

SAR Evaluation Report

IN ACCORDANCE WITH THE REQUIREMENTS OF FCC OET BULLETIN 65 SUPPLEMENT C

FOR

850/900/1800/1900/2100 MHZ 5-BAND MINI CARD MODULE

MODEL: MC8755

FCC ID: N7NMC8755

REPORT NUMBER: 06U10666-1

(Co-Tx with BT and WLAN)

ISSUE DATE: OCTOBER 23, 2006

Prepared for

SIERRA WIRELESS, INC. 13811 WIRELESS WAY RICHMOND, BRITISH COLUMBIA V6V 3A4 CANADA

Prepared by

COMPLIANCE CERTIFICATION SERVICES 561F MONTEREY ROAD, MORGAN HILL, CA 95037, USA TEL: (408) 463-0885

LAB CODE:200065-0

Revision History

Rev.	Issued date	Revisions	Revised By
-	October 23, 2006	Initial issue, base on 06U10630-3 CCS SAR report.	HS

CERTIFICATE OF COMPLIANCE (SAR EVALUATION)

DA	TES OF TEST: October 6, 7, 8, 18 and 19, 2006
APPLICANT:	Sierra Wireless, Inc.
ADDRESS:	13811 Wireless Way Richmond, British Columbia V6V 3A4, Canada
FCC ID:	N7NMC8755
MODEL:	MC8755
DEVICE CATEGORY:	Portable Device
EXPOSURE CATEGORY:	General Population/Uncontrolled Exposure

850/900/1800/1900/2100 MHz 5-Band Mini Card installed into Lenovo ThinkPad X60 Tablet which includes WLAN FCC ID: PPD-AR5BXB72-L and Bluetooth FCC ID: MCLJ07H081.

Note: This device contains 900/1800/2100 MHz bands that are not operational in US territories. This report is applicable to 850 and 1900 MHz bands.

Test Sample is a:	Production unit	roduction unit							
Host Laptop	Lenovo ThinkPad X60 Tab	let							
Rule Parts	Frequency Range [MHz]	The Highest Collocation SAR Values [1g_mW/g]							
22H	824.2-848.8	0.760							
24E	1850.2-1909.8	0.734							

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for General Population/Uncontrolled Exposure limits specified in ANSI/IEEE Std. C95.1-1992 and had been tested in accordance with the measurement procedures specified in FCC OET 65 Supplement C (Edition 01-01).

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by Compliance Certification Services and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Compliance Certification Services will constitute fraud and shall nullify the document. No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

Approved & Released For CCS By:

Hsin-Fa Shih

Hsin Fu Shih Senior Engineer Compliance Certification Services Tested By:

Winay Dorouch

Ninous Davoudi EMC Engineer Compliance Certification Services

TABLE OF CONTENTS

1	EQUIPME	NT UNDER TEST (EUT) DESCRIPTION	5
2	FACILITIE	S AND ACCREDITATION	6
3	SYSTEM [DESCRIPTION	7
	3.1 COM	POSITION OF INGREDIENTS FOR TISSUE SIMULATIG LIQUIDS	8
4	SIMULATI	NG LIQUID PARAMETERS CHECK	9
	4.1 SIMU	LATING LIQUID PARAMETER CHECK RESULT	10
5	SYSTEM F	PERFORMANCE CHECK	15
		EM PERFORMANCE CHECK RESULTS	
6	SAR MEAS	SURMENT PROCEDURE	17
	6.1 DAS	4 SAR MEASURMENT PROCEDURE	18
7	PROCEDU	IRE USED TO ESTABLISH TEST SIGNAL	19
8			20
0	SAR MEA	SURMENT RESULTS	20
0	8.1 CELL	BAND	20
0	8.1 CELL 8.1.1 ED	BAND GE POSITION – PRIMARY PORTRAIT	20 20
0	8.1 CELL 8.1.1 ED 8.1.2 LCI	BAND GE POSITION – PRIMARY PORTRAIT DEDGE POSITION – SECONDARY PORTRAIT	20 20 21
0	8.1 CELL 8.1.1 ED 8.1.2 LCI 8.1.3 LAF	BAND GE POSITION – PRIMARY PORTRAIT DEDGE POSITION – SECONDARY PORTRAIT PHELD POSITION	20 20 21 22
0	8.1 CELL 8.1.1 ED 8.1.2 LCI 8.1.3 LAF 8.2 PCS 8.2.1 ED	BAND GE POSITION – PRIMARY PORTRAIT DEDGE POSITION – SECONDARY PORTRAIT PHELD POSITION BAND GE POSITION – PRIMARY PORTRAIT	20 20 21 22 23 23
0	8.1 CELL 8.1.1 ED0 8.1.2 LCI 8.1.3 LAF 8.2 PCS 8.2.1 ED0 8.2.2 LCI	BAND GE POSITION – PRIMARY PORTRAIT DEDGE POSITION – SECONDARY PORTRAIT HELD POSITION BAND GE POSITION – PRIMARY PORTRAIT DEDGE POSITION – SECONDARY PORTRAIT	20 20 21 22 23 23 24
	8.1 CELL 8.1.1 ED0 8.1.2 LCI 8.1.3 LAF 8.2 PCS 8.2.1 ED0 8.2.2 LCI 8.2.3 LAF	BAND GE POSITION – PRIMARY PORTRAIT DEDGE POSITION – SECONDARY PORTRAIT PHELD POSITION BAND GE POSITION – PRIMARY PORTRAIT DEDGE POSITION – SECONDARY PORTRAIT PHELD POSITION	20 21 22 23 23 24 26
9	8.1 CELL 8.1.1 ED 8.1.2 LCI 8.1.3 LAF 8.2 PCS 8.2.1 ED 8.2.2 LCI 8.2.3 LAF MEASURM	BAND GE POSITION – PRIMARY PORTRAIT DEDGE POSITION – SECONDARY PORTRAIT PHELD POSITION BAND GE POSITION – PRIMARY PORTRAIT DEDGE POSITION – SECONDARY PORTRAIT PHELD POSITION HELD POSITION	20 21 22 23 23 24 26 27
	8.1 CELL 8.1.1 ED 8.1.2 LCI 8.1.3 LAF 8.2 PCS 8.2.1 ED 8.2.2 LCI 8.2.3 LAF MEASURM 9.1 MEAS	BAND GE POSITION – PRIMARY PORTRAIT DEDGE POSITION – SECONDARY PORTRAIT P HELD POSITION BAND GE POSITION – PRIMARY PORTRAIT D EDGE POSITION – SECONDARY PORTRAIT P HELD POSITION MENT UNCERTAINTY SURMENT UNCERTAINTY FOR 300 MHZ – 3000 MHZ	20 20 21 22 23 23 23 24 26 27 27
	 8.1 CELL 8.1.1 ED0 8.1.2 LCI 8.1.3 LAF 8.2 PCS 8.2.1 ED0 8.2.2 LCI 8.2.3 LAF MEASURM 9.1 MEAS EQUIPME 	BAND GE POSITION – PRIMARY PORTRAIT DEDGE POSITION – SECONDARY PORTRAIT P HELD POSITION BAND GE POSITION – PRIMARY PORTRAIT D EDGE POSITION – SECONDARY PORTRAIT P HELD POSITION – SECONDARY PORTRAIT P HELD POSITION MENT UNCERTAINTY SURMENT UNCERTAINTY FOR 300 MHZ – 3000 MHZ NT LIST AND CALIBRATION	20 21 22 23 23 24 26 27 27 28
9	 8.1 CELL 8.1.1 ED0 8.1.2 LCI 8.1.3 LAF 8.2 PCS 8.2.1 ED0 8.2.2 LCI 8.2.3 LAF MEASURM 9.1 MEAS EQUIPME PHOTOS 	BAND GE POSITION – PRIMARY PORTRAIT DEDGE POSITION – SECONDARY PORTRAIT P HELD POSITION BAND GE POSITION – PRIMARY PORTRAIT D EDGE POSITION – SECONDARY PORTRAIT P HELD POSITION MENT UNCERTAINTY SURMENT UNCERTAINTY FOR 300 MHZ – 3000 MHZ	20 21 22 23 23 23 23 24 26 27 27 28 29

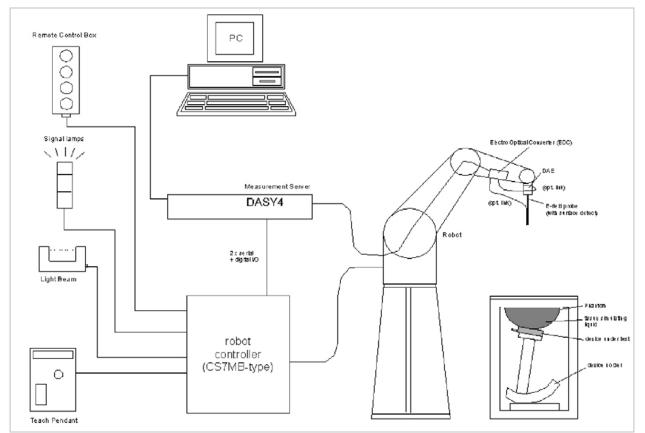
1 EQUIPMENT UNDER TEST (EUT) DESCRIPTION

850/900/1800/1900/2100 MHz 5-Band Mini Card installed into Lenovo ThinkPad X60 Tablet which includes WLAN FCC ID: PPD-AR5BXB72-L and Bluetooth FCC ID: MCLJ07H081.

Note: This device contains 900/1800/2100 MHz bands that are not operational in US territories. This report is applicable to 850 and 1900 MHz bands.

GPRS Multi-slot Classes:	Class 10 (2up, 3 down) for both GPRS and EGPRS
Normal operation:	Lap-held position and/or under arm positions
Duty cycle:	25% both GPRS and EGPRS modes
Host Device(s):	Lenovo ThinkPad X60 Tablet
Antenna(s)	Wistron Neweb Corp. PIFA Antenna, P/N: 60.4Q422.001
Power supply:	Power supplied through the laptop computer (host device).

2 FACILITIES AND ACCREDITATION


The test sites and measurement facilities used to collect data are located at 561F Monterey Road, Morgan Hill, California, USA. The sites are constructed in conformance with the requirements of ANSI C63.4, ANSI C63.7 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

No part of this report may be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any government agency.

3 SYSTEM DESCRIPTION

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY4 software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing to validate the proper functioning of the system.

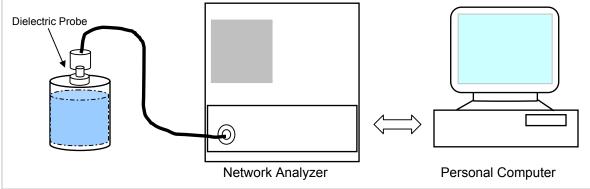
3.1 COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATIG LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients		Frequency (MHz)								
(% by weight)	4	50	83	35	· 9′	15	19	00	24	50
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose


Water: De-ionized, 16 M Ω + resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

4 SIMULATING LIQUID PARAMETERS CHECK

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. The relative permittivity and conductivity of the tissue material should be within \pm 5% of the values given in the table below.

Set-up for liquid parameters check

Reference Values of Tissue Dielectric Parameters for Head and Body Phantom (for 150 – 3000 MHz and 5800 MHz)

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in IEEE Standard 1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	H	ead	Bo	ody
raiget requency (initz)	ε _r	σ (S/m)	ε _r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800 – 2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

4.1 SIMULATING LIQUID PARAMETER CHECK RESULT

Simulating Liquid Dielectric Parameters Check Result @ Muscle 835 MHz

Room Ambient Temperature = 23°C; Relative humidity = 45%

Measured by: Ninous Davoudi

S	imulating Lic	quid			Parameters	Measured	Target	Deviation (%)	Limit (%)
f (MHz)	Temp. (°C)	Depth (cm)			Falameters	Ineasureu		Deviation (70)	Linin (70)
835	22	15	e'	54.412	Relative Permittivity (ε_r):	54.4120	55.2	-1.43	± 5
000	22	10	e"	20.8526	Conductivity (o):	0.96865	0.97	-0.14	± 5
Liquid Ch	neck								
	•		leg	ı. C; Liqu	id temperature: 22.0 (deg C			
October (06, 2006	06:31 PM							
Frequence	су	e'			e"				
8000000	00.	54	.71	87	21.0249				
8050000	00.	54	.68	374	20.9984				
8100000	00.	54	.67	' 04	20.9781				
8150000	00.	54	.60)59	20.9638				
8200000	00.	54	.56	632	20.9139				
8250000	00.	54	.51	25	20.9007				
8300000	00.	54	.47	744	20.8887				
8350000	00.	54	.41	20	20.8526				
8400000	00.	54	.39	939	20.8444				
8450000	00.	54	.33	370	20.8179				
8500000	00.	54	.26	681	20.7853				
8550000	00.	54	.22	241	20.7872				
8600000	00.	54	.17	762	20.7474				
8650000	00.	54	.11	98	20.7112				
8700000	00.	54	.06	658	20.7066				
8750000	00.			50	20.6797				
8800000		53	.96	686	20.6619				
8850000	00.	53	.90)85	20.6603				
8900000	00.			605	20.6331				
8950000				42	20.6042				
9000000				05	20.5823				
The cond	luctivity (σ) can be	giv	en as:					
$\sigma = \omega \varepsilon_{\theta}$	e"=2πj	fε₀e"							
where f									
EO	= 8.854 *	* 10 ⁻¹²							

Simulating Liquid Dielectric Parameters Check Result @ Muscle 835 MHz

Room Ambient Temperature = 23°C; Relative humidity = 40%

Measured by: Ninous Davoudi

S	imulating Lic	quid			Parameters	Measured	Target	Deviation (%)	Limit (%)
f (MHz)	Temp. (°C)	Depth (cm)			T arameters	Measureu		Deviation (78)	
835	22	15	e'	54.4519	Relative Permittivity (ε_r):	54.4519	55.2	-1.36	± 5
			e"	20.8709	Conductivity (σ):	0.96950	0.97	-0.05	± 5
Liquid Ch	neck								
Ambient	temperat	ure: 23.0 c	leg	J. C; Liqu	id temperature: 22.0	deg C			
October 7	18, 2006	05:23 PM							
Frequence	су	e'			e"				
8000000	00.	54	.76	671	21.0647				
8050000	00.	54	.75	548	20.9969				
8100000	00.	54	.68	326	20.9963				
8150000	00.	54	.66	659	20.9590				
8200000	00.	54	.61	184	20.9274				
8250000	00.	54	.55	523	20.9029				
8300000	00.	54	.50)73	20.8877				
8350000	00.	54	.45	519	20.8709				
8400000	00.	54	.41	168	20.8469				
8450000	00.	54	.36	670	20.8395				
8500000	00.	54	.30)39	20.7937				
8550000	00.	54	.25	561	20.7859				
8600000	00.	54	.19	964	20.7721				
8650000	00.	54	.17	716	20.7344				
8700000	00.	54	.10)81	20.7333				
8750000	00.	54	.06	642	20.7247				
8800000	00.	54	.01	157	20.7287				
8850000	00.	53	.96	645	20.7232				
8900000	00.	53	.90)53	20.7209				
8950000	00.	53	.88	354	20.6825				
9000000	00.	53	.85	561	20.6584				
The cond	luctivity (σ) can be	giv	en as:					
$\sigma = \omega \varepsilon_{\theta}$	e"=2πj	fε₀e"							
where f									
EO	= 8.854 *	[•] 10 ⁻¹²							

Simulating Liquid Dielectric Parameters Check Result @ Muscle 1900 MHz

Room Ambient Temperature = 23°C; Relative humidity = 40%

Measured by: Ninous Davoudi

S	imulating Lic	quid			Parameters	Measured	Target	Deviation (%)	Limit (%)
f (MHz)	Temp. (°C)	Depth (cm)			T arameters	Measured		Deviation (70)	Linit (70)
1900	22	15	e'	53.4741	Relative Permittivity (ε_r):	53.4741	53.3	0.33	± 5
			e"	13.8260	Conductivity (σ):	1.46140	1.52	-3.86	± 5
Liquid Ch	neck								
Ambient	temperat	ure: 23.0 c	leg	J. C; Liqu	id temperature: 22.0 o	deg C			
October (07, 2006	02:11 PM							
Frequence	су	e'			e"				
1710000	000.	54	.13	322	13.1482				
1720000	000.	54	.10	061	13.1803				
1730000	000.	54	.06	630	13.1898				
1740000	000.	54	.01	175	13.2459				
1750000	000.	53	.97	765	13.2873				
1760000	000.	53	.93	364	13.3355				
1770000	000.	53	.90)92	13.3873				
1780000	000.	53	.85	590	13.4228				
1790000	000.	53	.82	211	13.4697				
1800000	000.	53	.79	982	13.4853				
1810000	000.	53	.76	674	13.5228				
1820000	000.	53	.74	105	13.5459				
1830000	000.	53	.68	337	13.5742				
1840000	000.	53	.65	589	13.6032				
1850000	000.	53	.63	386	13.6430				
1860000	000.	53	.59	909	13.6824				
1870000	000.	53	.55	559	13.7214				
1880000	000.	53	.51	170	13.7498				
1890000	000.	53	.47	790	13.7850				
1900000	000.	53	.47	741	13.8260				
1910000	000.	53	.43	370	13.8500				
The cond	luctivity (σ) can be	giv	en as:					
$\sigma = \omega \varepsilon_{\theta}$	e"=2πj	fε₀e"							
where f									
EO	= 8.854 *	[•] 10 ⁻¹²							

Simulating Liquid Dielectric Parameters Check Result @ Muscle 1900 MHz

Room Ambient Temperature = 23°C; Relative humidity = 42%

Measured by: Sunny Shih

S	imulating Lic	quid			Parameters	Measured	Target	Deviation (%)	Limit (%)
f (MHz)	Temp. (°C)	Depth (cm)			Parameters	Measureu		Deviation (%)	LIITIIL (76)
1900	22	15	e'	55.5996	Relative Permittivity (ε_r):	55.5996	53.3	4.31	± 5
			e"	14.2575	Conductivity (σ):	1.50701	1.52	-0.85	± 5
Liquid Ch	neck								
	•		g. (C; Liquid	temperature: 22 deg	С			
	,	01:10 PM							
Frequence		e'			e"				
1750000	000.	56	.24	414	13.4320				
1760000	000.	56	.13	345	13.5659				
1770000	000.	56	.09	924	13.6716				
1780000	000.	56	.08	399	13.7260				
1790000	000.	56	.13	393	13.8047				
1800000	000.	56	.13	337	13.8541				
1810000	000.	56	.07	747	13.8318				
1820000	000.	56	.04	142	13.7413				
1830000	000.	56	.04	186	13.6826				
1840000	000.	56	.03	391	13.7589				
1850000	000.	55	.94	141	13.9252				
1860000	000.	55	.74	415	14.0555				
1870000	000.	55	.57	718	14.1023				
1880000	000.	55	.53	396	14.1009				
1890000	000.	55	.57	708	14.1857				
1900000	000.	55	.59	996	14.2575				
1910000	000.	55	.56	611	14.2857				
1920000	000.	55	.55	563	14.2009				
1930000	000.	55	.61	127	14.1685				
1940000	000.	55	.64	437	14.2146				
1950000	000.	55	.56	669	14.3246				
The cond	luctivity (σ) can be	giv	en as:					
$\sigma = \omega \varepsilon_{\theta}$	e"=2πj	fε₀e"							
where f									
EO	= 8.854 *	· 10 ⁻¹²							

Simulating Liquid Dielectric Parameters Check Result @ Muscle 1900 MHz

Room Ambient Temperature = 23°C; Relative humidity = 42%

Measured by: Sunny Shih

S	imulating Lie	quid			Parameters	Measured	Target	Deviation (%)	Limit (%)
f (MHz)	Temp. (°C)	Depth (cm)			T arameters	Ineasureu		Deviation (70)	Linin (70)
1900	22	15	e'	53.5749	Relative Permittivity (ε_r):	53.5749	53.3	0.52	± 5
1000	22	10	e"	14.2586	Conductivity (o):	1.50713	1.52	-0.85	± 5
Liquid Ch	neck								
			g. (C; Liquid	temperature: 22 deg	С			
		12:00 PM							
Frequence	5	e'		e"					
1750000		54.1736		13.50					
1760000		54.0818		13.61					
1770000		54.0388		13.69					
1780000		54.0213		13.74					
1790000		54.0581		13.79					
1800000		54.0528		13.84					
1810000		54.0293		13.86					
1820000		53.9811		13.81					
1830000		53.9854		13.77					
1840000		53.9553		13.83					
1850000		53.8660		13.94					
1860000		53.7239		14.04					
1870000		53.5959		14.07					
1880000		53.5504		14.10					
1890000		53.5706		14.17					
1900000		53.5749		14.25					
1910000		53.5711		14.27					
1920000		53.5772		14.22					
1930000		53.6399		14.20					
1940000		53.6376		14.26					
1950000	000. :	53.5636		14.32	13				
The cond	luctivity (σ) can be	giv	en as:					
$\sigma = \omega \varepsilon_{\theta}$	e"=2πj	fε₀e"							
where f									
<u>80</u>	= 8.854 *	* 10 ⁻¹²							

5 SYSTEM PERFORMANCE CHECK

The system performance check is performed prior to any usage of the system in order to guarantee reproducible results. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field Probe EX3DV3-SN: 3531 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 5 x 5 x 7 fine cube was chosen for cube integration(dx=dy=7.5mm; dz=5mm).
 For 5 GHz band Special 8x8x8 fine cube was chosen for cube integration(dx=dy=4.3mm; dz=3mm)
- Distance between probe sensors and phantom surface was set to 4 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.0mm
- The dipole input power (forward power) was 250 mW±3%.
- The results are normalized to 1 W input power.

Reference SAR Values for body-tissue

In the table below, the numerical reference SAR values of a SPEAG validation dipoles placed below the flat phantom filled with body-tissue simulating liquid are given. The reference SAR values were calculated using the finite-difference time-domain method and the geometry parameters.

Dipole Type	Distance (mm)	Frequency (MHz)	SAR (1g) [W/kg]	SAR (10g) [W/kg]	SAR (peak) [W/kg]
D450V2	15	450	5.01	3.36	7.22
D835V2	15	835	9.71	6.38	14.1
D900V2	15	900	11.1	7.17	16.3
D1450V2	10	1450	29.6	16.6	49.8
D1800V2	10	1800	38.5	20.3	67.5
D1900V2	10	1900	39.8	20.8	69.6
D2000V2	10	2000	40.9	21.2	71.5
D2450V2	10	2450	51.2	23.7	97.6

Note: All SAR values normalized to 1 W forward power.

5.1 SYSTEM PERFORMANCE CHECK RESULTS

System Validation Dipole: D835V2 SN:4d002

Date: October 6, 2006

Room Ambient Temperature = 23°C; Relative humidity = 45%

Measured by: Ni	inous Davoudi
-----------------	---------------

Bod	y Simulating	g Liquid	SAR (mW/q)		Normalize	Target	Deviation	Lim it
f(MHz)	Temp.(°C)	Depth (cm)		(111 VV / g)	to 1 W	raiget	(%)	(%)
835	22	15	1 g	2.48	9.92	9.71	2.16	± 10
000	22	15	10g	1.63	6.52	6.38	2.19	± 10

Date: October 18, 2006

Room Ambient Temperature = 23°C; Relative humidity = 40%

Measured by: Ninous Davoudi

Bod	y Simulating	g Liquid	SAR (mW/g)		SAR (m)W (g)		Deviation	L im it
f(MHz)	Temp.(°C)	Depth (cm)			to 1 W	d Target to 1 W	(%)	(%)
835	22	15	1 g	2.48	9.92	9.71	2.16	± 10
000	22	15	10g	1.64	6.56	6.38	2.82	± 10

System Validation Dipole: D1900V2 SN:5d043

Date: October 7, 2006

Room Ambient Temperature = 23°C; Relative humidity = 40%

Measured by: Ninous Davoudi

Bod	y Simulating	g Liquid	SAR (mW/g)		Normalize	Target	Deviation	Lim it
f(MHz)	Temp.(°C)	Depth (cm)	SAK	(111 VV / g)	to 1 W	raiyet	(%)	(%)
1900	22	15	1 g	9.45	37.8	39.8	-5.03	± 10
1900	22	15	10g	5.04	20.16	20.8	-3.08	± 10

Date: October 8, 2006

Room Ambient Temperature = 23°C; Relative humidity = 42%

Bod	y Simulating	g Liquid	SAR (mW/g)		Normalize d Targe		Deviation	Lim it
f(MHz)	Temp.(°C)	Depth (cm)			to 1 W	-	(%)	(%)
1900	22	15	1 g	9.75	39	39.8	-2.01	± 10
1900	22	15	10g	5.2	20.8	20.8	0.00	± 10

Date: October 19, 2006

Room Ambient Temperature = 23°C; Relative humidity = 42%

Measured by: Sunny Shih

Measured by: Sunny Shih

Bod	y Simulating	g Liquid	SAR (mW/q)		Normalize	Target	Deviation	L im it
f(MHz)	Temp.(°C)	Depth (cm)	SAK	(111 VV / 9)	d to 1 W	Taryet	(%)	(%)
1900	22	15	1 g	9.75	39	39.8	-2.01	± 10
1900	22	15	10g	5.2	20.8	20.8	0.00	± 10

6 SAR MEASURMENT PROCEDURE

A summary of the procedure follows:

- a) A measurement of the SAR value at a fixed location is used as a reference value for assessing the power drop of the EUT. The SAR at this point is measured at the start of the test, and then again at the end of the test.
- b) The SAR distribution at the exposed flat section of the flat phantom is measured at a distance of 4 mm from the inner surface of the shell. The area covers the entire dimension of the EUT and the horizontal grid spacing is 15 mm x 15 mm. Based on this data, the area of the maximum absorption is determined by Spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.

For 5 GHz band - The SAR distribution at the exposed flat section of the flat phantom is measured at a distance of 2.0 mm from the inner surface of the shell. The area covers the entire dimension of the EUT and the horizontal grid spacing is 10 mm x 10 mm. Based on this data, the area of the maximum absorption is determined by Spline interpolation. The first Area Scan covers the entire dimension of the EUT to ensure that the hotspot was correctly identified.

c) Around this point, a volume of X=Y= 30 and Z=21 mm is assessed by measuring 5 x 5 x 7 mm points. On the basis of this data set, the spatial peak SAR value is evaluated with the following procedure:

For 5 GHz band - Around this point, a volume of X=Y=Z=30 mm is assessed by measuring 8 x 8 x 8 mm points. On the basis of this data set, the spatial peak SAR value is evaluated with the following procedure:

- (i) The data at the surface are extrapolated, since the centre of the dipoles is 1.2 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.3 mm. The extrapolation is based on a least square algorithm. A polynomial of the fourth order is calculated through the points in z-axes. This polynomial is then used to evaluate the points between the surface and the probe tip.
- (ii) The maximum interpolated value is searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g and 10 g) are computed using the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the "Not a knot"- condition (in x, y and z-direction). The volume is integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) are interpolated to calculate the averages.
- (iii) All neighbouring volumes are evaluated until no neighbouring volume with a higher average value is found.
- (iv) The SAR value at the same location as in Step (a) is again measured to evaluate the actual power drift.

6.1 DASY4 SAR MEASURMENT PROCEDURE

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 1.2 mm for an EX3DV3 probe type).

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4 software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures $5 \times 5 \times 7$ points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

For 5 GHz band – Same as above except the Zoom Scan measures 8 x 8 x 8 points.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a onedimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

7 PROCEDURE USED TO ESTABLISH TEST SIGNAL

The following procedures had been used to prepare the EUT for the SAR test. The following setting is used to prepare the EUT in GSM850/1900MHz bands for the SAR test. Agilent 8960 series 10 E5515C, Wireless Communication Test Set is used to control the EUT and measure the output power.

The following setting was used to establish the signal.

System Config:	GSM/GPRS Mo E1968A	obile Test A.06.31
Call Parms:	ВСН → ТСН →	Cell Band: GSM850/PCS Traffic Band: GSM850/PCS Traffic Channel: 128/192/251 or 512/661/810 MS Tx Level: 3 (33dBm) for cell band; 3 (30 dBm) for PCS band MultiSlot Config: 2up, 3down
	PDTCH ->	Traffic Band: GSM850/PCS Traffic Channel: 128/192/251 or 512/661/810 MS Tx Level: 6 (27dBm) for cell band; 5 (26 dBm) for PCS band Coding Scheme: CS-4 MultiSlot Config: 2up, 3down
Control:	Active Cell ->	GSM/GPRS/EGPRS

GSM850, GPRS							
Channel	Frequency	Power					
	(MHz)	(dBm)					
128	824.2	31.82					
192	836.6	31.91					
251	848.8	32.07					

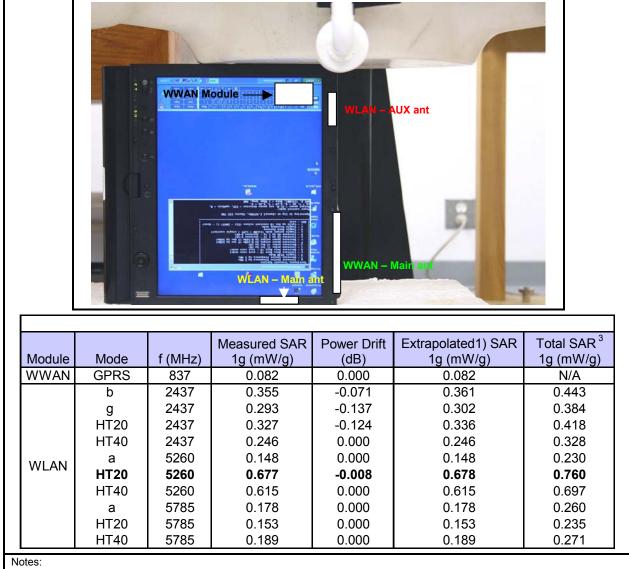
GSM1900, GPRS

Channel	Frequency	Power
	(MHz)	(dBm)
512	1850.2	28.92
661	1880.0	29.87
810	1909.8	29.04

GSM850, EGPRS

Channel	Frequency	Power				
	(MHz)	(dBm)				
128	824.2	26.84				
192	836.6	26.67				
251	848.8	26.64				

GSM1900, EGPRS

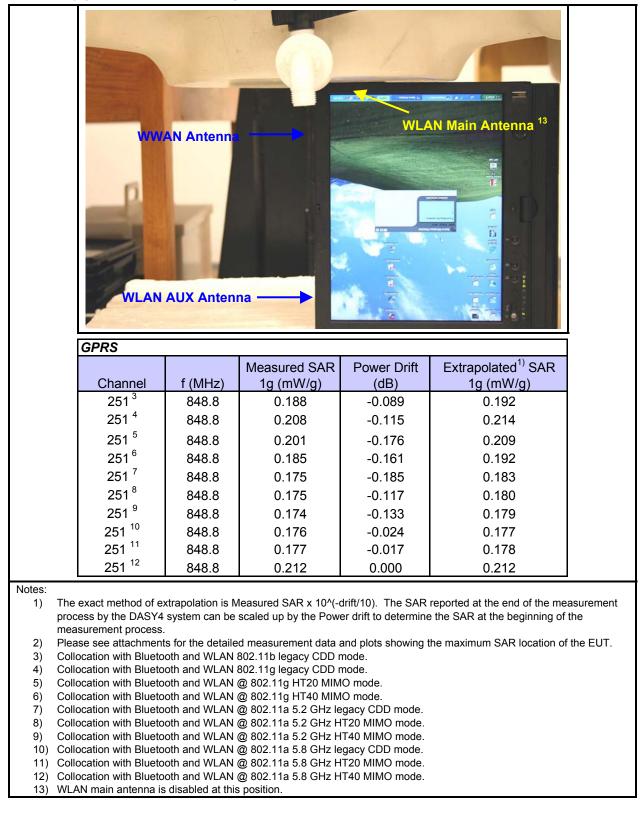

Channel	Frequency	Power
	(MHz)	(dBm)
512	1850.2	26.11
661	1880.0	26.02
810	1909.8	25.87

SAR MEASURMENT RESULTS 8

8.1 **CELL BAND**

8.1.1 **EDGE POSITION – PRIMARY PORTRAIT**

The highest reported SAR value at this configuration is: 0.082 W/kg (GSM GPRS mode, channel 192, 837 MHz), please see CCS SAR Report 06U10630-3 (WWAN) and 06U10634-4 (WLAN).


The exact method of extrapolation is Measured SAR x 10[^](-drift/10). The SAR reported at the end of the measurement 1) process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process.

Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT. 2)

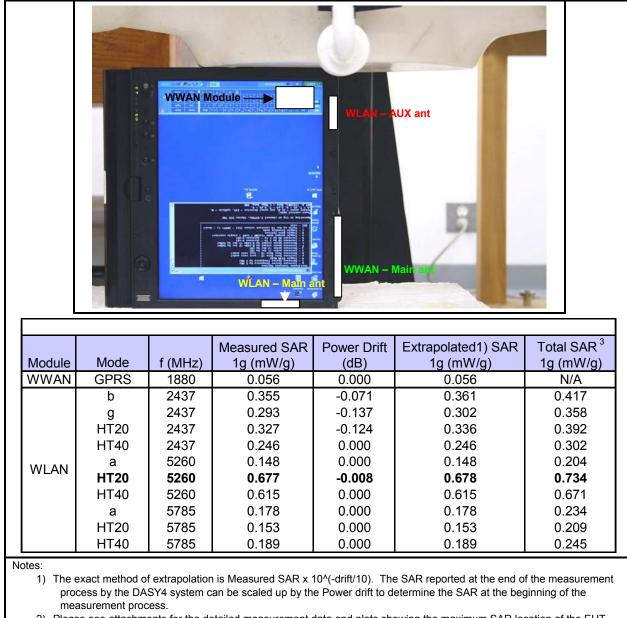
Total SAR is evaluated with sum of the SAR values from each band frequency. 3)

8.1.2 LCD EDGE POSITION – SECONDARY PORTRAIT

The highest reported SAR value at this configuration is: 0.194 W/kg (GSM GPRS mode, channel 251, 848.8 MHz), please see CCS SAR Report 06U10630-3.

8.1.3 LAP HELD POSITION

The highest reported SAR value at this configuration is: 0.142 W/kg (GSM GPRS mode, channel 192, 837 MHz), please see CCS SAR Report 06U10630-3.


11) Collocation with Bluetooth and WLAN @ 802.11a 5.8 GHz HT20 MIMO mode.

12) Collocation with Bluetooth and WLAN @ 802.11a 5.8 GHz HT40 MIMO mode.

8.2 PCS BAND

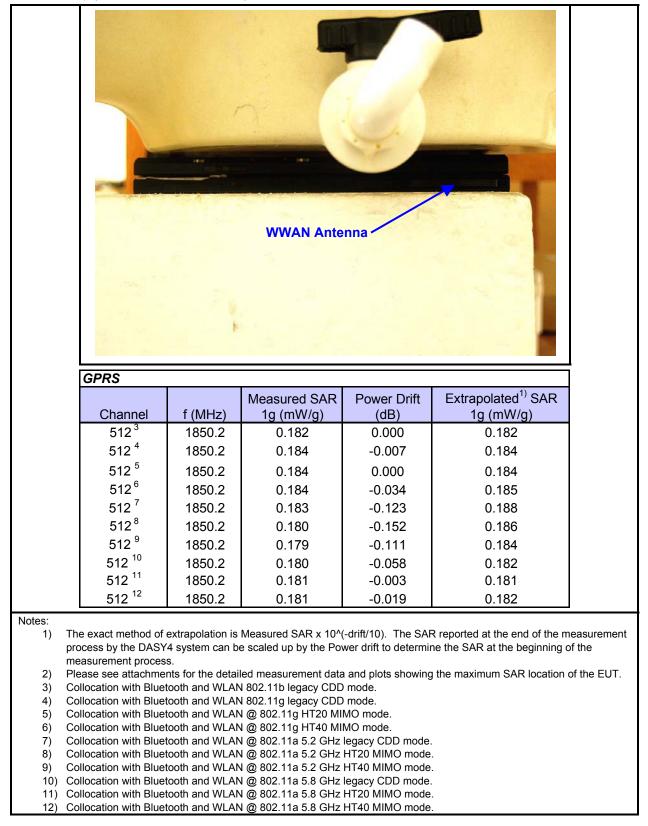
8.2.1 EDGE POSITION – PRIMARY PORTRAIT

The highest reported SAR value at this configuration is: 0.056 W/kg (GSM GPRS mode, channel 661, 1880 MHz), please see CCS SAR Report 06U10630-3 (WWAN) and 06U10634-4 (WLAN).

2) Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.3) Total SAR is evaluated with sum of the SAR values from each band frequency.

8.2.2 LCD EDGE POSITION – SECONDARY PORTRAIT

The highest reported SAR value at this configuration is: 0.064 W/kg (GSM GPRS mode, channel 661, 1880 MHz), please see CCS SAR Report 06U10630-3.


NWAN Antenna WLAN Antenna WLAN Autonna						
GSM GPRS						
Channel	f (MHz)	Measured SAR 1g (mW/g)	Power Drift (dB)	Extrapolated ¹⁾ SAR 1g (mW/g)		
810 ³	1909.8	0.141	0.000	0.141		
810 ⁴	1909.8	0.137	0.000	0.137		
810 ⁵	1909.8	0.136	0.000	0.136		
810 ⁶	1909.8	0.142	0.000	0.142		
810 ⁷	1909.8	0.153	0.000	0.153		
810 ⁸	1909.8	0.153	0.000	0.153		
810 ⁹	1909.8	0.140	0.000	0.140		
810 ¹⁰	1909.8	0.137	0.000	0.137		
810 ¹¹	1909.8	0.138	0.000	0.138		
810 ¹²	1909.8	0.138	0.000	0.138		

N	otes:	
	ues.	

- The exact method of extrapolation is Measured SAR x 10⁽⁻drift/10). The SAR reported at the end of the measurement process by the DASY4 system can be scaled up by the Power drift to determine the SAR at the beginning of the measurement process.
- 2) Please see attachments for the detailed measurement data and plots showing the maximum SAR location of the EUT.
- 3) Collocation with Bluetooth and WLAN 802.11b legacy CDD mode.
- 4) Collocation with Bluetooth and WLAN 802.11g legacy CDD mode.
- 5) Collocation with Bluetooth and WLAN @ 802.11g HT20 MIMO mode.
- 6) Collocation with Bluetooth and WLAN @ 802.11g HT40 MIMO mode.
- 7) Collocation with Bluetooth and WLAN @ 802.11a 5.2 GHz legacy CDD mode.
- 8) Collocation with Bluetooth and WLAN @ 802.11a 5.2 GHz HT20 MIMO mode.
- 9) Collocation with Bluetooth and WLAN @ 802.11a 5.2 GHz HT40 MIMO mode.
 10) Collocation with Bluetooth and WLAN @ 802.11a 5.8 GHz legacy CDD mode.
- Collocation with Bluetooth and WLAN @ 802.11a 5.8 GHz HT20 MIMO mode.
 Collocation with Bluetooth and WLAN @ 802.11a 5.8 GHz HT20 MIMO mode.
- Collocation with Bluetooth and WLAN @ 802.11a 5.8 GHz HT20 MIMO mode.
 Collocation with Bluetooth and WLAN @ 802.11a 5.8 GHz HT40 MIMO mode.
- 13) WLAN main antenna is disabled at this position.
- 14) For reference to WWAN SAR data, please see CCS SAR Report 06U10631-3B.
- 15) For convenience, the reference SAR data are included in attachment, Reference SAR Data.

8.2.3 LAP HELD POSITION

The highest reported SAR value at this configuration is: 0.194 W/kg (GSM GPRS mode, channel 512, 1850.2 MHz), please see CCS SAR Report 06U10630-3.

9 MEASURMENT UNCERTAINTY

9.1 MEASURMENT UNCERTAINTY FOR 300 MHz - 3000 MHz

Uncortainty component	Tel (+9/)	Probe	Div.	Ci(1r)	Ci (10c)	Std. U	າc.(±%)
Uncertainty component	Tol. (±%)	Dist.	Div.	Ci (1g)	Ci (10g)	Ui (1g)	Ui(10g)
Measurement System							
Probe Calibration	4.80	Ν	1	1	1	4.80	4.80
Axial Isotropy	4.70	R	1.732	0.707	0.707	1.92	1.92
Hemispherical Isotropy	9.60	R	1.732	0.707	0.707	3.92	3.92
Boundary Effects	1.00	R	1.732	1	1	0.58	0.58
Linearity	4.70	R	1.732	1	1	2.71	2.71
System Detection Limits	1.00	R	1.732	1	1	0.58	0.58
Readout Electronics	1.00	Ν	1	1	1	1.00	1.00
Response Time	0.80	R	1.732	1	1	0.46	0.46
Integration Time	2.60	R	1.732	1	1	1.50	1.50
RF Ambient Conditions - Noise	1.59	R	1.732	1	1	0.92	0.92
RF Ambient Conditions - Reflections	0.00	R	1.732	1	1	0.00	0.00
Probe Positioner Mechnical Tolerance	0.40	R	1.732	1	1	0.23	0.23
Probe Positioning With Respect to Phantom Shell	2.90	R	1.732	1	1	1.67	1.67
Extrapolation, interpolation, and integration algorithms for							
max. SAR evaluation	3.90	R	1.732	1	1	2.25	2.25
Test sample Related							
Test Sample Positioning	1.10	Ν	1	1	1	1.10	1.10
Device Holder Uncertainty	3.60	Ν	1	1	1	3.60	3.60
Power and SAR Drift Measurement	5.00	R	1.732	1	1	2.89	2.89
Phantom and Tissue Parameters							
Phantom Uncertainty	4.00	R	1.732	1	1	2.31	2.31
Liquid Conductivity - Target	5.00	R	1.732	0.64	0.43	1.85	1.24
Liquid Conductivity - Meas.	8.60	Ν	1	0.64	0.43	5.50	3.70
Liquid Permittivity - Target	5.00	R	1.732	0.6	0.49	1.73	1.41
Liquid Permittivity - Meas.	3.30	Ν	1	0.6	0.49	1.98	1.62
Combined Standard Uncertainty	RSS		•	11.44	10.49		
Expanded Uncertainty (95% Confidence Interval)	K=2		22.87	20.98			
Notesfor table	•						
1. Tol tolerance in influence quaitity							
2. N - Nomal							
3. R - Rectangular							
4. Div Divisor used to obtain standard uncertainty							

5. Ci - is te sensitivity coefficient

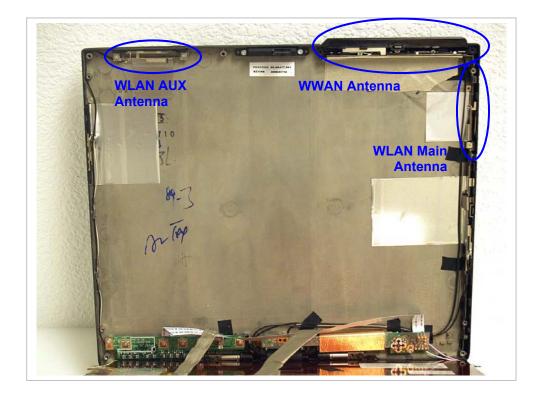
10 EQUIPMENT LIST AND CALIBRATION

Robot - Six AxesStäubliRX90BLN/AN/ARobot Remote ControlStäubliCS7MB3403-91535N/ADASY4 Measurement ServerSPEAGSEUMS001BA1041N/AProbe Alignment UnitSPEAGLB (V2)261N/AS-Parameter Network AnalyzerAgilent8753ES-6US391735692/9/07Electronic Probe kitHewlett Packard85070CN/AN/AE-Field ProbeSPEAGEX3DV435525/30/07ThermometerERTCO639-1S17181/11/07SAM Phantom (SAM1)SPEAGTP-1185QD000P40CAN/ASAM Phantom (SAM2)SPEAGTP-1015N/AN/A
DASY4 Measurement ServerSPEAGSEUMS001BA1041N/AProbe Alignment UnitSPEAGLB (V2)261N/AS-Parameter Network AnalyzerAgilent8753ES-6US391735692/9/07Electronic Probe kitHewlett Packard85070CN/AN/AE-Field ProbeSPEAGEX3DV435525/30/07ThermometerERTCO639-1S17181/11/07SAM Phantom (SAM1)SPEAGTP-1185QD000P40CAN/A
Probe Alignment UnitSPEAGLB (V2)261N/AS-Parameter Network AnalyzerAgilent8753ES-6US391735692/9/07Electronic Probe kitHewlett Packard85070CN/AN/AE-Field ProbeSPEAGEX3DV435525/30/07ThermometerERTCO639-1S17181/11/07SAM Phantom (SAM1)SPEAGTP-1185QD000P40CAN/ASAM Phantom (SAM2)SPEAGTP-1015N/AN/A
S-Parameter Network AnalyzerAgilent8753ES-6US391735692/9/07Electronic Probe kitHewlett Packard85070CN/AN/AE-Field ProbeSPEAGEX3DV435525/30/07ThermometerERTCO639-1S17181/11/07SAM Phantom (SAM1)SPEAGTP-1185QD000P40CAN/ASAM Phantom (SAM2)SPEAGTP-1015N/AN/A
Electronic Probe kitHewlett Packard85070CN/AN/AE-Field ProbeSPEAGEX3DV435525/30/07ThermometerERTCO639-1S17181/11/07SAM Phantom (SAM1)SPEAGTP-1185QD000P40CAN/ASAM Phantom (SAM2)SPEAGTP-1015N/AN/A
E-Field ProbeSPEAGEX3DV435525/30/07ThermometerERTCO639-1S17181/11/07SAM Phantom (SAM1)SPEAGTP-1185QD000P40CAN/ASAM Phantom (SAM2)SPEAGTP-1015N/AN/A
ThermometerERTCO639-1S17181/11/07SAM Phantom (SAM1)SPEAGTP-1185QD000P40CAN/ASAM Phantom (SAM2)SPEAGTP-1015N/AN/A
SAM Phantom (SAM1)SPEAGTP-1185QD000P40CAN/ASAM Phantom (SAM2)SPEAGTP-1015N/AN/A
SAM Phantom (SAM2) SPEAG TP-1015 N/A N/A
Data Acquisition Electronics SPEAG DAE4 558 1/20/07
System Validation Dipole SPEAG D835V2 4d002 1/23/08
System Validation Dipole SPEAG D1900V2 5d043 1/29/08
Power Meter Giga-tronics 8651A 8651404 12/27/06
Power Sensor Giga-tronics 80701A 1834588 12/27/07
Amplifier Mini-Circuits ZVE-8G 0360 N/A
Amplifier Mini-Circuits ZHL-42W D072701-5 N/A
Radio Communication Tester Rohde & Schwarz CMU 200 838114/032 3/21/07
Radio Communication Tester Agilent E1968A GB46160222 1/29/2007
Simulating Liquid CCS M835 N/A Within 24 hrs of first test
Simulating LiquidCCSM1900N/AWithin 24 hrs of first test

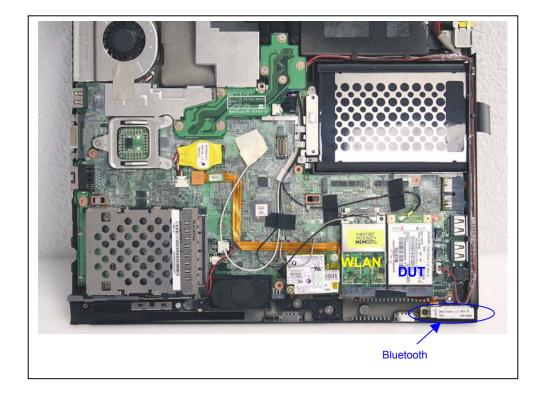
11 PHOTOS

DUT

Host laptop – Normal Mode



Host laptop – Tablet Mode



Antenna Location

DUT Location

12 ATTACHMENTS

No.	Contents	No. Of Pages
1	System Performance Check Plots	10
2-1	Co-Tx SAR Test Plots – Cell band	21
2-2	Co-Tx SAR Test Plots – PCS band	21
3	Certificate of E-Field Probe - EXDV4SN3552	9
4	Certificate of System Validation Dipole - D835V2 SN:4d002	9
5	Certificate of System Validation Dipole - D1900V2 SN:5d043	9

END OF REPORT