

FCC OET BULLETIN 65 SUPPLEMENT C 01-01 IEEE STD 1528:2003

SAR EVALUATION REPORT

For

Intel® Centrino® Advanced-N6205 (Tested inside of Panasonic Tablet PC CF-C1)

> MODEL NUMBER: WL11A FCC ID: ACJ9TGWL11A

REPORT NUMBER: 11J13739-3

ISSUE DATE: May 5, 2011

Prepared for

PANASONIC CORPORATION OF NORTH AMERICA ONE PANASONIC WAY, 4B-8 SECAUCUS, NEW JERSEY 07094, U.S.A.

Prepared by

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	May 5, 2011	Initial Issue	

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4031B47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 2 of 43

TABLE OF CONTENTS

1.	ATI	TESTATION OF TEST RESULTS	.4
2.	TES	ST METHODOLOGY	.5
3.	FAC	CILITIES AND ACCREDITATION	.5
4.	CAI	LIBRATION AND UNCERTAINTY	.6
4	.1.	MEASURING INSTRUMENT CALIBRATION	. 6
4	.2.	MEASUREMENT UNCERTAINTY	. 7
5.	EQI	UIPMENT UNDER TEST	.8
6.	SYS	STEM SPECIFICATIONS	.9
7.	COI	MPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS	10
8.	TIS	SUE DIELECTRIC PARAMETERS	11
8	.1.	TISSUE PARAMETERS CHECK RESULTS	12
9.	SYS	STEM VERIFICATION	20
9	.1.	SYSTEM CHECK RESULTS	21
10.	S	AR MEASUREMENT PROCEDURES	22
11.	R	RF OUTPUT POWER VERIFICATION	23
1	1.1.	RF OUTPUT POWER FOR 2.4 GHZ BAND	23
1	1.2.	RF OUTPUT POWER FOR 5 GHZ BANDS	24
12.	S	UMMARY OF SAR TEST RESULTS	28
1	2.1.	2.4 GHZ BAND	29
1	2.2.	5 GHZ BANDS	30
13.	Α	TTACHMENTS	38
14.	Α	NTENNA LOCATIONS AND SEPARATION DISTANCES	39
15.	Т	EST SETUP PHOTOS	42

Page 3 of 43

1. ATTESTATION OF TEST RESULTS

Company name:	PANASONIC CORPORATION OF NORTH AMERICA							
	ONE PANASONIC WAY, 4B-8							
	SECAUCUS, NEW JERSEY 07094, U.S.A.							
EUT Description:	Intel® Centrino® Adv	anced-N6205 (Tested inside of Panasonic Tablet P	C CF-C1)					
Model number:	WL11A							
Device Category:	Portable							
Exposure category:	General Population/U	Incontrolled Exposure						
Date of tested:	March 31 – April 5, 20	011 & April 27– May 4, 2011						
			Limit					
FCC Rule Parts	Freq. Range [MHz]	The Highest 1g SAR	(W/kg)					
	2400 - 2483 5	0.135 W/kg						
15 247	2400 - 2400.0	Primary Landscape						
10.247	5725 - 5850	0.166 W/kg						
	5725 - 5650	Primary Landscape						
	5150 - 5250	0.091 W/kg	16					
	0100 - 0200	Primary Landscape	1.0					
15 407	5250 - 5350	0.200 W/kg						
10.407	5250 - 5550	Primary Landscape						
	5470 - 5725	0.156 W/kg						
	5470 - 5725	Primary Landscape						
	Annlicah	le Standards	Test					
OET Bulletin 65 Supplement C 01-01,								
			Pass					

IEEE STD 1528: 2003

Compliance Certification Services (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released For UL CCS By:

enay Shih

Sunny Shih Engineering Team Leader Compliance Certification Services (UL CCS) Tested By:

the start and the

Chenghua Yang and Chakrit Thammanavarat RF Engineer Compliance Certification Services (UL CCS)

Page 4 of 43

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C Edition 01-01, IEEE STD 1528:2003, January 1, 2011 and the following KDB Procedures.

- 248227 SAR measurement procedures for 802.11a/b/g transmitters
- 447498 D01 Mobile Portable RF Exposure v04

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>

Page 5 of 43

4. CALIBRATION AND UNCERTAINTY

4.1.MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

Nome of Equipment	Manufacturar	Turne / Madal	Sorial No.	Cal. Due date			
	Manufacturer	i ype/wodei	Senar No.	MM	DD	Year	
Robot - Six Axes	Stäubli	RX90BL	N/A		N/A		
Robot Remote Control	Stäubli	CS7MB	3403-91535			N/A	
DASY4 Measurement Server	SPEAG	SEUMS001BA	1041			N/A	
Probe Alignment Unit	SPEAG	LB (V2)	261			N/A	
Oval Flat Phantom (ELI 4.0)	SPEAG	QD OVA001 B	1003			N/A	
Oval Flat Phantom (ELI 4.0)	SPEAG	QD OVA001 B	1099			N/A	
Dielectronic Probe kit	HP	85070C	N/A			N/A	
Wireless comunication test set	Agilent	E5515C (8960)	GB46160222	6	17	2012	
E-Field Probe	SPEAG	EX3DV3	3686	1	24	2012	
E-Field Probe	SPEAG	EX3DV4	3749	12 13		2011	
Data Acquisition Electronics	SPEAG	DAE4	1239	11	17	2011	
Data Acquisition Electronics	SPEAG	DAE3	427	7 21		2011	
System Validation Dipole	SPEAG	D2450V2	706	4 19		2012	
System Validation Dipole	SPEAG	*D5GHzV2	1075	9 3		2011	
Thermometer	ERTCO	639-1S	1718	7	19	2011	
Amplifier	Mini-Circuits	ZVE-8G	90606		-	N/A	
Amplifier	Mini-Circuits	ZHL-42W	D072701-5			N/A	
ESA Series Network Analyzer	Agilent	E5071B	MY42100131	8	2	2011	
Synthesized Signal Generator	HP	83732B	US34490599	7	14	2012	
Power Meter	Giga-tronics	8651A	8651404	3	13	2012	
Power Sensor	Giga-tronics	80701A	1834588	3	13	2012	
Simulating Liquid	SPEAG	M2450	N/A	Withir	ו 24 h	rs of first test	
Simulating Liquid	SPAEG	M5800	N/A	Withir	Within 24 hrs of first test		

*Note: Per KDB 450824 D02 requirements for dipole calibration, UL CCS has adopted two years calibration intervals. On annual basis, each measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole
- 2. System validation with specific dipole is within 10% of calibrated value.
- 3. Return-loss is within 20% of calibrated measurement (test data on file in UL CCS)
- 4. Impedance is within 5Ω of calibrated measurement (test data on file in UL CCS)

Page 6 of 43

4.2. MEASUREMENT UNCERTAINTY

Measurement uncertainty for 300 MHz to 3 GHz averaged over 1 gram

Component	error, %	Pro	be Distribution	Divisor	 Sensitivity 	U (Xi), %
Measurement System						
Probe Calibration (k=1) @ Body 2450 MHz	5.50		Normal	1	1	5.50
Axial Isotropy	1.15	Rec	ctangular	1.732	0.7071	0.47
Hemispherical Isotropy	2.30	Rec	ctangular	1.732	0.7071	0.94
Boundary Effect	0.90	Rec	ctangular	1.732	. 1	0.52
Probe Linearity	3.45	Rec	ctangular	1.732	. 1	1.99
System Detection Limits	1.00	Rec	ctangular	1.732	. 1	0.58
Readout Electronics	0.30		Normal	1	1	0.30
Response Time	0.80	Rec	ctangular	1.732	. 1	0.46
Integration Time	2.60	Rec	ctangular	1.732	. 1	1.50
RF Ambient Conditions - Noise	3.00	Rec	ctangular	1.732	. 1	1.73
RF Ambient Conditions - Reflections	3.00	Rec	ctangular	1.732	. 1	1.73
Probe Positioner Mechanical Tolerance	0.40	Rec	ctangular	1.732	. 1	0.23
Probe Positioning with respect to Phantom	2.90	Rec	ctangular	1.732	. 1	1.67
Extrapolation, Interpolation and Integration	1.00	Rec	ctangular	1.732	2 1	0.58
Test Sample Related						
Test Sample Positioning	2.90		Normal	1	1	2.90
Device Holder Uncertainty	3.60		Normal	1	1	3.60
Output Power Variation - SAR Drift	5.00	Rec	ctangular	1.732	2 1	2.89
Phantom and Tissue Parameters						
Phantom Uncertainty (shape and thickness)	4.00	Rec	tangular	1.732	1	2.31
Liquid Conductivity - deviation from target	5.00	Rec	ctangular	1.732	0.64	1.85
Liquid Conductivity - measurement	3.22		Normal	1	0.64	2.06
Liquid Permittivity - deviation from target	5.00	Rec	ctangular	1.732	2 0.6	1.73
Liquid Permittivity - measurement	3.33		Normal	1	0.6	2.00
		Con	nbined Standar	d Uncerta	ainty Uc(y) =	9.87
Expanded Uncertainty U, Cover	rage Facto	or = 2	2, > 95 % Confi	idence =	19.73	%
Expanded Uncertainty U, Cover	rage Facto	or = 2	2, > 95 % Confi	idence =	1.56	dB
3 to 6 GHz averaged over 1 gram						
Component	error	r %	Distribution	Divisor	Soneitivity	11 (Xi) %
			Distribution	D101301	SCHSILIVILY	$0(\Lambda), 70$
Measurement System	CITO	, , , , , , , , , , , , , , , , , , , ,	Distribution	DIVISOI	Sensitivity	U (XI), 70
Measurement System Probe Calibration (k=1) @ 5GHz	6	3.55	Normal	1	1	6.55
Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy	6	6.55 1.15	Normal	1 732	0 7071	6.55 0.47
Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy	6	6.55 1.15	Normal Rectangular	1.732	0.7071	6.55 0.47
Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Poundary Effect		6.55 1.15 2.30	Normal Rectangular Rectangular	1.732 1.732	1 0.7071 0.7071	6.55 0.47 0.94
Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity		6.55 1.15 2.30 0.90	Normal Rectangular Rectangular Rectangular	1.732 1.732 1.732 1.732	1 0.7071 0.7071 1	6.55 0.47 0.94 0.52
Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity		6.55 1.15 2.30 0.90 3.45	Normal Rectangular Rectangular Rectangular Rectangular	1 1.732 1.732 1.732 1.732	1 0.7071 0.7071 1 1	6.55 0.47 0.94 0.52 1.99
Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits		5.55 1.15 2.30 0.90 3.45 1.00	Normal Rectangular Rectangular Rectangular Rectangular Rectangular	1.732 1.732 1.732 1.732 1.732	1 0.7071 0.7071 1 1 1	6.55 0.47 0.94 0.52 1.99 0.58
Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics		5.55 1.15 2.30 0.90 3.45 1.00 1.00	Normal Rectangular Rectangular Rectangular Rectangular Rectangular Normal	1 1.732 1.732 1.732 1.732 1.732 1.732 1.732	1 0.7071 0.7071 1 1 1 1	6.55 0.47 0.94 0.52 1.99 0.58 1.00
Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time		6.55 1.15 2.30 0.90 3.45 1.00 1.00 0.80	Normal Rectangular Rectangular Rectangular Rectangular Rectangular Normal Rectangular	1 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1	6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46
Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time		5.55 1.15 2.30 0.90 3.45 1.00 1.00 0.80 2.60	Normal Rectangular Rectangular Rectangular Rectangular Rectangular Normal Rectangular Rectangular	1 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1	6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50
Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise		5.55 1.15 2.30 0.90 3.45 1.00 1.00 1.00 0.80 2.60 3.00	Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular	1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1	6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73
Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise RF Ambient Conditions - Reflections		5.55 1.15 2.30 0.90 3.45 1.00 1.00 0.80 2.60 3.00 3.00	Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular	1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1	6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73 1.73
Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise RF Ambient Conditions - Reflections Probe Positioner Mechanical Tolerance		5.55 1.15 2.30 0.90 3.45 1.00 1.00 0.80 2.60 3.00 3.00 0.40	Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular	1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73 1.73 0.23
Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise RF Ambient Conditions - Reflections Probe Positioner Mechanical Tolerance Probe Positioning with respect to Phantom		5.55 1.15 2.30 0.90 3.45 1.00 1.00 0.80 2.60 3.00 3.00 0.40 2.90	Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular	1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73 1.73 0.23 1.67
Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise RF Ambient Conditions - Reflections Probe Positioner Mechanical Tolerance Probe Positioning with respect to Phantom Extrapolation, Interpolation and Integration		5.55 1.15 2.30 0.90 3.45 1.00 1.00 0.80 2.60 3.00 0.40 2.90 0.40 2.90	Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular	1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73 1.73 0.23 1.67 2.25
Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise RF Ambient Conditions - Reflections Probe Positioner Mechanical Tolerance Probe Positioning with respect to Phantom Extrapolation, Interpolation and Integration Test Sample Related		5.55 1.15 2.30 0.90 3.45 1.00 1.00 1.00 0.80 2.60 3.00 0.40 2.90 3.90	Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular	1 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73 1.73 0.23 1.67 2.25
Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise RF Ambient Conditions - Reflections Probe Positioner Mechanical Tolerance Probe Positioning with respect to Phantom Extrapolation, Interpolation and Integration Test Sample Related Test Sample Residence		3.55 1.15 2.30 3.45 1.00 1.00 1.00 2.60 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 1.10 1.00	Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular	1 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73 1.73 0.23 1.67 2.25
Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise RF Ambient Conditions - Reflections Probe Positioner Mechanical Tolerance Probe Positioning with respect to Phantom Extrapolation, Interpolation and Integration Test Sample Related Test Sample Positioning		3.55 1.15 2.30 3.45 1.00 1.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 1.10 3.60	Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular	1 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73 1.73 0.23 1.67 2.25
Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise RF Ambient Conditions - Reflections Probe Positioner Mechanical Tolerance Probe Positioning with respect to Phantom Extrapolation, Interpolation and Integration Test Sample Related Test Sample Positioning Device Holder Uncertainty Output Devert Vorietion		3.55 1.15 2.30 0.90 3.45 1.00 0.80 2.60 3.00 0.40 2.90 3.00 0.40 2.90 3.90 1.10 3.60	Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular	1 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73 1.73 0.23 1.67 2.25 1.10 2.25
Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise RF Ambient Conditions - Reflections Probe Positioner Mechanical Tolerance Probe Positioning with respect to Phantom Extrapolation, Interpolation and Integration Test Sample Related Test Sample Positioning Device Holder Uncertainty Output Power Variation - SAR Drift		3.55 1.15 2.30 0.90 3.45 1.00 1.00 0.80 2.60 3.00 0.40 2.90 3.00 0.40 2.90 3.60 5.00	Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular	1 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73 1.73 0.23 1.67 2.25 1.10 3.60 2.89
Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise RF Ambient Conditions - Reflections Probe Positioner Mechanical Tolerance Probe Positioning with respect to Phantom Extrapolation, Interpolation and Integration Test Sample Related Test Sample Positioning Device Holder Uncertainty Output Power Variation - SAR Drift Phantom and Tissue Parameters		3.55 1.15 2.30 0.90 3.45 1.00 1.00 0.80 2.60 3.00 0.40 2.90 3.00 0.40 2.90 3.00 1.10 3.60 5.00 1.10 1.00	Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular	1 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73 1.73 0.23 1.67 2.25 1.10 3.60 2.89
Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise RF Ambient Conditions - Reflections Probe Positioner Mechanical Tolerance Probe Positioning with respect to Phantom Extrapolation, Interpolation and Integration Test Sample Related Test Sample Positioning Device Holder Uncertainty Output Power Variation - SAR Drift Phantom and Tissue Parameters Phantom Uncertainty (shape and thickness)		3.55 1.15 2.30 3.45 1.00 1.00 2.60 3.00 2.60 3.00 2.60 3.00 2.60 3.00 2.60 3.00 3.40 2.90 3.40 2.90 3.40 5.00 1.10 3.60 5.00 1.10 5.00 1.10 5.00 1.10 5.00 1.10 5.00 1.10 5.00 1.10 5.00 1.10 5.00 1.10 5.00 1.10 5.00 1.10 5.00 1.10 5.00 1.00 5.00 1.10 5.00 1.10 5.00 1.00 5.00 1.00 5.00 5.00 1.00 5.00	Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular	1 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73 1.73 0.23 1.67 2.25 1.10 3.60 2.89 2.31
Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise RF Ambient Conditions - Reflections Probe Positioner Mechanical Tolerance Probe Positioning with respect to Phantom Extrapolation, Interpolation and Integration Test Sample Related Test Sample Positioning Device Holder Uncertainty Output Power Variation - SAR Drift Phantom and Tissue Parameters Phantom Uncertainty (shape and thickness) Liquid Conductivity - deviation from target		5.55 1.15 2.30 0.90 3.45 1.00 1.00 0.80 2.60 3.00 0.80 2.60 3.00 0.80 2.60 3.00 0.5.00 0.5.000 0.5.000 0.5.000 0.5	Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular	1 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73 1.73 0.23 1.67 2.25 1.10 3.60 2.89 2.31 1.85
Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise RF Ambient Conditions - Reflections Probe Positioner Mechanical Tolerance Probe Positioning with respect to Phantom Extrapolation, Interpolation and Integration Test Sample Related Test Sample Positioning Device Holder Uncertainty Output Power Variation - SAR Drift Phantom and Tissue Parameters Phantom Uncertainty (shape and thickness) Liquid Conductivity - deviation from target Liquid Conductivity - measurement		3.45 3.55 1.15 2.30 3.45 1.00 1.00 3.45 1.00 2.60 3.00 2.60 3.00 3.00 3.00 3.40 2.90 3.40 2.90 3.40 1.10 3.60 5.00 2.62	Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Normal Rectangular Rectangular	1 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73 1.73 0.23 1.67 2.25 1.10 3.60 2.89 2.31 1.85 1.68
Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise RF Ambient Conditions - Reflections Probe Positioner Mechanical Tolerance Probe Positioning with respect to Phantom Extrapolation, Interpolation and Integration Test Sample Related Test Sample Positioning Device Holder Uncertainty Output Power Variation - SAR Drift Phantom and Tissue Parameters Phantom Uncertainty (shape and thickness) Liquid Conductivity - deviation from target Liquid Conductivity - deviation from target		3.45 1.15 2.30 3.45 1.00 1.00 3.45 1.00 1.00 2.60 3.00 2.60 3.00 3.00 3.00 3.40 2.90 3.40 2.90 3.40 1.10 3.60 5.00 2.62 0.00	Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Normal Rectangular Rectangular Rectangular	1 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73 1.73 0.23 1.67 2.25 1.10 3.60 2.89 2.31 1.85 1.68 3.46
Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise RF Ambient Conditions - Reflections Probe Positioner Mechanical Tolerance Probe Positioning with respect to Phantom Extrapolation, Interpolation and Integration Test Sample Related Test Sample Positioning Device Holder Uncertainty Output Power Variation - SAR Drift Phantom and Tissue Parameters Phantom Uncertainty (shape and thickness) Liquid Conductivity - deviation from target Liquid Permittivity - deviation from target Liquid Permittivity - measurement Liquid Permittivity - measurement uncertainty		3.45 5.55 1.15 2.30 3.45 1.00 1.00 3.45 1.00 1.00 2.60 3.00 2.60 3.00 3.00 3.40 2.90 3.40 2.90 3.40 2.90 3.40 2.60 3.00 2.60 3.00 2.60 3.00 2.60 3.00 2.60 3.00 2.60 3.00 3.45 5.00 2.60 3.00 3.40 2.00 3.40 3.00	Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular	1 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73 1.73 0.23 1.67 2.25 1.10 3.60 2.89 2.31 1.85 1.68 3.46 2.33
Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise RF Ambient Conditions - Reflections Probe Positioner Mechanical Tolerance Probe Positioning with respect to Phantom Extrapolation, Interpolation and Integration Test Sample Related Test Sample Positioning Device Holder Uncertainty Output Power Variation - SAR Drift Phantom and Tissue Parameters Phantom Uncertainty (shape and thickness) Liquid Conductivity - deviation from target Liquid Permittivity - deviation from target Liquid Permittivity - measurement Liquid Permittivity - measurement uncertainty	Com	3.45 5.55 1.15 2.30 3.45 1.00 1.00 3.45 1.00 1.00 2.60 3.00 2.60 3.00 3.00 1.10 3.60 5.00 1.10 3.60 5.00 2.62 0.00 3.89 hbin	Normal Rectangular Normal Rectangular Normal Rectangular	1 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73 1.73 0.23 1.67 2.25 1.10 3.60 2.89 2.31 1.85 1.68 3.46 2.33 10.84
Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise RF Ambient Conditions - Noise RF Ambient Conditions - Neise Response Time Integration Test Sample Related Test Sample Related Test Sample Positioning Device Holder Uncertainty Output Power Variation - SAR Drift Phantom and Tissue Parameters Phantom Uncertainty (shape and thickness) Liquid Conductivity - measurement Liquid Permittivity - deviation from target	Com C	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Normal Rectangular Rectangular Rectangular Normal Rectangular Normal Rectangular Sectangular Normal Rectangular Normal Rectangular Sectangular Normal Rectangular Normal	1 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73 1.73 0.23 1.67 2.25 1.10 3.60 2.89 2.31 1.85 1.68 3.46 2.33 10.84 %
Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise RF Ambient Conditions - Reflections Probe Positioner Mechanical Tolerance Probe Positioning with respect to Phantom Extrapolation, Interpolation and Integration Test Sample Related Test Sample Positioning Device Holder Uncertainty Output Power Variation - SAR Drift Phantom and Tissue Parameters Phantom Uncertainty (shape and thickness) Liquid Conductivity - measurement Liquid Conductivity - deviation from target Liquid Permittivity - deviation from target Liquid Permittivity - measurement uncertainty		3.45 5.55 1.15 2.30 3.45 1.00 3.45 1.00 0.80 2.60 3.00 0.80 2.60 3.00 0.80 2.60 3.00 0.90 3.45 1.00 0.90 3.45 1.00 0.90	Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Normal Rectangular Rectangular Rectangular Normal Rectangular Sectangular Rectangular Normal Rectangular Sectangular Normal Rectangular Sectangular Normal Rectangular Normal Rectangular Normal Rectangular Sectangular Normal Rectangular Normal Rectangular Normal	1 1.732	1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73 1.73 0.23 1.67 2.25 1.10 3.60 2.89 2.31 1.85 1.68 3.46 2.33 10.84 % dB

Page 7 of 43

5. EQUIPMENT UNDER TEST

Intel® Centrino® Advanced-N6205, Model WL11A.								
(Tested inside of Panasonic Tablet PC CF-C1)								
Normal operation:	Laptop mode - with display open at 90° to the keyboard Tablet mode - Multiple display orientations supporting both portrait and landscape configurations.							
Antenna tested:	Manufactured Intel Corporation	<u>Part number</u> Main (Chain A) Antenna: DFUP1886ZA-1 Aux (Chain B) Antenna: DFUP1886ZA-2						
Antenna-to-antenna/user separation distances:	Refer to Sec. 14 for de distances.	etails of antenna locations and separation						
Assessment for SAR evaluation for Simultaneous transmission:	WiFi can transmit simu WiFi can transmit simu Due to Bluetooth's (FC 60/f(GHz) mW and sta Bluetooth are not cons WWAN co-located RF separate FCC applicat	Iltaneously with Bluetooth. Iltaneously with Bluetooth. C ID: ACJ9TGBT11B) maximum output < nd-alone SAR is not required, thus WiFi and idered as co-located transmitters each other exposure assessment will be addressed in a ion filed under WWAN application.						

Page 8 of 43

6. SYSTEM SPECIFICATIONS

The DASY4 system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing validating the proper functioning of the system.

Page 9 of 43

7. COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients	Frequency (MHz)										
(% by weight)	450		835		915		1900		2450		
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2	
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04	
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0	
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0	
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0	
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0	
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7	
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5	
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78	

Salt: 99+% Pure Sodium ChlorideSugar: 98+% Pure SucroseWater: De-ionized, 16 M Ω + resistivityHEC: Hydroxyethyl CelluloseDGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

Simulating Liquids for 5 GHz, Manufactured by SPEAG

Ingredients	(% by weight)
Water	78
Mineral oil	11
Emulsifiers	9
Additives and Salt	2

Page 10 of 43

8. TISSUE DIELECTRIC PARAMETERS

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectric parameters are within the tolerances of the specified target values. For frequencies in 300 MHz to just under 2 GHz, the measured conductivity and relative permittivity should be within \pm 5% of the target values. For frequencies in the range of 2–3 GHz and above the measured conductivity should be within \pm 5% of the target values. The measured relative permittivity tolerance can be relaxed to no more than \pm 10%.

Reference Values of Tissue Dielectric Parameters for Head & Body Phantom

The body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	He	ad	Body		
Target Trequency (Miliz)	٤ _r	σ (S/m)	٤ _r	σ (S/m)	
150	52.3	0.76	61.9	0.8	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.9	55.2	0.97	
900	41.5	0.97	55	1.05	
915	41.5	0.98	55	1.06	
1450	40.5	1.2	54	1.3	
1610	40.3	1.29	53.8	1.4	
1800 – 2000	40	1.4	53.3	1.52	
2450	39.2	1.8	52.7	1.95	
3000	38.5	2.4	52	2.73	

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Reference Values of Tissue Dielectric Parameters for Body Phantom (for 3000 MHz – 5800 MHz)

In the current guidelines and draft standards for compliance testing of mobile phones (i.e., IEEE P1528, OET 65 Supplement C), the dielectric parameters suggested for head and body tissue simulating liquid are given only at 3.0 GHz and 5.8 GHz. As an intermediate solution, dielectric parameters for the frequencies between 5 to 5.8 GHz were obtained using linear interpolation (see table below).

SPEAG has developed suitable head and body tissue simulating liquids consisting of the following ingredients: de-ionized water, salt and a special composition including mineral oil and an emulgators. Dielectric parameters of these liquids were measured suing a HP 8570C Dielectric Probe Kit in conjunction with HP 8753ES Network Analyzer (30 kHz – 6G Hz). The differences with respect to the interpolated values were well within the desired \pm 5% for the whole 5 to 5.8 GHz range.

Target Frequency (MHz)	He	ad	Body		
Target Frequency (Miriz)	ε _r	σ (S/m)	٤ _r	σ (S/m)	
5000	36.2	4.45	49.3	5.07	
5100	36.1	4.55	49.1	5.18	
5200	36.0	4.66	49.0	5.30	
5300	35.9	4.76	48.9	5.42	
5400	35.8	4.86	48.7	5.53	
5500	35.6	4.96	48.6	5.65	
5600	35.5	5.07	48.5	5.77	
5700	35.4	5.17	48.3	5.88	
5800	35.3	5.27	48.2	6.00	

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

8.1. TISSUE PARAMETERS CHECK RESULTS

Date	Freq. (MHz)		Liqu	iid Parameters	Measured	Target	Delta (%)	Limit ? %)	
3/31/2011	Rody 5200	e'	48.3473	Relative Permittivity (ε_r):	48.35	49.02	-1.37	10	
3/31/2011	Douy 5200	e"	18.1939	Conductivity (σ):	5.26	5.29	-0.65	5	
Liquid Check									
Ambient temperature: 24 deg. C; Liquid temperature: 23 deg. C; Relative humidity = 40%									
March 31, 20	11 08:30 AM								
Frequency	e'			e"					
460000000.	2	19.7	013	17.1955					
4650000000.	4	19.5	107	17.2320					
470000000.	2	19.4	586	17.3736					
4750000000.	2	19.2	603	17.3857					
480000000.	2	19.1	811	17.5398					
4850000000.	2	19.0	541	17.5802					
4900000000.	2	18.9	790	17.7136					
4950000000.	2	18.8	679	17.7760					
5000000000.	2	18.7	910	17.8846					
5050000000.	2	10.0	922	17.9450					
5100000000	2	+0.0 10 1	191	18.0312					
5150000000	2	+0.44 19 2	+32 172	10.0913					
5250000000		+0.3 18 1	473 080	18 2405					
5200000000	_	+0.1 18 1.	900 184	18 3453					
53500000000		17 Q	805	18 4003					
5400000000		17.9	926	18,5090					
5450000000	4	17.8	173	18,5397					
5500000000.	4	17.8	166	18.6693					
5550000000.	2	17.6	313	18.6712					
5600000000.	4	17.5	587	18.8024					
5650000000.	4	17.4	300	18.8205					
5700000000.	4	17.3	417	18.9334					
5750000000.	2	17.2	238	18.9631					
580000000.	4	47.1 ₄	464	19.0913					
5850000000.	4	17.0	872	19.1277					
590000000.	4	16.9 [,]	423	19.2127					
595000000.	4	16.8	423	19.2577					
600000000.	2	16.6	920	19.3324					
The conducti	vity (σ) can b	e giv	ven as:						
$\sigma = \omega \varepsilon_0 e''=$	= 2 π f ε ₀ e"	,							
where $f = ta$	nrget f * 10 ⁶								
E _0 = 8.	.854 * 10 ⁻¹²								

Date	Freq. (MHz)		Liqu	id Parameters	Measured	Target	Delta (%)	Limit ±(%)		
4/4/0044		e'	48.5206	Relative Permittivity (c _r):	48.52	49.02	-1.02	10		
4/1/2011	Body 5200	e"	17.9986	Conductivity (σ):	5.20	5.29	-1.71	5		
4/4/2044	Dody 5500	e'	48.0396	Relative Permittivity (c _r):	48.04	48.61	-1.18	10		
4/1/2011 Body 5500		e"	18.5390	Conductivity (σ):	5.67	5.64	0.44	5		
4/4/2044	Dedu 5000	e'	47.3466	Relative Permittivity (c _r):	47.35	48.20	-1.77	10		
4/1/2011	Body 5800	e"	18.8098	Conductivity (σ):	6.07	6.00	1.10	5		
Liquid Check Ambient temperature: 24 deg. C; Liquid temperature: 23 deg. C; Relative humidity = 38% April 01, 2011 08:54 AM Frequency e' e''										
460000000	. 4	9.7	761	16.9827						
465000000	. 4	9.7	220	17.1691						
470000000	. 4	9.6	285	17.1821						
4750000000	. 4	9.4	879	17.3390						
4800000000	. 4	9.4	568 509	17.3989						
4850000000	. 4	9.2 0.2	298 244	17.4808						
4900000000	. 4	9.Z	076	17.5950						
5000000000	4	8.9	670	17.0010						
5050000000	. 4	8.9	676	17,9049						
510000000	. 4	8.6	931	17.8860						
5150000000	. 4	8.6	970	18.0813						
520000000	. 4	8.5	206	17.9986						
525000000	. 4	8.4	857	18.2191						
530000000	. 4	8.4	304	18.1605						
535000000	. 4	8.2	215	18.3113						
540000000	. 4	8.2	774	18.3521						
545000000	. 4	7.9	717	18.3921						
550000000	. 4	8.0	396	18.5390						
5550000000	. 4	·7.8 77	360	18.5228						
560000000	. 4	·/./	242	18.6403						
570000000	. 4	75	243 400	10.0000						
5750000000	. 4	7.5	409 270	10.7122						
580000000	4	7.3	466	18 8098						
5850000000	. 4	7.2	928	18.9852						
590000000	. 4	7.2	045	18.9524						
595000000	. 4	7.0	475	19.0755						
600000000	. 4	7.0	295	19.1500						
The conduct	ivity (σ) can be	e giv	/en as:							
$\sigma = \omega \varepsilon_0 e^{-2}$	= 2 π f ε ₀ e"									
where $f = ta$	arget f * 10 ⁶									
E 0 = 8	8.854 * 10 ⁻¹²									

Date	Freq. (MHz)		Liqu	id Parameters	Measured	Target	Delta (%)	Limit ? %)	
A/A/2011	Body 5200	e'	49.3266	Relative Permittivity (ε_r):	49.33	49.02	0.63	10	
4/4/2011	B00y 5200	e"	18.2049	Conductivity (σ):	5.26	5.29	-0.59	5	
4/4/2011	Rody 5500	e'	48.7258	Relative Permittivity (ε_r):	48.73	48.61	0.23	10	
4/4/2011	BOUY 5500	e"	18.6509	Conductivity (σ):	5.70	5.64	1.05	5	
4/4/2011	Dedu 5800	e'	48.1330	Relative Permittivity (ε_r):	48.13	48.20	-0.14	10	
4/4/2011	BODY 5800	e"	19.0930	Conductivity (σ):	6.16	6.00	2.62	5	
Liquid Check	<								
Ambient tem	perature: 24 d	eg.	C; Liquid te	mperature: 23 deg. C; F	Relative hum	idity = 40%			
April 04, 201	1 09:02 AM								
Frequency	e'			e"					
460000000	. 5	50.5	372	17.1518					
465000000	. 5	50.4	467	17.2337					
470000000	. 5	50.3	450	17.3434					
475000000	. 5	50.2	540	17.4236					
480000000	. 5	50.1	428	17.5237					
485000000	. 5	50.0	546	17.6035					
490000000	. 4	9.9	373	17.6970					
495000000). 49.8468			17.7795					
500000000	. 49.7388			17.8714					
505000000	. 4	9.6	375	17.9557					
510000000	. 4	9.5	332	18.0447					
5150000000	. 4	49 4253		18,1151					
5200000000	. 4	9.3	266	18.2049					
5250000000	- 4	92	311	18 2684					
5300000000	۔ ۷	19.1	171	18.3509					
5350000000		19.1	321	18 4243					
5400000000		18.0	107	18 5019					
5450000000		10.0 18 8	243	18 5790					
5500000000		18.7	258	18 6509					
5550000000	. 4	10.7	230	18 7262					
550000000		10.0	220	10.7202					
5650000000	. 4	ю.Э 10 л	528 977	10.7900					
5050000000	. 4	トロ・4 トロ・2	211	10.0071					
570000000	. 4	10.J	347	10.9420					
5750000000	. 4	10.2	301	19.0100					
5800000000	. 4	10.1	330	19.0930					
5850000000	. 4	18.U	479	19.1655					
590000000	. 4	F7.9	422	19.2420					
5950000000	5950000000. 47.8600			19.3167					
6000000000	. 4	7.7	491	19.3936					
The conduct	The conductivity (σ) can be given as:								
$\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$									
where $f = ta$	arget f * 10 ⁶								
ε ₀ = 8	8.854 * 10 ⁻¹²								

Date	Freq. (MHz)		Liqu	id Parameters	Measured	Target	Delta (%)	Limit ±(%)
4/5/2011 Body 5200	e'	48.5197	Relative Permittivity (c _r):	48.52	49.02	-1.02	10	
	e"	17.8941	Conductivity (σ):	5.17	5.29	-2.28	5	
4/5/2011	1/5/2011 Dedy 5500	e'	47.9221	Relative Permittivity (ε_r):	47.92	48.61	-1.42	10
4/3/2011	Bouy 5500	e"	18.3205	Conductivity (σ):	5.60	5.64	-0.74	5
4/5/2011 Body 5800	e'	47.3431	Relative Permittivity (c _r):	47.34	48.20	-1.78	10	
	BOUY 2000	e"	18.7493	Conductivity (σ):	6.05	6.00	0.78	5

Liquid Check

Ambient temperature: 24 deg. C; Liquid temperature: 23 deg. C; Relative humidity = 40% April 05, 2011 09:03 AM

, -		
Frequency	e'	e"
460000000.	49.7188	16.8581
4650000000.	49.6243	16.9322
470000000.	49.5262	17.0483
4750000000.	49.4347	17.1198
480000000.	49.3266	17.2297
4850000000.	49.2358	17.3023
490000000.	49.1236	17.4018
495000000.	49.0337	17.4760
500000000.	48.9246	17.5685
505000000.	48.8248	17.6433
510000000.	48.7239	17.7363
5150000000.	48.6203	17.7956
520000000.	48.5197	17.8941
5250000000.	48.4231	17.9462
530000000.	48.3156	18.0396
5350000000.	48.2254	18.0961
540000000.	48.1144	18.1826
5450000000.	48.0288	18.2455
550000000.	47.9221	18.3205
5550000000.	47.8282	18.3875
560000000.	47.7307	18.4668
5650000000.	47.6364	18.5285
570000000.	47.5382	18.6075
5750000000.	47.4448	18.6703
580000000.	47.3431	18.7493
5850000000.	47.2655	18.8101
590000000.	47.1523	18.8823
595000000.	47.0715	18.9550
600000000.	46.9624	19.0271

The conductivity (σ) can be given as:

where $f = target f * 10^6$

 $\epsilon_0 = 8.854 * 10^{-12}$

Date	Freq. (MHz)		Liqu	id Parameters	Measured	Target	Delta (%)	Limit ? %)	
04/27/2011	Pody 2450	e'	50.9428	Relative Permittivity (ε_r):	50.94	52.70	-3.33	5	
04/27/2011	BOUY 2450	e"	14.7174	Conductivity (σ):	2.00	1.95	2.82	5	
Liquid Check	K								
Ambient tem	Ambient temperature: 24 deg. C; Liquid temperature: 23 deg. C; Relative humidity = 39%								
April 27, 201	1 09:30 AM								
Frequency	e'			e"					
2410000000	. (51.0	771	14.5371					
2415000000	. (51.0	124	14.5541					
2420000000	. (50.9	582	14.5640					
2425000000	. (50.9	815	14.5749					
243000000	. (51.0	097	14.5856					
2435000000	. (50.9	928	14.6258					
2440000000	. (50.8	668	14.6552					
2445000000	. 5	50.9	158	14.6308					
245000000	. !	50.9	428	14.7174					
2455000000		50.9	938	14.7095					
246000000		50.8	996	14.7732					
2465000000	. 5	50.8	469	14.8048					
247000000	. 5	50.8	334	14.7900					
2475000000	. 5	50.8	374	14.9011					
248000000	. 5	50.7	069	14.8639					
2485000000	. t	50.7	951	14.9294					
The conduct	ivity (σ) can b	e gi	ven as:						
$\sigma = \omega \varepsilon_0 e^{-\omega \omega}$	= 2 π f ε ₀ e"	,							
where $f = ta$	where $\mathbf{f} = target f * 10^6$								
ɛ ₀ = 8	3.854 * 10 ⁻¹²								

Page 16 of 43

Date	Freq. (MHz)		Liqu	id Parameters	Measured	Target	Delta (%)	Limit ? %)		
04/29/2011	Pody 2450	e'	51.7121	Relative Permittivity (ε_r):	51.71	52.70	-1.87	5		
04/20/2011	B00y 2450	e"	14.7758	Conductivity (σ):	2.01	1.95	3.22	5		
Liquid Check	ζ.									
Ambient tem	Ambient temperature: 24 deg. C; Liquid temperature: 23 deg. C; Relative humidity = 38%									
April 28, 201	1 07:58 AM									
Frequency	e'			e"						
241000000	. 5	51.9	054	14.6168						
2415000000	. 5	51.8	714	14.6771						
242000000	. 5	51.8	722	14.7111						
2425000000	. 5	51.8	769	14.7212						
243000000	. 5	51.8	723	14.6376						
2435000000	. 5	51.8	161	14.7421						
244000000	. 5	51.7	373	14.7817						
2445000000	. 5	51.7	967	14.8212						
245000000	. 5	51.7	121	14.7758						
2455000000	. 5	51.7	520	14.8565						
246000000	. 5	51.7	136	14.8855						
2465000000	. 5	51.7	571	14.7982						
247000000	. 5	51.7	614	14.9224						
2475000000	. 5	51.6	719	14.9655						
248000000	. 5	51.6	974	14.9700						
2485000000	. 5	51.5	920	14.9399						
The conduct	ivity (σ) can be	e giv	ven as:							
$\sigma = \omega \varepsilon_0 e^{-\omega \omega}$	= 2 π f ε ₀ e"	,								
where $f = ta$	where $\mathbf{f} = target f * 10^6$									
ɛ ₀ = 8	8.854 * 10 ⁻¹²									

Page 17 of 43

Date	Freq. (MHz)		Liqu	id Parameters	Measured	Target	Delta (%)	Limit ±(%)
E/2/2011	Dady 5200	e'	47.4436	Relative Permittivity (ε_r):	47.44	49.02	-3.22	10
5/3/2011	BOUY 5200	e"	18.0119	Conductivity (σ):	5.21	5.29	-1.64	5
5/2/2011	Pody 5500	e'	46.9446	Relative Permittivity (ε_r):	46.94	48.61	-3.43	10
5/5/2011	BOUY 5500	e"	18.4207	Conductivity (σ):	5.63	5.64	-0.20	5
5/3/2011	Rody 5800	e'	46.3231	Relative Permittivity (ε_r):	46.32	48.20	-3.89	10
5/3/2011	BOUY 5600	e"	18.8012	Conductivity (σ):	6.06	6.00	1.06	5
Liquid Check	(
Ambient tem	perature: 25 d	deg.	C; Liquid te	mperature: 24 deg. C; Re	elative humio	dity = 40%		
May 03, 201	1 03:24 PM							
Frequency	e			e"				
460000000	. '	48.5	413	16.9813				
465000000	. '	48.4	520	17.0856				
470000000	. '	48.4	542	17.1494				
475000000		48.3	062	17.2525				
480000000	. '	48.2	412	17.4204				
485000000		48.1	824	17.2612				
490000000		48.0	445	17.4211				
495000000		47.8	924	17.5475				
500000000		47.8	994	17.6340				
505000000		47.7	925	17.6731				
510000000		47.5	737	17.8526				
5150000000		47.5	706	17.8906				
520000000		47.4	436	18.0119				
525000000		47.3	509	18.0043				
530000000		47.1	030	18.1165				
5350000000		47.1	230	18.2252				
540000000		46.9	666	18.1291				
545000000		46.8	896	18.3018				
550000000		46.9	446	18.4207				
5550000000	. '	46.6	380	18.3605				
560000000		46.6	503	18.5105				
565000000	. '	46.6	206	18.6427				
570000000		46.4	439	18.6005				
575000000	. '	46.2	975	18.6623				
580000000		46.3	231	18.8012				
585000000	. '	46.0	805	18.8325				
590000000	. '	46.2	379	18.9882				
595000000	. '	45.9	667	18.9393				
600000000	. '	46.1	912	18.9916				
The conduct	ivity (σ) can b	e gi	ven as:					

$$\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$$

where $f = target f * 10^6$

 $\epsilon_0 = 8.854 * 10^{-12}$

Date	Freq. (MHz)		Liqu	id Parameters	Measured	Target	Delta (%)	Limit ? %)	
05/04/2011	Rody 5200	e'	50.0737	Relative Permittivity (ε_r):	50.07	49.02	2.15	10	
03/04/2011	B00y 5200	e"	18.2118	Conductivity (σ):	5.27	5.29	-0.55	5	
05/04/2011	1 Body 5500		49.4127	Relative Permittivity (ε_r):	49.41	48.61	1.64	10	
00/04/2011	Douy 5500	e"	18.7295	Conductivity (σ):	5.73	5.64	1.48	5	
05/04/2011	Rody 5800	e'	49.0618	Relative Permittivity (ε_r):	49.06	48.20	1.79	10	
03/04/2011	B00y 5000	e"	19.1120	Conductivity (σ):	6.16	6.00	2.73	5	
Liquid Check	(
Ambient tem	perature: 25 c	leg.	C; Liquid te	mperature: 24 deg. C; R	elative humio	dity = 40%			
May 04, 201	1 02:22 PM								
Frequency	e'	- 4 4	<u></u>	e"					
460000000		51.1 - 4 0	630	17.6303					
4650000000	. :	01.0	057	17.0184					
470000000	. :	01.1	5Z3	17.7525					
4750000000	. :	00.0 50.7		17.7009					
4800000000	. :	50.7	U02 750	17.0394					
4650000000		0.00 50 6	132	17.9775					
4900000000		50.0 50.4	922	10.0759					
500000000		50.4 50.4	377	18 1753					
5050000000		50.9	870	18 23/6					
510000000		50.2 50.2	750	18 2826					
5150000000		50.2 50 1	060	18 3220					
5200000000		50.0	737	18 2118					
5250000000		19.9	651	18 4973					
5300000000	. 4	19.9	225	18.4995					
5350000000	. 4	19.7	905	18.5083					
5400000000	. 4	19.8	595	18.6709					
5450000000	. 4	19.7	079	18.6360					
550000000	. 4	19.4	127	18.7295					
5550000000	. 4	19.5	298	18.7157					
560000000	. 4	19.4	219	18.8268					
565000000	. 4	19.3	308	18.9417					
570000000	. 4	19.1	897	18.8739					
575000000	. 4	19.0	730	19.0829					
580000000	. 4	19.0	618	19.1120					
585000000	. 4	18.9	265	19.0248					
590000000	. 4	18.8	632	19.3799					
595000000	. 4	18.8	808	19.2411					
600000000	. 4	18.6	773	19.2311					
The conductivity (σ) can be given as:									
$\sigma = \omega \varepsilon_0 e'' = 2 \pi f \varepsilon_0 e''$									
where $f = ta$	arget f * 10 ⁶								

£₀ = 8.854 * 10⁻¹²

9. SYSTEM VERIFICATION

The system performance check is performed prior to any usage of the system in order to verify SAR system measurement accuracy. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Head or Body simulating liquid of the following parameters.
- The DASY4 system with an Isotropic E-Field EX3DV4 SN 3749 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
 For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 fine cube was chosen for cube
- Distance between probe sensors and phantom surface was set to 3 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input power (forward power) was 100 mW
- The results are normalized to 1 W input power

System	Cal. certificate #	Cal date	Cal. Freq.	SAR Avg (mW/g)			
validation dipole			(GHz)	Tissue:	Head	Body	
D2450V2	D24501/2 706 Apr10	4/10/10	2.4	1g SAR:	51.6	52.4	
SN 706	D2430V2-700_Aprilo	1,10,10	2.4	10g SAR:	24.4	24.5	
		9/3/09	5.2	1g SAR:	/	79.0	
			5.2	10g SAR:		22.0	
D5GHzV2			5 5	1g SAR:		85.4	
SN 1075	D5GH2V2-1075_Sep09		5.5	10g SAR:		23.5	
			5.9	1g SAR:		73.2	
			5.0	10g SAR:		20.1	

Reference SAR Values for HEAD & BODY-tissue from calibration certificate of SPEAG.

9.1. SYSTEM CHECK RESULTS

Validation dipole Date rested Tissue: Body Trager Della (%) (%) D5GHzV2 (5.2GHz) 03/31/11 1g SAR: 79.2 79.0 0.25 ? 0 D5GHzV2 (5.2GHz) 04/01/11 1g SAR: 79.9 79.0 1.14 ? 0 D5GHzV2 (5.2GHz) 04/01/11 1g SAR: 73.2 22.0 5.45 ? 0 D5GHzV2 (5.5GHz) 04/01/11 1g SAR: 70.9 73.2 -0.41 ? 0 D5GHzV2 (5.8GHz) 04/01/11 1g SAR: 73.4 79.0 -7.09 ? 0 D5GHzV2 (5.2GHz) 04/04/11 1g SAR: 73.4 79.0 -7.09 ? 0 D5GHzV2 (5.5GHz) 04/04/11 1g SAR: 83.8 85.4 -1.87 ? 0 D5GHzV2 (5.5GHz) 04/04/11 1g SAR: 19.1 20.1 -4.98 ? 0 D5GHzV2 (5.5GHz) 04/05/11 1g SAR: 80.0 85.4 -6.32 ? 0 D5GHzV2 (5.5GHz) 04/05/11 1g SAR: 73.8	System	Data Tastad	Measured (N	ormalized to 1 W)	Torgot	Delte(0/)	Tolerance	
D5GHzV2 (5.2GHz) 03/31/11 1g SAR: 79.2 79.0 0.25 7 D5GHzV2 (5.2GHz) 04/01/11 1g SAR: 79.9 79.0 1.14 7 D5GHzV2 (5.2GHz) 04/01/11 1g SAR: 23.2 22.0 5.45 7 D5GHzV2 (5.5GHz) 04/01/11 1g SAR: 23.2 22.0 5.45 7 D5GHzV2 (5.5GHz) 04/01/11 1g SAR: 24.1 23.5 2.55 7 0 D5GHzV2 (5.2GHz) 04/04/11 1g SAR: 73.4 79.0 -7.09 7 0 D5GHzV2 (5.2GHz) 04/04/11 1g SAR: 24.1 23.5 2.55 7 0 D5GHzV2 (5.3GHz) 04/04/11 1g SAR: 67.6 73.2 -7.65 7 0 7 0 D5GHzV2 (5.3GHz) 04/04/11 1g SAR: 67.6 73.2 -7.65 7 0 7 0 D5GHzV2 (5.3GHz) 04/05/11 1g SAR: 73.8 79.0 -6.58	validation dipole	Date Tested	Tissue:	Body	rarget	Della (%)	(%)	
DSGR12V2 (5.2GHz) OSD M11 10g SAR: 23.0 22.0 4.55 1 0 D5GHzV2 (5.2GHz) 04/01/11 1g SAR: 79.9 79.0 1.14 ? 0 D5GHzV2 (5.5GHz) 04/01/11 1g SAR: 84.5 85.4 -1.05 ? 0 D5GHzV2 (5.5GHz) 04/01/11 1g SAR: 72.9 73.2 -0.41 ? 0 D5GHzV2 (5.5GHz) 04/01/11 1g SAR: 73.4 79.0 -7.09 ? 0 D5GHzV2 (5.5GHz) 04/04/11 1g SAR: 73.4 79.0 -7.09 ? 0 D5GHzV2 (5.5GHz) 04/04/11 1g SAR: 73.8 79.0 -7.09 ? 0 D5GHzV2 (5.5GHz) 04/04/11 1g SAR: 67.6 73.2 -7.65 ? 0 D5GHzV2 (5.2GHz) 04/05/11 1g SAR: 73.8 79.0 -6.58 ? 0 D5GHzV2 (5.5GHz) 04/05/11 1g SAR: 22.7 23.5 -3.40 ? 0 D5GHzV2 (5.5GHz) 04/05/11 1g SAR: 74.7 <		03/31/11	1g SAR:	79.2	79.0	0.25	2 0	
D5GHzV2 (5.2GHz) 04/01/11 10g SAR: 1g SAR: 79.9 22.0 1.14 5.45 ? 0 D5GHzV2 (5.5GHz) 04/01/11 10g SAR: 1g SAR: 84.5 85.4 -1.05 5.45 ? 0 D5GHzV2 (5.5GHz) 04/01/11 10g SAR: 1g SAR: 72.9 73.2 -0.41 ? 0 D5GHzV2 (5.8GHz) 04/01/11 10g SAR: 20.7 20.1 2.99 ? 0 D5GHzV2 (5.2GHz) 04/04/11 10g SAR: 21.1 22.0 4.09 ? 0 D5GHzV2 (5.5GHz) 04/04/11 1g SAR: 21.1 22.0 4.09 ? 0 D5GHzV2 (5.5GHz) 04/04/11 1g SAR: 67.6 73.2 7.65 ? 0 D5GHzV2 (5.5GHz) 04/04/11 1g SAR: 73.8 79.0 -6.58 ? 0 D5GHzV2 (5.5GHz) 04/05/11 1g SAR: 73.3 22.0 -3.18 ? 0 D5GHzV2 (5.5GHz) 04/05/11 1g SAR: 74.7 73.2 2.05 ? 0 D5GHzV2 (5.5GHz) 04/05/11 1g SAR: 74.7 73.2	DJGHZVZ (J.ZGHZ)	03/31/11	10g SAR:	23.0	22.0	4.55	: 0	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D5GHz\/2 (5 2GHz)	04/01/11	1g SAR:	79.9	79.0	1.14	2.0	
D5GHzV2 (5.5GHz) 04/01/11 1g SAR: 84.5 85.4 -1.05 ? 0 D5GHzV2 (5.8GHz) 04/01/11 1g SAR: 22.1 23.5 2.55 D5GHzV2 (5.8GHz) 04/01/11 1g SAR: 72.9 73.2 -0.41 ? 0 D5GHzV2 (5.2GHz) 04/04/11 1g SAR: 73.4 79.0 -7.09 ? 0 D5GHzV2 (5.5GHz) 04/04/11 1g SAR: 21.1 22.0 4.09 ? 0 D5GHzV2 (5.5GHz) 04/04/11 1g SAR: 67.6 73.2 -7.65 ? 0 D5GHzV2 (5.5GHz) 04/04/11 1g SAR: 67.6 73.2 -7.65 ? 0 D5GHzV2 (5.5GHz) 04/05/11 1g SAR: 67.6 73.2 -6.58 ? 0 D5GHzV2 (5.5GHz) 04/05/11 1g SAR: 21.3 22.0 -3.18 ? 0 D5GHzV2 (5.5GHz) 04/05/11 1g SAR: 74.7 73.2 2.05 ? 0 D5GHzV2 (5.5GHz) 04/05/11 1g SAR: 74.7 73.2 <t< td=""><td></td><td>04/01/11</td><td>10g SAR:</td><td>23.2</td><td>22.0</td><td>5.45</td><td>: 0</td></t<>		04/01/11	10g SAR:	23.2	22.0	5.45	: 0	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D5GHzV2 (5 5GHz)	04/01/11	1g SAR:	84.5	85.4	-1.05	2 0	
D5GHzV2 (5.8GHz) 04/01/11 1g SAR: 72.9 73.2 -0.41 ? 0 D5GHzV2 (5.2GHz) 04/04/11 10g SAR: 20.7 20.1 2.99 ? 0 D5GHzV2 (5.2GHz) 04/04/11 10g SAR: 73.4 79.0 -7.09 ? 0 D5GHzV2 (5.5GHz) 04/04/11 1g SAR: 83.8 85.4 -1.87 ? 0 D5GHzV2 (5.5GHz) 04/04/11 1g SAR: 67.6 73.2 -7.65 ? 0 D5GHzV2 (5.2GHz) 04/04/11 1g SAR: 19.1 20.1 -4.98 ? 0 D5GHzV2 (5.2GHz) 04/05/11 1g SAR: 73.8 79.0 -6.58 ? 0 D5GHzV2 (5.5GHz) 04/05/11 1g SAR: 21.3 22.0 -3.18 ? 0 D5GHzV2 (5.5GHz) 04/05/11 1g SAR: 74.7 73.2 2.05 ? 0 D5GHzV2 (5.8GHz) 04/05/11 1g SAR: 25.5 52.4 2.86 ? 0 D2450V2 (2.45GHz) 04/27/11 1g SAR: 55.5		0 // 0 // 11	10g SAR:	24.1	23.5	2.55	. 0	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	D5GHzV2 (5.8GHz)	04/01/11	1g SAR:	72.9	73.2	-0.41	? 0	
D5GHzV2 (5.2GHz) 04/04/11 1g SAR: 73.4 79.0 -7.09 7 0 D5GHzV2 (5.5GHz) 04/04/11 1g SAR: 21.1 22.0 4.09 7 0 D5GHzV2 (5.5GHz) 04/04/11 1g SAR: 83.8 85.4 -1.87 7 0 D5GHzV2 (5.5GHz) 04/04/11 1g SAR: 67.6 73.2 -7.65 7 0 D5GHzV2 (5.5GHz) 04/05/11 1g SAR: 73.8 70.0 -6.58 7 0 D5GHzV2 (5.5GHz) 04/05/11 1g SAR: 21.3 22.0 -3.18 7 0 D5GHzV2 (5.5GHz) 04/05/11 1g SAR: 21.3 22.0 -3.18 7 0 D5GHzV2 (5.5GHz) 04/05/11 1g SAR: 21.3 22.0 -3.40 7 0 D5GHzV2 (5.5GHz) 04/05/11 1g SAR: 74.7 73.2 2.05 7 0 D2450V2 (2.45GHz) 04/05/11 1g SAR: 21.3 20.1 5.97 7 0 D2450V2 (2.45GHz) 04/271/11 1g SAR: 55.5		• • • • • • • •	10g SAR:	20.7	20.1	2.99		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	D5GHzV2 (5 2GHz)	04/04/11	1g SAR:	73.4	79.0	-7.09	2 0	
D5GHzV2 (5.5GHz) 04/04/11 1g SAR: 83.8 85.4 -1.87 7 0 D5GHzV2 (5.5GHz) 04/04/11 1g SAR: 67.6 73.2 -7.65 7.0 D5GHzV2 (5.8GHz) 04/04/11 1g SAR: 67.6 73.2 -7.65 7.0 D5GHzV2 (5.2GHz) 04/05/11 1g SAR: 73.8 79.0 -6.58 7.0 D5GHzV2 (5.5GHz) 04/05/11 1g SAR: 21.3 22.0 -3.18 7.0 D5GHzV2 (5.5GHz) 04/05/11 1g SAR: 23.5 -3.40 7.0 D5GHzV2 (5.8GHz) 04/05/11 1g SAR: 74.7 73.2 2.05 7.0 D5GHzV2 (5.8GHz) 04/05/11 1g SAR: 74.7 73.2 2.05 7.0 D2450V2 (2.45GHz) 04/27/11 1g SAR: 74.7 73.2 2.06 7.0 D2450V2 (2.45GHz) 04/28/11 1g SAR: 25.5 52.4 5.92 7.0 D5GHzV2 (5.2GHz) 04/28/11 1g SAR: 27.1 22.		0	10g SAR:	21.1	22.0	-4.09	: 0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	D5GHz\/2 (5 5GHz)	04/04/11	1g SAR:	83.8	85.4	-1.87	2 0	
D5GH2V2 (5.8GHz) 04/04/11 1g SAR: 67.6 73.2 -7.65 7 0 D5GH2V2 (5.2GHz) 04/05/11 1g SAR: 19.1 20.1 -4.98 7 0 D5GH2V2 (5.2GHz) 04/05/11 1g SAR: 73.8 79.0 -6.58 7 0 D5GH2V2 (5.5GHz) 04/05/11 1g SAR: 21.3 22.0 -3.18 7 0 D5GH2V2 (5.5GHz) 04/05/11 1g SAR: 28.00 85.4 -6.32 7 0 D5GH2V2 (5.8GHz) 04/05/11 1g SAR: 74.7 73.2 2.05 7 0 D5GH2V2 (5.8GHz) 04/05/11 1g SAR: 74.7 73.2 2.05 7 0 D2450V2 (2.45GHz) 04/27/11 1g SAR: 24.8 24.5 1.22 7 0 D2450V2 (2.45GHz) 04/28/11 1g SAR: 25.5 52.4 5.92 7 0 D5GHzV2 (5.2GHz) 05/03/11 1g SAR: 27.5 79.0 -1.90 7 0 D5GHzV2 (5.5GHz) 05/03/11 1g SAR: 23.6 <	D00112V2 (0.00112)	04/04/11	10g SAR:	24.1	23.5	2.55	: 0	
DSGN 2V2 (5.5GHz) 04/04/11 10g SAR: 19.1 20.1 -4.98 ? 0 D5GHzV2 (5.2GHz) 04/05/11 1g SAR: 73.8 79.0 -6.58 ? 0 D5GHzV2 (5.2GHz) 04/05/11 1g SAR: 21.3 22.0 -3.18 ? 0 D5GHzV2 (5.5GHz) 04/05/11 1g SAR: 22.7 23.5 -3.40 ? 0 D5GHzV2 (5.8GHz) 04/05/11 1g SAR: 22.7 23.5 -3.40 ? 0 D5GHzV2 (5.8GHz) 04/05/11 1g SAR: 21.3 20.1 5.97 ? 0 D2450V2 (2.45GHz) 04/02/1/11 1g SAR: 24.8 24.5 1.22 ? 0 D2450V2 (2.45GHz) 04/28/11 1g SAR: 25.5 52.4 5.92 ? 0 D5GHzV2 (5.2GHz) 04/28/11 1g SAR: 25.5 24.5 4.08 ? 0 D5GHzV2 (5.5GHz) 05/03/11 1g SAR: 22.1 22.0 0.45 ? 0 D5GHzV2 (5.6GHz) 05/03/11 1g SAR: 23.6		04/04/11	1g SAR:	67.6	73.2	-7.65	2.0	
D5GHzV2 (5.2GHz) 04/05/11 1g SAR: 73.8 79.0 -6.58 ? 0 D5GHzV2 (5.2GHz) 04/05/11 10g SAR: 21.3 22.0 -3.18 ? 0 D5GHzV2 (5.5GHz) 04/05/11 1g SAR: 80.0 85.4 -6.32 ? 0 D5GHzV2 (5.5GHz) 04/05/11 1g SAR: 22.7 23.5 -3.40 ? 0 D5GHzV2 (5.8GHz) 04/05/11 1g SAR: 74.7 73.2 2.05 ? 0 D2450V2 (2.45GHz) 04/05/11 1g SAR: 21.3 20.1 5.97 ? 0 D2450V2 (2.45GHz) 04/27/11 1g SAR: 24.8 24.5 1.22 ? 0 D2450V2 (2.45GHz) 04/28/11 1g SAR: 25.5 52.4 5.92 ? 0 D5GHzV2 (5.2GHz) 04/28/11 1g SAR: 25.5 24.5 4.08 ? 0 D5GHzV2 (5.5GHz) 05/03/11 1g SAR: 22.1 22.0 0.45 ? 0 D5GHzV2 (5.6GHz) 05/03/11 1g SAR: 23.6 <t< td=""><td>D5G112V2 (5.6G112)</td><td></td><td>10g SAR:</td><td>19.1</td><td>20.1</td><td>-4.98</td><td>Ϋ́Ο</td></t<>	D5G112V2 (5.6G112)		10g SAR:	19.1	20.1	-4.98	Ϋ́Ο	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		04/05/11	1g SAR:	73.8	79.0	-6.58	2.0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		04/05/11	10g SAR:	21.3	22.0	-3.18	Ϋ́Ο	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		04/05/44	1g SAR:	80.0	85.4	-6.32	2.0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	D9GHZVZ (9.9GHZ)	04/03/11	10g SAR:	22.7	23.5	-3.40	Ϋ́Ο	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		04/05/11	1g SAR:	74.7	73.2	2.05	2.0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	D5GHZV2 (5.8GHZ)		10g SAR:	21.3	20.1	5.97	?0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0.4/07/44	1g SAR:	53.9	52.4	2.86		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	D2450V2 (2.45GHZ)	04/27/11	10g SAR:	24.8	24.5	1.22	?0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0.4/00/44	1g SAR:	55.5	52.4	5.92		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	D2450V2 (2.45GHZ)	04/28/11	10g SAR:	25.5	24.5	4.08	?0	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			1g SAR:	77.5	79.0	-1.90		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	D5GHzV2 (5.2GHz)	05/03/11	10g SAR:	22.1	22.0	0.45	? 0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1g SAR:	83.1	85.4	-2.69	• •	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	D5GHzV2 (5.5GHz)	05/03/11	10g SAR:	23.6	23.5	0.43	? 0	
D5GHzV2 (5.8GHz) 05/03/11 10g SAR: 20.9 20.1 3.98 ? 0 D5GHzV2 (5.2GHz) 05/04/11 1g SAR: 72.2 79.0 -8.61 ? 0 D5GHzV2 (5.2GHz) 05/04/11 1g SAR: 20.6 22.0 -6.36 ? 0 D5GHzV2 (5.5GHz) 05/04/11 1g SAR: 80.5 85.4 -5.74 ? 0 D5GHzV2 (5.5GHz) 05/04/11 1g SAR: 22.6 23.5 -3.83 ? 0 D5GHzV2 (5.8GHz) 05/04/11 1g SAR: 71.3 73.2 -2.60 ? 0 D5GHzV2 (5.8GHz) 05/04/11 10g SAR: 19.9 20.1 -1.00 ? 0			1g SAR:	74.2	73.2	1.37		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D5GHzV2 (5.8GHz)	05/03/11	10g SAR:	20.9	20.1	3.98	? 0	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1g SAR:	72.2	79.0	-8.61		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D5GHzV2 (5.2GHz)	05/04/11	10g SAR	20.6	22.0	-6.36	? 0	
D5GHzV2 (5.5GHz) 05/04/11 19 S/R : 22.6 23.5 -3.83 ? 0 D5GHzV2 (5.8GHz) 05/04/11 1g SAR: 71.3 73.2 -2.60 ? 0 D5GHzV2 (5.8GHz) 05/04/11 10g SAR: 19.9 20.1 -1.00 ? 0			1g SAR	80.5	85.4	-5 74		
D5GHzV2 (5.8GHz) 05/04/11 1g SAR: 71.3 73.2 -2.60 ? 0	D5GHzV2 (5.5GHz)	05/04/11	10a SAR [.]	22.6	23.5	-3.83	? 0	
D5GHzV2 (5.8GHz) 05/04/11 10g SAR: 19.9 20.1 -1.00 ? 0			10 SAR	71.3	73.2	-2.60		
	D5GHzV2 (5.8GHz)	05/04/11	10g SAR	19.9	20.1	_1 00	? 0	

Page 21 of 43

10. SAR MEASUREMENT PROCEDURES

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties (for example, 1.2 mm for an EX3DV3 probe type).

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY4 software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528, EN 50361 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures \geq 7 x 7 x 9 points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a onedimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

Page 22 of 43

11. RF OUTPUT POWER VERIFICATION

The following procedures had been used to prepare the EUT for the SAR test. The client provided a special driver and program, Intel DRTU v1.3.12-0263, which enable a user to control the frequency and output power of the module.

11.1. RF OUTPUT POWER FOR 2.4 GHZ BAND

2.4 GHz Band	.4 GHz Band									
Mode	Ch #	Freq.	Original Targ	et Pwr (dBm)	Actual Mea	sured Pwr				
	011. #	(MHz)	Chain A	Chain B	Chain A	Chain B				
	1	2412	15.5							
	6	2437	15.7		15.8					
802 11h	11	2462	15.5							
002.110	1	2412		15.6						
	6	2437		15.5		15.6				
	11	2462		15.6						
	1	2412	14.0							
	6	2437	16.6		16.7					
902 11a	11	2462	14.0							
002.11g	1	2412		14.1						
	6	2437		16.5						
	11	2462		14.1						
	1	2412	13.1							
	6	2437	16.5							
	11	2462	12.4							
	1	2412		13.1						
802.11n HT20	6	2437		16.8		16.9				
	11	2462		12.8						
	1	2412	11.6	11.6						
	6	2437	13.7	13.7						
	11	2462	11.9	11.7						
	3	2422	9.1							
	6	2437	16.6							
	9	2450	9.6							
	3	2422		9.6						
802.11n HT40	6	2437		16.4						
	9	2450		10.0						
	3	2422	8.0	8.0						
	6	2437	13.7	13.7						
	9	2450	8.6	8.6						

Notes:

- 1. The modes with highest output power channel were chosen for the conducted output power.
- 2. Original target power is from EMC report. Please refer to original report (FCC ID: PD962205ANH) for Average Power information as documented in 09/13/2010 original filing.

Page 23 of 43

11.2. RF OUTPUT POWER FOR 5 GHZ BANDS

5.2 GHz Band	2 GHz Band										
Mode	Ch #	Freq.	Original Targ	et Pwr (dBm)	Actual Mea	asured Pwr					
WOULE	011. #	(MHz)	Chain A	Chain B	Chain A	Chain B					
	36	5180	16.1								
	40	5200	16.0		16.2						
902 110	48	5240	16.1								
002.11d	36	5180		16.2							
	40	5200		16.1		16.1					
	48	5240		16.1							
	36	5180	15.6								
	40	5200	16.1								
	48	5240	16.1								
	36	5180		15.6							
802.11n HT20	40	5200		16.1							
	48	5240		16.0							
	36	5180	10.5	10.5							
	40	5200	11.0	11.1							
	48	5240	11.0	10.5							
	38	5190	11.1								
	46	5230	16.1								
802 11n HT40	38	5190		11.1							
002.11111140	46	5230		16.0							
	38	5190	8.5	8.3							
	46	5230	11.7	10.6							

Notes:

1. The modes with highest output power channel were chosen for the conducted output power.

2. Original target power is from EMC report. Please refer to original report (FCC ID: PD962205ANH) for Average Power information as documented in 09/13/2010 original filing.

Page 24 of 43

5.3 GHz Band	3 GHz Band										
Modo	Ch #	Freq.	Original Targ	et Pwr (dBm)	Actual Mea	asured Pwr					
INIOUE	011. #	(MHz)	Chain A	Chain B	Chain A	Chain B					
	52	5260	16.1								
	60	5300	16.2		16.2						
802 112	64	5320	16.1								
002.11d	52	5260		16.2							
	60	5300		16.2		16.2					
	64	5320		16.2							
	52	5260	16.2								
	60	5300	16.1								
	64	5320	16.0								
	52	5260		16.2							
802.11n HT20	60	5300		16.1							
	64	5320		16.2							
	52	5260	10.6	10.9							
	60	5300	11.0	10.2							
	64	5320	10.5	10.3							
	54	5270	16.5		16.5						
	62	5310	11.2								
802 11n HT40	54	5270		16.6		16.6					
002.11111140	62	5310		11.1							
	54	5270	10.8	11.3							
	62	5310	7.9	7.5							

Notes:

1. The modes with highest output power channel were chosen for the conducted output power.

2. Original target power is from EMC report. Please refer to original report (FCC ID: PD962205ANH) for Average Power information as documented in 09/13/2010 original filing.

Page 25 of 43

5.5 GHz Band						
Mode	Ch #	Freq.	Original Targ	et Pwr (dBm)	Actual Measured Pwr	
NIDUE	0n. #	(MHz)	Chain A	Chain B	Chain A	Chain B
	100	5500	16.6			
	120	5600	16.6		16.7	
802 11a	140	5700	16.6			
002.114	100	5500		16.6		
	120	5600		16.7		16.7
	140	5700		16.5		
	100	5500	16.7			
	120	5600	16.7			
	140	5700	16.5			
	100	5500		16.6		
802.11n HT20	120	5600		16.6		
	140	5700		16.7		
	100	5500	11.3	10.9		
	120	5600	11.5	12.2		
	140	5700	12.0	11.7		
	102	5510	13.7			
	118	5590	16.5			
	134	5670	16.5			
802.11n HT40	102	5510		13.6		
	118	5590		16.7		
	134	5670		16.7		
	102	5510	10.3	10.8		
	118	5590	11.2	11.2		
	134	5670	11.4	11.8		

Notes:

- 1. The modes with highest output power channel were chosen for the conducted output power.
- 2. Original target power is from EMC report. Please refer to original report (FCC ID: PD962205ANH) for Average Power information as documented in 09/13/2010 original filing.

Page 26 of 43

5.8 GHz Band						
Mode	Ch #	Freq.	Original Targ	et Pwr (dBm)	Actual Measured Pwr	
	UII. #	(MHz)	Chain A	Chain B	Chain A	Chain B
	149	5745	16.6			
	157	5785	16.5		16.6	
802 112	165	5825	16.5			
002.11a	149	5745		16.5		
	157	5785		16.5		16.8
	165	5825		16.5		
	149	5745	16.7			
	157	5785	16.7			
	165	5825	16.6			
	149	5745		16.7		
802.11n HT20	157	5785		16.6		
	165	5825		16.6		
	149	5745	13.6	13.7		
	157	5785	13.7	13.7		
	165	5825	13.6	13.7		
	151	5755	16.7			
	159	5795	16.6			
802.11n HT40	151	5755		16.5		
	159	5795		16.6		
	151	5755	13.6	13.7		
	159	5795	13.5	13.7		

Notes:

1. The modes with highest output power channel were chosen for the conducted output power.

2. Original target power is from EMC report. Please refer to original report (FCC ID: PD962205ANH) for Average Power information as documented in 09/13/2010 original filing.

Page 27 of 43

12. SUMMARY OF SAR TEST RESULTS

SUMMARY OF SAR TEST CONFIGURATIONS

Configuration	Antenna-to-User distance	SAR Require	Comments
Laptop mode: Lap-held	92 mm From Main (Chain A)- to-user	No	This is not the most conservative antenna-to-user distance at edge mode.
	86 mm from Aux (Chain B)-to- user	Yes	SAR evaluation
Bottom Face	41 mm From Main (Chain A)- to-user	Yes	
	38 mm From Aux (Chain B)- to-user	Yes	
Edge - Primary Landscape	70 mm From Main (Chain A)- to-user	No	This is not the most conservative antenna-to-user distance at edge mode. Per According to KDB 447498 4) b) ii) (2)
	65 mm From Aux (Chain B)- to-user	Yes	SAR evaluation This is the most conservative antenna-to-user distance at edge mode.
Edge - Secondary Landscape	126 mm From Main (Chain A)- to-user	No	This is not the most conservative antenna-to-user distance at edge mode. According to KDB 447498 4) b) ii) (2), SAR is required only for the edge with the most conservative exposure conditions.
	134 mm From Aux (Chain B)- to-user	No	This is not the most conservative antenna-to-user distance at edge mode. According to KDB 447498 4) b) ii) (2), SAR is required only for the edge with the most conservative exposure conditions.
Edge - Primary Portrait	< 2 mm from Main (Chain A) antenna to edge	No	Main (Chain A) antenna is disabled by software at this configuration.
Edge - Secondary Portrait	< 2 mm from Aux (Chain B) antenna to edge	No	Aux (Chain B) antenna is disabled by software at this configuration.

12.1. 2.4 GHZ BAND

Laptop mode: Lap-held (Aux/Chain B only)

Mode	Channel	f (MHz)	Avg. Output	Power (dBm)	Measured Result (mW/g)	
			Chain A	Chain B	1g-SAR	10g-SAR
802.11b	1	2412				
	6	2437		15.6	0.014	0.00603
	11	2462				
802.11n HT20	1	2412				
	6	2437		16.9	0.020	0.00942
	11	2462				

Bottom Face (Both Main and Aux antenna)

Mada	Channel	f (MHz)	Avg. Output Power (dBm)		Measured Result (mW/g)	
woue	Channel		Chain A	Chain B	1g-SAR	10g-SAR
	1	2412				
	6	2437	15.8		0.023	0.012
802 11h	11	2462				
002.110	1	2412				
	6	2437		15.6	0.031	0.00857
	11	2462				
	1	2412				
802.11g	6	2437	16.7		0.024	0.011
	11	2462				
802.11n HT20	1	2412				
	6	2437		16.9	0.027	0.012
	11	2462				

Edges - Primary Landscape (Aux/Chain B)

Mode	Channel	f (MHz)	Avg. Output Pwr (dBm)		Results (mW/g)	
			Chain A	Chain B	1g-SAR	10g-SAR
802.11b	1	2412				
	6	2437		15.6	0.135	0.054
	11	2462				
802.11n HT20	1	2412				
	6	2437		16.9	0.113	0.045
	11	2462				

Note:

The modes with highest output power channel were chosen for the conducted output power.

12.2. 5 GHZ BANDS

Laptop mode: Lap-Held

5.2 GHz Band						
Modo	Ch #	Freq.	Avg. Outpu	t Pwr (dBm)	Results (mW/g)	
IVIOUE	GII. #	(MHz)	Chain A	Chain B	1g-SAR	10g-SAR
	36	5180				
802.11a	40	5200		16.1	0.052	0.047
	48	5240				
5.3 GHz Band						
Mode	Ch #	Freq.	Avg. Outpu	t Pwr (dBm)	Results	(mW/g)
Woue	UII. #	(MHz)	Chain A	Chain B	1g-SAR	10g-SAR
	52	5260				
802.11a	60	5300		16.2	0.011	0.004
	64	5320				
802.11n	54	5270				
HT40	62	5310		16.6	0.017	0.007
5.5 GHz Band						
Mode	Ch. #	Freq.	Avg. Output	Power (dBm)	Measured R	esult (mW/g)
Wode		(MHz)	Chain A	Chain B	1g-SAR	10g-SAR
	100	5500				
802.11a	120	5600		16.7	0.011	0.002
	140	5700				
5.8 GHz Band						
Mada	Ch #	Freq.	Avg. Output	Power (dBm)	Measured R	esult (mW/g)
iviode	UII. #	(MHz)	Chain A	Chain B	1g-SAR	10g-SAR
	149	5745				
802.11a	157	5785		16.8	0.029	0.012
	165	5825				

Note:

The modes with highest output power channel were chosen for the conducted output power.

Bottom Face (Both Main and Aux antenna)

5.2 GHz Band						
Mode	Ch. #	Freq.	Avg. Output	Power (dBm)	Results (mW/g)	
		(MHz)	Chain A	Chain B	1g-SAR	10g-SAR
	36	5180				
	40	5200	16.2		0.024	0.00966
802 110	48	5240				
002.118	36	5180				
	40	5200		16.1	0.024	0.011
	48	5240				
5.3 GHz Band						
Mode	Ch #	Freq.	Avg. Output	Power (dBm)	Measured Re	esult (mW/g)
	01.#	(MHz)	Chain A	Chain B	1g-SAR	10g-SAR
	52	5260				
	60	5300	16.2		0.024	0.010
802 112	64	5320				
002.11a	52	5260				
	60	5300		16.2	0.026	0.013
	64	5320				
	54	5270				
802.11n	62	5310	16.5		0.033	0.012
HT40	54	5270				
	62	5310		16.6	0.043	0.0095
5.5 GHz Band						
Modo	Ch. #	Freq.	Avg. Output	Power (dBm)	Measured Re	esult (mW/g)
		(MHz)	Chain A	Chain B	1g-SAR	10g-SAR
	100	5500				
	120	5600	16.7		0.038	0.021
802 112	140	5700				
002.110	100	5500				
	120	5600		16.7	0.037	0.019
	140	5700				
5.8 GHz Band						
Mode	Ch #	Freq.	Avg. Output	Power (dBm)	Measured Re	esult (mW/g)
	01.#	(MHz)	Chain A	Chain B	1g-SAR	10g-SAR
	149	5745				
802.11a	157	5785	16.6		0.00112	0.00014
	165	5825				
	149	5745				
802.11a	157	5785		16.8	0.029	0.015
	165	5825				

Note:

The modes with highest output power channel were chosen for the conducted output power.

Page 31 of 43

Edges - Primary Landscape (Aux/Chain B)

5.2 GHz Band							
Mada	Ch #	Freq.	Avg. Outpu	t Pwr (dBm)	Results (mW/g)		
WOUE	UII. #	(MHz)	Chain A	Chain B	1g-SAR	10g-SAR	
	36	5180					
802.11a	40	5200		16.1	0.091	0.020	
	48	5240					
5.3 GHz Band							
Mode	Ch #	Freq.	Avg. Output	Power (dBm)	Measured R	Measured Result (mW/g)	
Woue	011. #	(MHz)	Chain A	Chain B	1g-SAR	10g-SAR	
	52	5260					
802.11a	60	5300		16.2	0.150	0.046	
	64	5320					
802.11n	54	5270					
HT40	62	5310		16.6	0.200	0.060	
5.5 GHz Band							
Mode	Ch. #	Freq.	Avg. Output	Power (dBm)	Measured R	esult (mW/g)	
Wode		(MHz)	Chain A	Chain B	1g-SAR	10g-SAR	
	100	5500					
802.11a	120	5600		16.7	0.156	0.051	
	140	5700					
5.8 GHz Band							
Mode	Ch #	Freq.	Avg. Output	Power (dBm)	Measured Result (mW/g)		
would	011. //	(MHz)	Chain A	Chain B	1g-SAR	10g-SAR	
	149	5745					
802.11a	157	5785		16.8	0.166	0.046	
	165	5825					

Note:

The modes with highest output power channel were chosen for the conducted output power.

Page 32 of 43

WORST-CASE SAR TEST PLOTS

<u>2.4 GHZ</u>

Date/Time: 4/28/2011 5:14:49 PM

Test Laboratory: UL CCS

Edges Primary Landscape

DUT: Panasonic; Type: Tablet; Serial: 1BKKSA00017

Communication System: 802.11b/g 2.4GHz; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2437 MHz; σ = 2.001 mho/m; ϵ_r = 51.785; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY5 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

- Probe: EX3DV4 - SN3686; ConvF(6.86, 6.86, 6.86); Calibrated: 1/24/2011

- Sensor-Surface: 2.5mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn1239; Calibrated: 11/17/2010

- Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1099

- Measurement SW: DASY52, Version 52.6 (1);SEMCAD X Version 14.4.2 (2595)

802.11b_Ant-Aux Ch-6/Area Scan (10x13x1): Measurement grid: dx=15mm, dy=15mm

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.148 mW/g

802.11b_Ant-Aux Ch-6/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 2.249 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 0.487 W/kg SAR(1 g) = 0.135 mW/g; SAR(10 g) = 0.054 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.185 mW/g

5.2 GHZ

Date/Time: 5/4/2011 10:48:39 PM

Test Laboratory: UL CCS

Edges - Primary Landscape (Aux)

DUT: Panasonic; Type: Tablet; Serial: 1BKKSA00017

Communication System: 802.11a 5.2-5.3GHz; Frequency: 5200 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5200 MHz; σ = 5.268 mho/m; ϵ_r = 50.074; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY5 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3686; ConvF(3.98, 3.98, 3.98); Calibrated: 1/24/2011

- Sensor-Surface: 2.5mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn1239; Calibrated: 11/17/2010
- Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1099
- Measurement SW: DASY52, Version 52.6 (1);SEMCAD X Version 14.4.2 (2595)

802.11a_5.2GHz/Ant Aux_Ch 40/Area Scan (16x20x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.166 mW/g

802.11a_5.2GHz/Ant Aux_Ch 40/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 5.755 V/m; Power Drift = 0.0091 dBPeak SAR (extrapolated) = 0.302 W/kg

SAR(1 g) = 0.091 mW/g; SAR(10 g) = 0.020 mW/g Maximum value of SAR (measured) = 0.157 mW/g

Page 34 of 43

5.3 GHZ

Date/Time: 5/5/2011 12:09:25 AM

Test Laboratory: UL CCS

Edges - Primary Landscape (Aux)

DUT: Panasonic; Type: Tablet; Serial: 1BKKSA00017

Communication System: 802.11a 5.2-5.3GHz; Frequency: 5310 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5310 MHz; σ = 5.465 mho/m; ϵ_r = 49.896; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY5 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3686; ConvF(3.7, 3.7, 3.7); Calibrated: 1/24/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection), Sensor-Surface: 2.5mm (Fix Surface)
- Electronics: DAE4 Sn1239; Calibrated: 11/17/2010
- Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1099
- Measurement SW: DASY52, Version 52.6 (1);SEMCAD X Version 14.4.2 (2595)

802.11n HT40_5.3GHz/Ant Aux_Ch 62/Area Scan (12x14x1): Measurement grid: dx=10mm,

dy=10mm Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.293 mW/g

802.11n HT40_5.3GHz/Ant Aux_Ch 62/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm,

dy=4mm, dz=2.5mm Reference Value = 7.658 V/m; Power Drift = 0.20 dB Peak SAR (extrapolated) = 0.735 W/kg SAR(1 g) = 0.200 mW/g; SAR(10 g) = 0.060 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.355 mW/g

Page 35 of 43

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4031B47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

5.5 GHZ

Date/Time: 5/5/2011 12:48:26 AM

Test Laboratory: UL CCS

Edges - Primary Landscape (Aux)

DUT: Panasonic; Type: Tablet; Serial: 1BKKSA00017

Communication System: 802.11a 5.5GHz; Frequency: 5600 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5600 MHz; σ = 5.865 mho/m; ϵ_r = 49.422; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY5 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3686; ConvF(3.29, 3.29, 3.29); Calibrated: 1/24/2011
- Sensor-Surface: 2.5mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1239; Calibrated: 11/17/2010

- Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1099

- Measurement SW: DASY52, Version 52.6 (1);SEMCAD X Version 14.4.2 (2595)

802.11a_5.5GHz/Ant Aux_Ch 120/Area Scan (12x14x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (measured) = 0.254 mW/g

802.11a_5.5GHz/Ant Aux_Ch 120/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 7.194 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 0.540 W/kg SAR(1 g) = 0.156 mW/g; SAR(10 g) = 0.051 mW/g Maximum value of SAR (measured) = 0.276 mW/g

5.8 GHZ

Date/Time: 5/5/2011 1:29:15 AM

Test Laboratory: UL CCS

Edges - Primary Landscape (Aux)

DUT: Panasonic; Type: Tablet; Serial: 1BKKSA00017

Communication System: 802.11a 5.8GHz; Frequency: 5785 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 5785 MHz; σ = 6.148 mho/m; ϵ_r = 49.065; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY5 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3686; ConvF(3.7, 3.7, 3.7); Calibrated: 1/24/2011

- Sensor-Surface: 2.5mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn1239; Calibrated: 11/17/2010
- Phantom: ELI 4.0; Type: QDOVA001BB; Serial: 1099
- Measurement SW: DASY52, Version 52.6 (1);SEMCAD X Version 14.4.2 (2595)

802.11a 5.8GHz/Ant Aux_Ch 157/Area Scan (12x14x1): Measurement grid: dx=10mm, dy=10mm

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.292 mW/g

802.11a 5.8GHz/Ant Aux_Ch 157/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm

Reference Value = 7.352 V/m; Power Drift = 0.0049 dB Peak SAR (extrapolated) = 0.580 W/kg SAR(1 g) = 0.166 mW/g; SAR(10 g) = 0.046 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.295 mW/g

Page 37 of 43

13. ATTACHMENTS

<u>No.</u>	Contents	<u>No. of page (s)</u>
1-1	System Check Plots for D2450V2 SN 706	4
1-2	System Check Plots for D5GHzV2 SN 1075	22
2-1	SAR Test Plots for 2.4 GHz	8
2-2	SAR Test Plots for 5 GHz	20
3-1	Certificate of E-Field Probe - EX3DV4 SN 3749	11
3-2	Certificate of E-Field Probe - EX3DV4 SN 3868	11
4	Certificate of System Validation Dipole - D2450 SN 706	9
5	Certificate of System Validation Dipole - D5GHzV2 SN 1075	11

Page 38 of 43