETURN TO TEST PROCEDURES



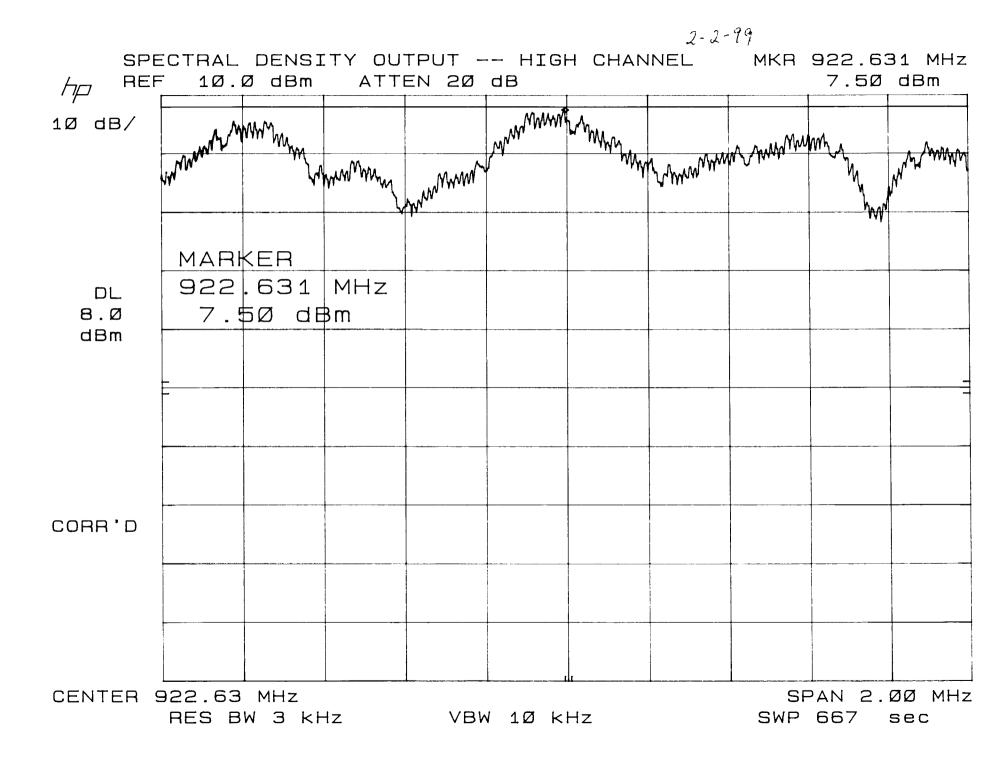



PEAK OUTPUT POWER DATA SHEETS

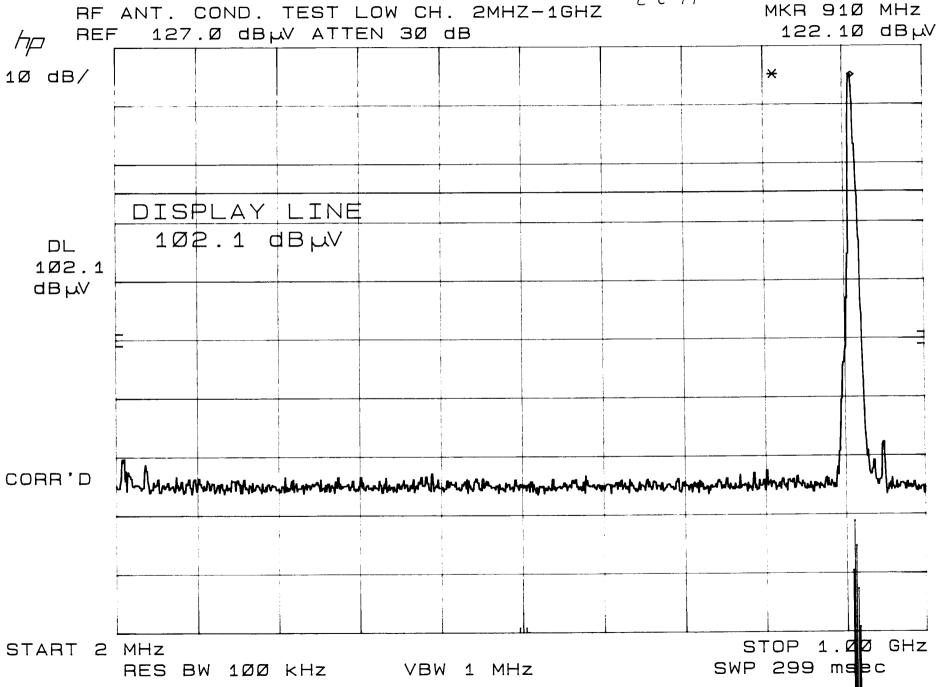
RETURN TO TEST PROCEDURES



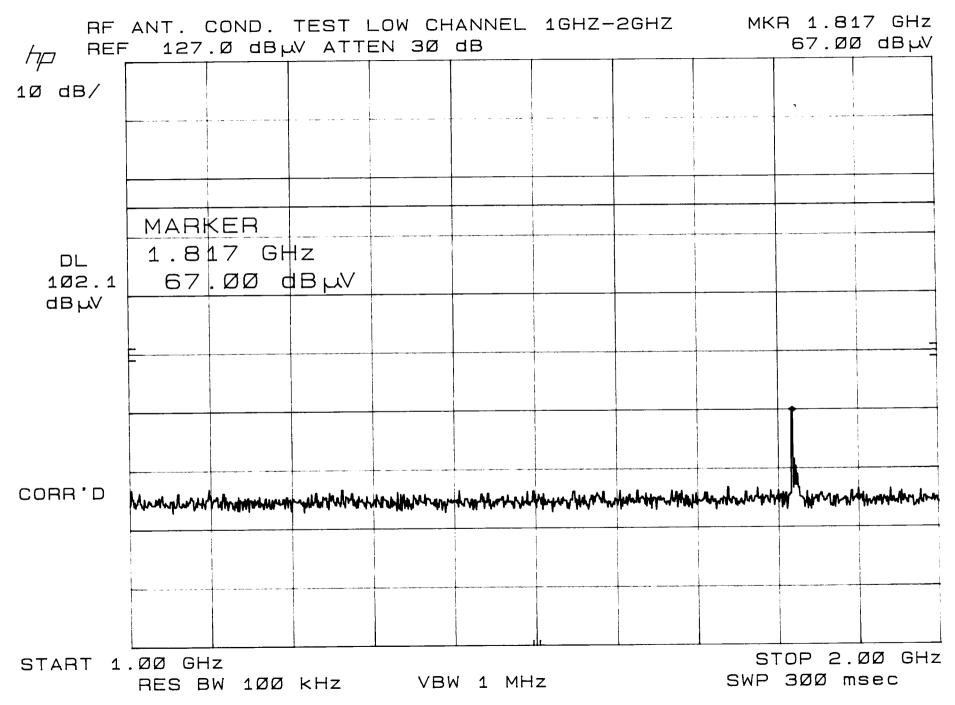



SPECTRAL DENSITY OUTPUT DATA SHEETS

RETURN TO TEST PROCEDURES

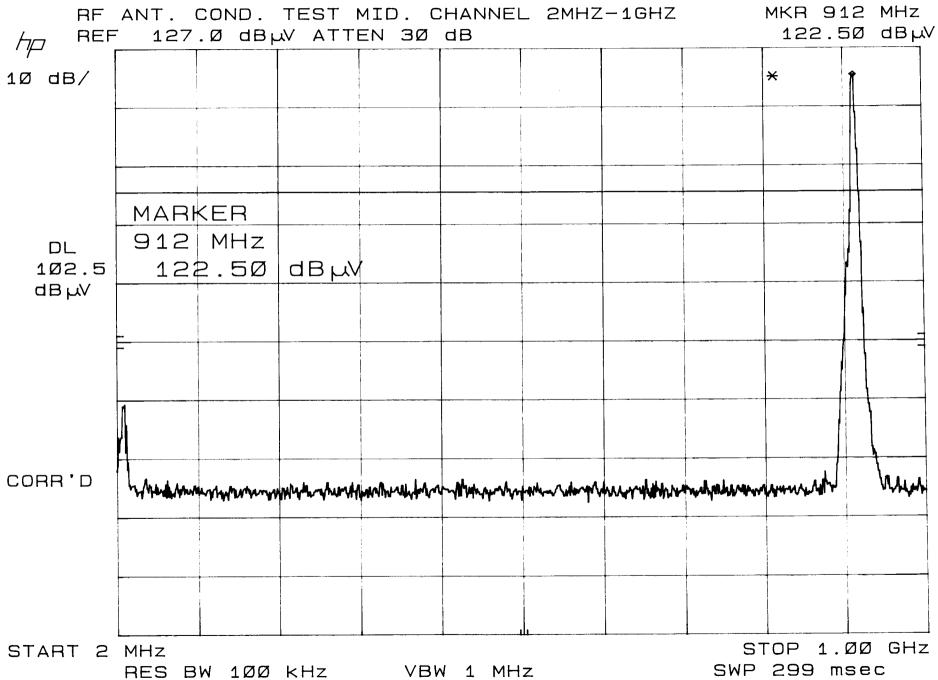


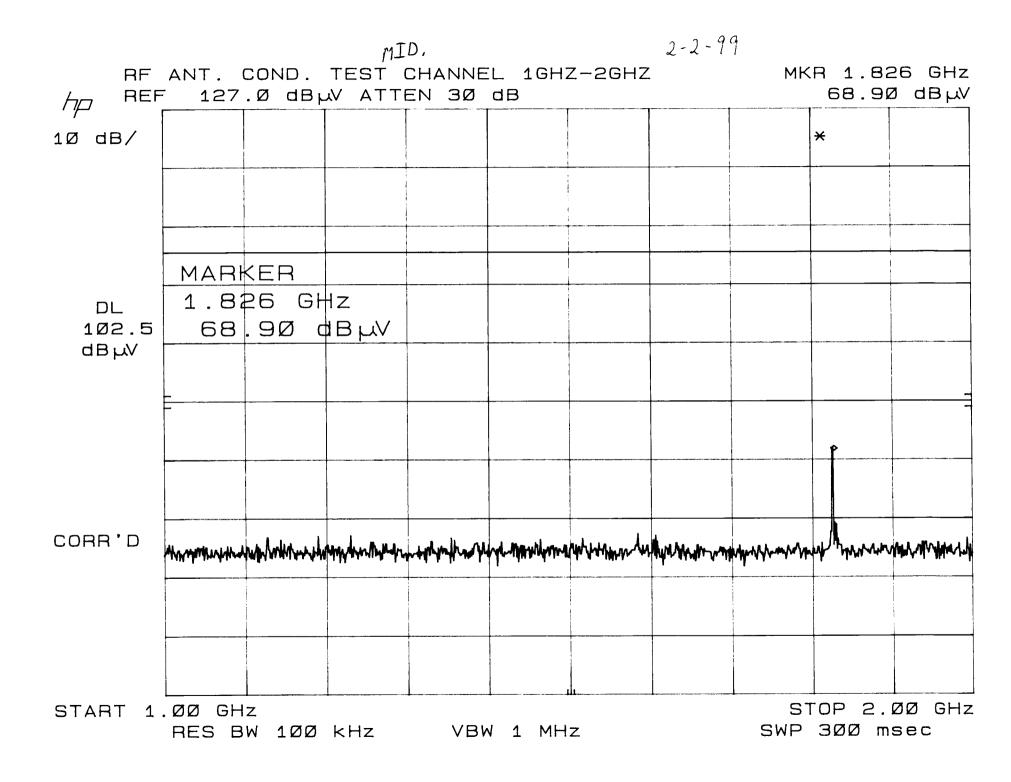
RF ANTENNA CONDUCTED DATA SHEETS



RETURN TO TEST PROCEDURES

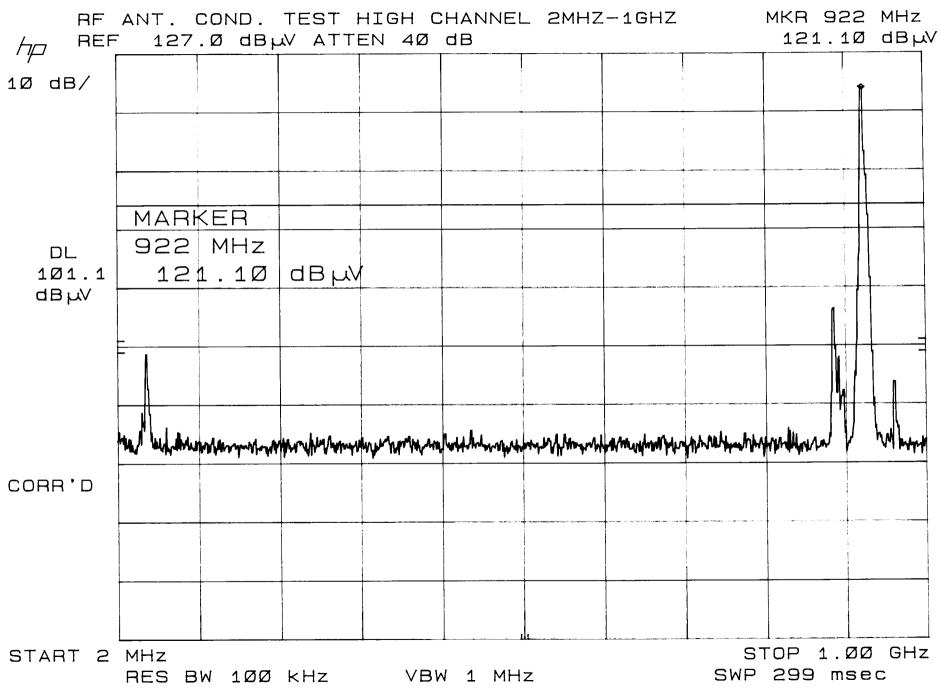
2-2-99

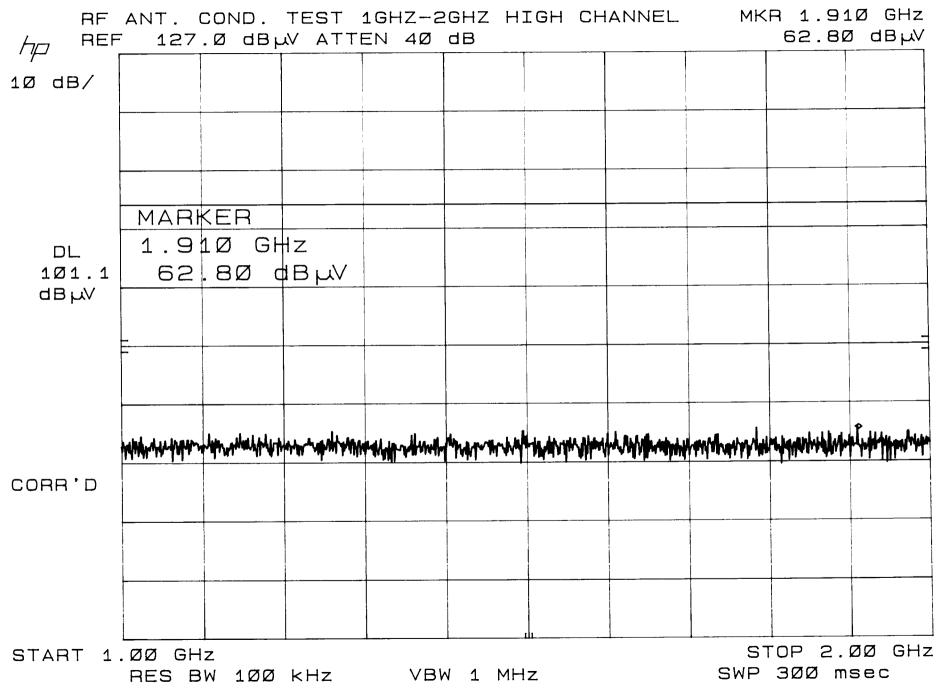

2-2-99



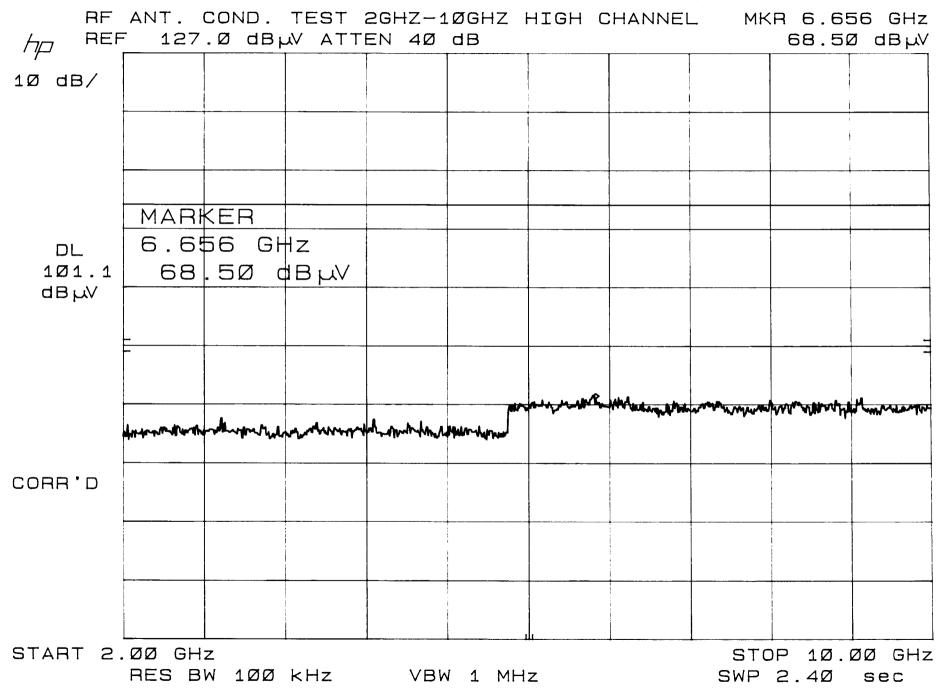
2-2-99

RF hp REF	ANT. COND. TEST LOW CHANNEL 2GHZ-1ØGHZ = 127.Ø dBµV ATTEN 3Ø dB	MKR 8.536 GHz 55.00 dBµV
/ 1Ø dB∕		
	STOP	
DL 1Ø2.1	1Ø.ØØ GHz	
dBµV		
CORR'D	man handy man the marked and have been and the marked and the mark	al Under the second state of the second s
START 2	.ØØ GHZ RES BW 1ØØ KHZ VBW 1 MHZ	STOP 10.00 GHz SWP 2.40 sec



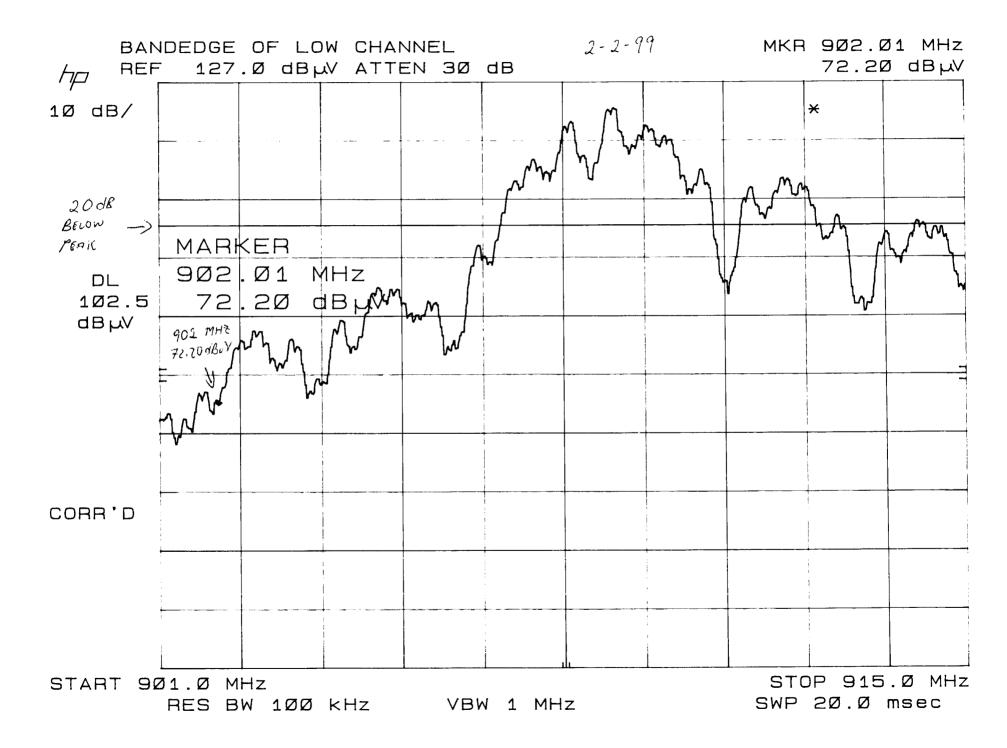


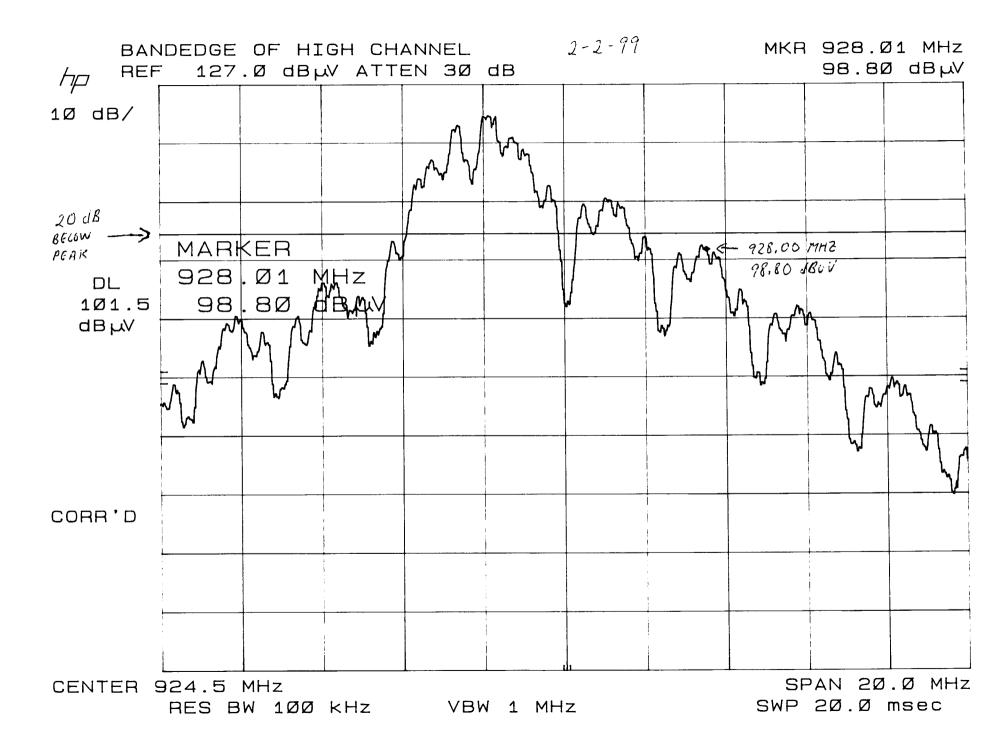
2-2-99


RF <i>hp</i> REF		COND. .Ø dB¦			CHANNEL dB	2GHZ	-1ØGH2	Z MK	R 8.60	18 GHz 1 dBµV
, 1Ø dB/									×	
		• · · · · · · · · · · · · · · · · · · ·			4		· · · · · · · · · · · · · · · · · · ·			
				•				······		
	STO	 		• •						
DL 1Ø2.5	1Ø.1	ØØ GI	ΗZ							
dBµV				 						
	<u>-</u>									-
						1 11001.		.		
CORR'D	monulu	Mmundering	hand	har	Manna	ቀ ዋላ-ዋጊ _ላ ታምንያነ	Y" HANNAN	www.www.anglation.w	Wetter	Murring
				-						
					II					
START 2	.ØØ GH RES B		кНz	VB	W 1 MHz	2		STO SWP	DP 1Ø. 2.4Ø	ØØ GHz sec

2-2-99

2-2-99




RF BAND EDGES DATA SHEETS

RETURN TO TEST PROCEDURES

114 OLINDA DRIVE, BREA, CALIFORNIA 92823 PHONE: (714) 579-0500 FAX: (714) 579-1850

PROCESSING GAIN DATA SHEETS

RETURN TO TEST PROCEDURES

114 OLINDA DRIVE, BREA, CALIFORNIA 92823 PHONE: (714) 579-0500 FAX: (714) 579-1850

PROCESSING GAIN TEST

CHANNEL 3 (915.00 MHz)

Jammer	Signal	CW	Mj	Processing		
Freq.	Level	Noise	J/S ratio	Gain	S/N ratio	17.4
(MHz)	(dBm)	(dBm)	(dB)	(dBm)	System Loss	0
913.50	-60.00	-60.70	-0.70	16.70		
913.55	-60.00	-61.10	-1.10	16.30	Processing Gain	=
913.60	-60.00	-62.30	-2.30	15.10	Mj J/S ratio + Sy	stem Loss + S/N ratio.
913.65	-60.00	-62.50	-2.50	14.90		
913.70	-60.00	-63.50	-3.50	13.90		
913.75	-60.00	-65.00	-5.00	12.40		
913.80	-60.00	-64.10	-4.10	13.30		
913.85	-60.00	-64.40	-4.40	13.00		
913.90	-60.00	-64.10	-4.10	13.30		
913.95	-60.00	-65.00	-5.00	12.40		
914.00	-60.00	-63.90	-3.90	13.50		
914.05	-60.00	-64.70	-4.70	12.70		
914.10	-60.00	-64.70	-4.70	12.70		
914.15	-60.00	-64.70	-4.70	12.70		
914.20	-60.00	-64.30	-4.30	13.10		
914.25	-60.00	-64.90	-4.90	12.50		
914.30	-60.00	-64.40	-4.40	13.00		
914.35	-60.00	-64.10	-4.10	13.30		
914.40	-60.00	-64.30	-4.30	13.10		
914.45	-60.00	-64.30	-4.30	13.10		
914.50	-60.00	-65.60	-5.60	11.80		
914.55	-60.00	-66.00	-6.00	11.40		
914.60	-60.00	-66.20	-6.20	11.20		
914.65	-60.00	-66.40	-6.40	11.00		
914.70	-60.00	-65.10	-5.10	12.30		
914.75	-60.00	-64.60	-4.60	12.80		
914.80	-60.00	-64.20	-4.20	13.20		
914.85	-60.00	-63.50	-3.50	13.90		
914.90	-60.00	-63.80	-3.80	13.60		
914.95	-60.00	-63.40	-3.40	14.00		

PROCESSING GAIN TEST

CHANNEL 3 (915.00 MHz)

916.50

-60.00

-60.70

-0.70

Jammer	Signal	CW	Mj	Processing		
Freq.	Level	Noise	J/S ratio	Gain	S/N ratio	17.4
(MHz)	(dBm)	(dBm)	(dB)	(dBm)	System Loss	0
915.00	-60.00	-63.60	-3.60	13.80		
915.05	-60.00	-63.10	-3.10	14.30	Processing Gain =	
915.10	-60.00	-63.10	-3.10	14.30	Mj J/S ratio + Sys	stem Loss + S/N ratio.
915.15	-60.00	-63.50	-3.50	13.90		
915.20	-60.00	-63.20	-3.20	14.20		
915.25	-60.00	-64.20	-4.20	13.20		
915.30	-60.00	-64.40	-4.40	13.00		
915.35	-60.00	-64.50	-4.50	12.90		
915.40	-60.00	-64.80	-4.80	12.60		
915.45	-60.00	-64.80	-4.80	12.60		
915.50	-60.00	-62.80	-2.80	14.60		
915.55	-60.00	-63.00	-3.00	14.40		
915.60	-60.00	-63.00	-3.00	14.40		
915.65	-60.00	-62.10	-2.10	15.30		
915.70	-60.00	-62.20	-2.20	15.20		
915.75	-60.00	-62.60	-2.60	14.80		
915.80	-60.00	-62.50	-2.50	14.90		
915.85	-60.00	-63.10	-3.10	14.30		
915.90	-60.00	-64.00	-4.00	13.40		
915.95	-60.00	-62.90	-2.90	14.50		
916.00	-60.00	-63.20	-3.20	14.20		
916.05	-60.00	-63.80	-3.80	13.60		
916.10	-60.00	-63.30	-3.30	14.10		
916.15	-60.00	-61.80	-1.80	15.60		
916.20	-60.00	-62.50	-2.50	14.90		
916.25	-60.00	-62.50	-2.50	14.90		
916.30	-60.00	-62.10	-2.10	15.30		
916.35	-60.00	-61.80	-1.80	15.60		
916.40	-60.00	-62.30	-2.30	15.10		
916.45	-60.00	-60.60	-0.60	16.80		

16.70