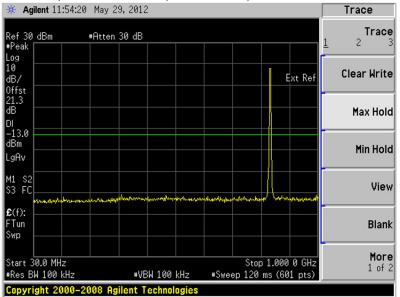
FCC Part 22, 24 / RSS 132, 133	SL9090	May30, 2012	Page 53 of 74

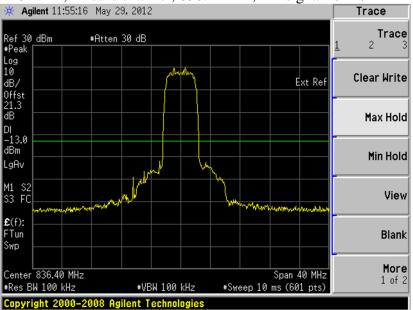
Plot 6.4.39) Out of Band Emissions at Antenna Terminals

WCDMA, Low channel, 826.4 MHz, 1 GHz to 20 GHz


🔆 Agilent	11:52:27	May 29, 2	012						Trace
Ref 30 dB #Peak □	m	#Atten 26 d	яВ		٢		2.48 GHz .10 dBm	1	2 Trace
Log 10 dB/ 0ffst							Ext Ref	_	Clear Write
21.3 dB 1	2 ••••••••••••••••••••••••••••••••••••		1. J	have a second and a second	 r-John-aggru	-,			Max Hold
dBm LgAv									Min Hold
Start 1.00 #Res BW 1 Marker	MHz Trace	Туре	#VBW 1 N	(Axis	ep 110	ms (6 Ampli			Viev
1 2	(1) (1)	Freq Freq		L.65 GHz 2.48 GHz		-35.10 -35.10			Blank
									More 1 of 2
Copyright	2000-2	008 Agilen	t Techno	logies					

© 2009 Sierra Wireless, Inc. The contents of this page are subject to the confidentiality information on page one.

FCC Part 22, 24 / RSS 132, 133	SL9090	May30, 2012	Page 54 of 74


Plot 6.4.40) Out of Band Emissions at Antenna Terminals

WCDMA, Middle channel, 836.4 MHz, 30 MHz to 1 GHz

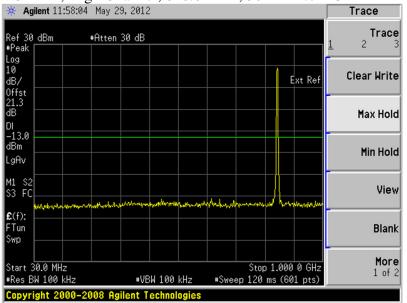
Plot 6.4.41) Out of Band Emissions at Antenna Terminals

WCDMA, Middle channel, 836.4 MHz, TX signal +/- 20 MHz

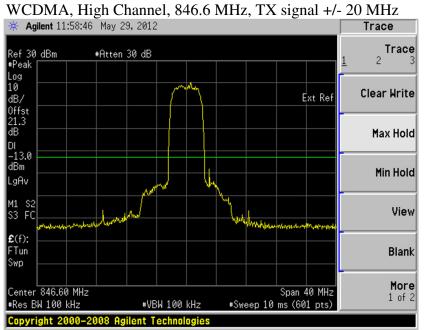
The strong emission shown in each case is the carrier signal.

FCC Part 22, 24 / RSS 132, 133	SL9090	May30, 2012	Page 55 of 74

Plot 6.4.42) Out of Band Emissions at Antenna Terminals


WCDMA, Middle channel, 836.4 MHz, 1 GHz to 20 GHz

🔆 Agilent 11:56:59 May 29, 2012 Trace Mkr2 2.51 GHz -35.81 dBm Trace Ref 30 dBm #Peak #Atten 26 dB 2 Log 10 **Clear Write** dB/ Offst 21.3 Ext Ref. dB Max Hold _1_2 \$ \$ DI -13.0 dBm Min Hold LgAv Start 1.00 GHz #Res BW 1 MHz Stop 20.00 GHz #Sweep 110 ms (601 pts) View #VBW 1 MHz Trace (1) (1) Amplitude -36.07 dBm -35.81 dBm Type Freq Freq X Axis 1.67 GHz 2.51 GHz Marker Blank More 1 of 2 Copyright 2000-2008 Agilent Technologies


FCC Part 22, 24 / RSS 132, 133	SL9090	May30, 2012	Page 56 of 74

Plot 6.4.43) Out of Band Emissions at Antenna Terminals

WCDMA, High Channel, 846.6 MHz, 30 MHz to 1 GHz

Plot 6.4.44) Out of Band Emissions at Antenna Terminals

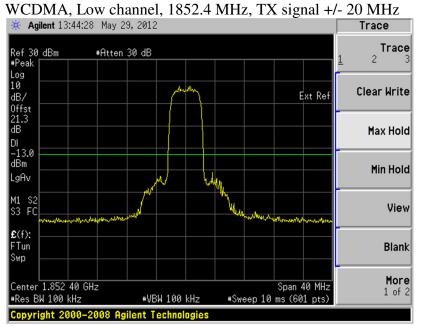
The strong emission shown in each case is the carrier signal.

FCC Part 22, 24 / RSS 132, 133	SL9090	N 00 0010	D 77 674
$\mathbf{H}(1 \mid \mathbf{Part} \mid f) \mid f \mid f \mid \mathbf{KN} \mid \mathbf{N} \mid$	NI YUYU	May30, 2012	Page 57 of 74
1 CC 1 att 22, 277 Rob 152, 155	51,070	1110, 2012	1 agc J / 01 / T

Plot 6.4.45) Out of Band Emissions at Antenna Terminals

WCDMA, High Channel, 846.6 MHz, 1 GHz to 20 GHz

🔆 Agilent 12:01:07	May 29, 2012			Trace
#Peak	#Atten 26 dB		Mkr2 2.54 GHz -34.98 dBm	Trace <u>1</u> 2 3
Log 10 dB/ Offst			Ext Ref.	Clear Write
21.3 dB DI	and a second and a second	میں		Max Hold
-13.0 dBm LgAv				Min Hold
Start 1.00 GHz #Res BW 1 MHz Marker Trace	Type	X Axis	Stop 20.00 GHz #Sweep 110 ms (601 pts) Amplitude	View
1 (1) 2 (1)	Freq Freq	1.69 GHz 2.54 GHz	-36.19 dBm -34.98 dBm	Blank
				More 1 of 2
Copyright 2000-20	008 Agilent T	echnologies		


FCC Part 22, 24 / RSS 132, 133	SL9090	May30, 2012	Page 58 of 74

Plot 6.4.46) Out of Band Emissions at Antenna Terminals

WCDMA, Low channel, 1852.4 MHz, 30 MHz to 1 GHz

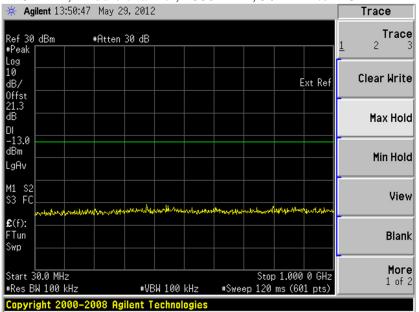
★ Agilent 13:43:00	0 May 29, 2012	Trace
Ref 30 dBm	#Atten 30 dB	Trace 1 2 3
#Peak Log		
10 dB/	Ext Ref	Clear Write
0ffst 21.3 dB		
DI -13.0		Max Hold
dBm		Min Hold
LgAv		
M1 S2 S3 FC		View
€(f):		
FTun Swp		Blank
Start 30.0 MHz	Stop 1.000 0 GHz	More
#Res BW 100 kHz	stop 1.000 0 GHz #VBW 100 kHz #Sweep 120 ms (601 pts)	1 of 2
Copyright 2000-2	2008 Agilent Technologies	

Plot 6.4.47) Out of Band Emissions at Antenna Terminals

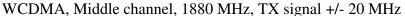
FCC Part 22, 24 / RSS 132, 133	SL9090	May30, 2012	Page 59 of 74
1 CC 1 art 22, 247 KOO 152, 155	517070	Widy50, 2012	1 420 57 01 74

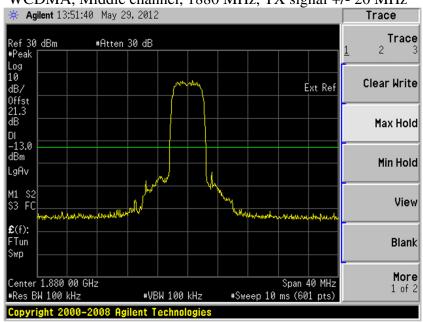
Plot 6.4.48) Out of Band Emissions at Antenna Terminals

WCDMA, Low channel, 1852.4 MHz, 1 GHz to 20 GHz


🔆 Agilent 13:48:42	May 29, 2012				Trace
#Peak	#Atten 26 dB			3.70 GHz 33.69 dBm	Trace <u>1</u> 2 3
Log 10 dB/ 0ffst				Ext Ref	Clear Write
21.3 dB DI -13.0		www.authananana	, and		Max Hold
dBm LgAv					Min Hold
Start 1.00 GHz #Res BW 1 MHz Marker Trace	Type	X Axis	#Sweep 110 ms A	mplitude	View
1 (1)	Freq	3.70 GHz	-3:	3.69 dBm	Blank
					More 1 of 2
Copyright 2000-20	008 Agilent Te	chnologies			

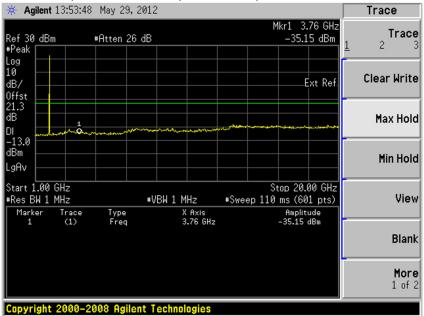
The strong emission shown is the carrier signal.


FCC Part 22, 24 / RSS 132, 133	SL9090	May30, 2012	Page 60 of 74


Plot 6.4.49) Out of Band Emissions at Antenna Terminals

WCDMA, Middle channel, 1880 MHz, 30 MHz to 1 GHz

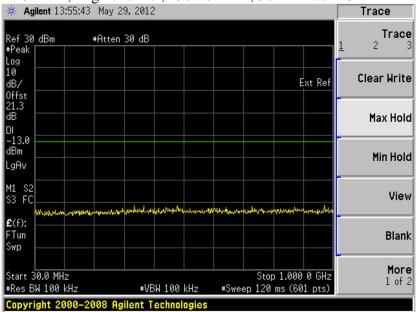
Plot 6.4.50) Out of Band Emissions at Antenna Terminals



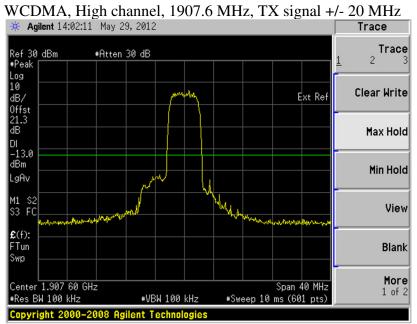
FCC Part 22, 24 / RSS 132, 133	SL9090	May30, 2012	Page 61 of 74

Plot 6.4.51) Out of Band Emissions at Antenna Terminals

WCDMA, Middle channel, 1880 MHz, 1 GHz to 20 GHz



The strong emission shown is the carrier signal.


FCC Part 22, 24 / RSS 132, 133	SL9090	May30, 2012	Page 62 of 74

Plot 6.4.52) Out of Band Emissions at Antenna Terminals

WCDMA, High channel, 1907.6 MHz, 30 MHz to 1 GHz

Plot 6.4.53) Out of Band Emissions at Antenna Terminals

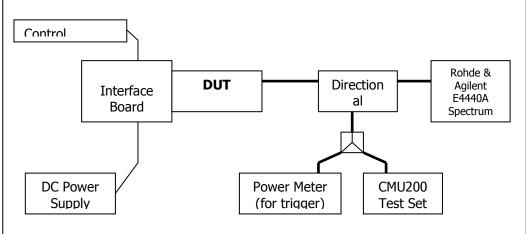
FCC Part 22, 24 / RSS 132, 133	SL9090	May30, 2012	Page 63 of 74

Plot 6.4.54) Out of Band Emissions at Antenna Terminals

WCDMA, High channel, 1907.6 MHz, 1 GHz to 20 GHz

The strong emission shown is the carrier signal.

FCC Part 22, 24 / RSS 132, 133	SL9090	May30, 2012	Page 64 of 74
--------------------------------	--------	-------------	---------------


7 Block Edge Compliance

FCC Part 22H/24E

7.1 Test Procedure

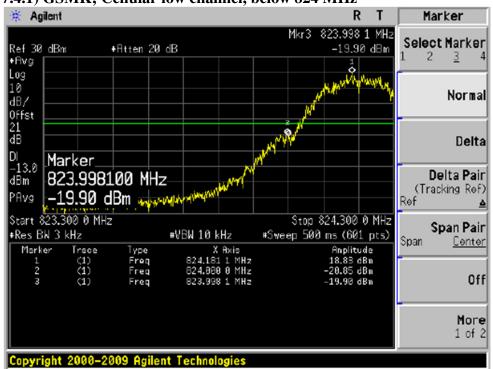
The transmitter output was connected to a Rohde & Schwarz CMU200 Test Set, through a coaxial RF cable and a directional coupler, and configured to operate at maximum power. The block edge emissions were measured at the required operating frequencies in each band on the Spectrum Analyzer.

Test Setup

7.2 Test Equipment

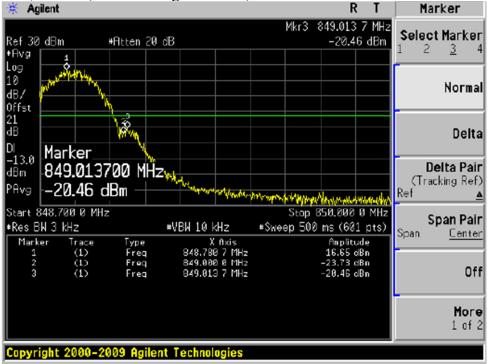
EQUIPMENT	MANUFACTURER	MODEL NO.	SERIAL NO.	CAL. DATE
Control Computer	TC	Generic PC	100488	N/A
Wireless Test Set	Rohde & Schwarz	CMU200	117788	November 17, 2011
Spectrum Analyzer	Agilent	E4440A	200078	November 15, 2011
DC Power Supply	HP	6632A	3530A	N/A
Interface Board	Shop built	ATEMux	N/A	N/A
Directional Coupler	Pasternack	PE2209-10	N/A	N/A

7.3 Test Results


Block	Frequency Boundaries (MHz)	Channels	Correspondin	Result
Test		Tested	g Plots	
1	GMSK: Below 824 MHz, above 849 MHz	128, 251	7.4.1, 7.4.2	Complies
2	8PSK: Below 824 MHz, above 849 MHz	128, 251	7.4.3, 7.4.4	Complies
3	GMSK: Below 1850MHz, above 1910MHz	512, 810	7.4.5, 7.4.6	Complies
4	8PSK: Below 1850MHz, above 1910MHz	512, 810	7.4.7, 7.4.8	Complies
Block	Frequency Boundaries (MHz)	Channels	Correspondin	Result
Test		Tested	g Plots	
1	WCDMA: Below 824MHz, above 849MHz	4132, 4233	7.4.9, 7.4.10	Complies
2	WCDMA: Below 1850MHz, above 1910MHz	9262, 9538	7.4.11, 7.4.12	Complies

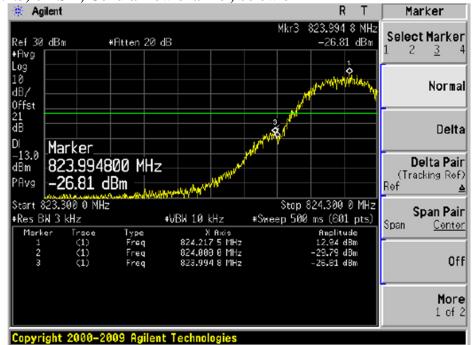
© 2009 Sierra Wireless, Inc.

The contents of this page are subject to the confidentiality information on page one.


FCC Part 22, 24 / RSS 132, 133	SL9090	May30, 2012	Page 65 of 74
1 0 0 1 uit 22 , 2 1 / 100 10 2 , 100	51,070	1114 900, 2012	1 450 00 01 / 1

7.4 Test Plots

Plot 7.4.1) GSMK; Cellular low channel, below 824 MHz


Plot 7.4.2) GMSK; Cellular high channel, above 849 MHz

© 2009 Sierra Wireless, Inc.

The contents of this page are subject to the confidentiality information on page one.

FCC Part 22, 24 / RSS 132, 133 SL9090 May30, 2012 Page 66 of 74

Plot 7.4.3) 8-PSK; Cellular low channel, below 824 MHz

Plot 7.4.4) 8-PSK; Cellular high channel, above 849 MHz

© 2009 Sierra Wireless, Inc. The contents of this page are subject to the confidentiality information on page one.