

Certificate No: D900V2-047_Jul08 Page 1 of 6

This document must not be copied or reproduced, except in full without the written permission of the Manager, EMC Technologies Pty Ltd. The certificate on page 3 may be reproduced in full. www.emctech.com.au

Calibration Laboratory of
Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x, y, z
N/A not applicable or not measured
Calibration is Performed According to the Following Standards:
a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak SpatialAveraged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
c) Federal Communications Commission Office of Engineering \& Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

This document must not be copied or reproduced, except in full without the written permission of the Manager, EMC Technologies Pty Ltd. The certificate on page 3 may be reproduced in full. www.emctech.com.au

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V4.9	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5 \mathrm{~mm}$	
Frequency	$900 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	41.5	$0.97 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$40.2 \pm 6 \%$	$0.95 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature during test	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	-	-

SAR result with Head TSL

SAR averaged over $1 \mathrm{~cm}^{\mathbf{3}}(1 \mathrm{~g})$ of Head TSL	Condition	
SAR measured	250 mW input power	$2.75 \mathrm{~mW} / \mathrm{g}$
SAR normalized	normalized to 1 W	$11.0 \mathrm{~mW} / \mathrm{g}$
SAR for nominal Head TSL parameters ${ }^{1}$	normalized to 1 W	$10.9 \mathrm{~mW} / \mathrm{g} \pm 17.0 \%$ ($\mathbf{k}=\mathbf{2}$)

SAR averaged over $\mathbf{1 0} \mathrm{cm}^{\mathbf{3}} \mathbf{(1 0 \mathrm { g }) \text { of Head TSL }}$	condition	
SAR measured	250 mW input power	$1.78 \mathrm{~mW} / \mathrm{g}$
SAR normalized	normalized to 1 W	$\mathbf{7 . 1 2 \mathrm { mW } / \mathrm { g }}$
SAR for nominal Head TSL parameters ${ }^{1}$	normalized to 1 W	$\mathbf{7 . 0 7} \mathbf{~ m W} / \mathbf{g} \pm \mathbf{1 6 . 5} \%$ ($\mathbf{k}=\mathbf{2})$

$\overline{{ }^{1} \text { Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities" }}$
Certificate No: D900V2-047_Jul08
Page 3 of 6

This document must not be copied or reproduced, except in full without the written permission of the Manager, EMC Technologies Pty Ltd. The certificate on page 3 may be reproduced in full. www.emctech.com.au

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$50.4 \Omega-6.8 \mathrm{j} \Omega$
Return Loss	-23.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.409 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 07, 1998

DASY4 Validation Report for Head TSL

Date/Time: 07.07.2008 12:17:03
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 900 MHz; Type: D900V2; Serial: D900V2 - SN:047
Communication System: CW-900; Frequency: 900 MHz ;Duty Cycle: 1:1
Medium: HSL 900 MHz ;
Medium parameters used: $\mathrm{f}=900 \mathrm{MHz} ; \sigma=0.95 \mathrm{mho} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=40.2 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY4 (High Precision Assessment)
DASY4 Configuration:

- Probe: ES3DV2 - SN3025; ConvF(5.78, 5.78, 5.78); Calibrated: 28.04.2008
- Sensor-Surface: 3.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 14.03.2008
- Phantom: Flat Phantom 4.9L; Type: QD000P49AA; ;
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Pin=250mW; dip=15mm; dist=3.4mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}$, $\mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=58.0 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.009 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=4.11 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(\mathbf{1} \mathrm{g})=\mathbf{2 . 7 5} \mathbf{~ m W} / \mathrm{g} ; \operatorname{SAR}(\mathbf{1 0} \mathrm{g})=\mathbf{1 . 7 8} \mathbf{~ m W} / \mathrm{g}$
Maximum value of SAR (measured) $=3.09 \mathrm{~mW} / \mathrm{g}$

Impedance Measurement Plot for Head TSL

This document must not be copied or reproduced, except in full without the written permission of the Manager, EMC Technologies Pty Ltd. The certificate on page 3 may be reproduced in full. www.emctech.com.au

This document must not be copied or reproduced, except in full without the written permission of the Manager, EMC Technologies Pty Ltd. The certificate on page 3 may be reproduced in full. www.emctech.com.au

Calibration Laboratory of Schmid \& Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S

Accredited by the Swiss Accreditation Service (SAS)
Accreditation No.: SCS 108
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates
Glossary:
TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x, y, z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak SpatialAveraged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
c) Federal Communications Commission Office of Engineering \& Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

This document must not be copied or reproduced, except in full without the written permission of the Manager, EMC Technologies Pty Ltd. The certificate on page 3 may be reproduced in full. www.emctech.com.au

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$\mathrm{dx}, \mathrm{dy}, \mathrm{dz}=5 \mathrm{~mm}$	
Frequency	$1800 \mathrm{MHz} \pm 1 \mathrm{MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	$22.0^{\circ} \mathrm{C}$	40.0	$1.40 \mathrm{mho} / \mathrm{m}$
Measured Head TSL parameters	$(22.0 \pm 0.2)^{\circ} \mathrm{C}$	$39.0 \pm 6 \%$	$1.41 \mathrm{mho} / \mathrm{m} \pm 6 \%$
Head TSL temperature during test	$(22.2 \pm 0.2)^{\circ} \mathrm{C}$	--	$--\mathrm{-}$

SAR result with Head TSL

SAR averaged over $\mathbf{1} \mathrm{cm}^{\mathbf{3}} \mathbf{(1 \mathbf { g }) \text { of Head TSL }}$	condition	
SAR measured	250 mW input power	$9.71 \mathrm{~mW} / \mathrm{g}$
SAR normalized	normalized to 1 W	$38.8 \mathrm{~mW} / \mathrm{g}$
SAR for nominal Head TSL parameters '	normalized to 1 W	$\mathbf{3 8 . 2 \mathrm { mW } / \mathrm { g } \pm \mathbf { 1 7 . 0 } \% (\mathrm { k } = \mathbf { 2 })}$

SAR averaged over $\mathbf{1 0} \mathrm{cm}^{\mathbf{3}}(\mathbf{1 0} \mathrm{g})$ of Head TSL	condition	
SAR measured	250 mW input power	$5.06 \mathrm{~mW} / \mathrm{g}$
SAR normalized	normalized to 1 W	$20.2 \mathrm{~mW} / \mathrm{g}$
SAR for nominal Head TSL parameters ${ }^{1}$	normalized to 1 W	$\mathbf{2 0 . 0} \mathrm{~mW} / \mathrm{g} \pm \mathbf{1 6 . 5} \%(\mathbf{k}=\mathbf{2})$

[^0]
Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	$46.8 \Omega-5.0 \mathrm{j} \Omega$
Return Loss	-24.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.196 ns

After long term use with 100 W radiated power, only a slight warming of the dipole near the feedpoint can be measured.
The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.
No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	December 10, 1998

This document must not be copied or reproduced, except in full without the written permission of the Manager, EMC Technologies Pty Ltd. The certificate on page 3 may be reproduced in full. www.emctech.com.au

DASY4 Validation Report for Head TSL

Date/Time: 08.07.2008 12:18:07
Test Laboratory: SPEAG, Zurich, Switzerland
DUT: Dipole 1800 MHz; Type: D1800V2; Serial: SN:242
Communication System: CW; Frequency: 1800 MHz ; Duty Cycle: 1:1
Medium: HSL U10 BB;
Medium parameters used: $\mathrm{f}=1800 \mathrm{MHz} ; \sigma=1.41 \mathrm{mho} / \mathrm{m} ; \varepsilon_{\mathrm{r}}=39 ; \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Phantom section: Flat Section
Measurement Standard: DASY4 (High Precision Assessment)
DASY4 Configuration:

- Probe: ES3DV2 - SN3025; ConvF(4.96, 4.96, 4.96); Calibrated: 28.04.2008
- Sensor-Surface: 3.4 mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 14.03.2008
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Pin $=250 \mathrm{~mW}$; dip $=10 \mathrm{~mm}$, scan at $3.4 \mathrm{~mm} /$ Zoom Scan (dist=3.4mm, probe 0deg)
(7x7x7)/Cube 0:
Measurement grid: $\mathrm{dx}=5 \mathrm{~mm}, \mathrm{dy}=5 \mathrm{~mm}, \mathrm{dz}=5 \mathrm{~mm}$
Reference Value $=92.4 \mathrm{~V} / \mathrm{m}$; Power Drift $=0.058 \mathrm{~dB}$
Peak SAR $($ extrapolated $)=17.7 \mathrm{~W} / \mathrm{kg}$
$\operatorname{SAR}(1 \mathrm{~g})=9.71 \mathrm{~mW} / \mathrm{g} ; \operatorname{SAR}(10 \mathrm{~g})=5.06 \mathrm{~mW} / \mathrm{g}$
Maximum value of SAR (measured) $=11.5 \mathrm{~mW} / \mathrm{g}$

$$
0 \mathrm{~dB}=11.5 \mathrm{~mW} / \mathrm{g}
$$

This document must not be copied or reproduced, except in full without the written permission of the Manager, EMC Technologies Pty Ltd. The certificate on page 3 may be reproduced in full. www.emctech.com.au

Impedance Measurement Plot for Head TSL

This document must not be copied or reproduced, except in full without the written permission of the Manager, EMC Technologies Pty Ltd. The certificate on page 3 may be reproduced in full. www.emctech.com.au

[^0]: ${ }^{1}$ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"
 Certificate No: D1800V2-242_Jul08
 Page 3 of 6

 This document must not be copied or reproduced, except in full without the written permission of the Manager, EMC Technologies Pty Ltd. The certificate on page 3 may be reproduced in full. www.emctech.com.au

