

FCC OET BULLETIN 65 SUPPLEMENT C 01-01 IEEE STD 1528:2003

SAR EVALUATION REPORT

For

Intel® Centrino® Advanced-N6205 (Tested inside of Panasonic Tablet PC CF-19)

> MODEL NUMBER: WL11A FCC ID: ACJ9TGWL11A

REPORT NUMBER: 11J14001-2

ISSUE DATE: January 19, 2012

Prepared for PANASONIC CORPORATION OF NORTH AMERICA ONE PANASONIC WAY, 4B-8 SECAUCUS, NEW JERSEY 07094, U.S.A.

Prepared by COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	January 19, 2012	Initial Issue	

Page 2 of 38

TABLE OF CONTENTS

1.	A	ttestation of Test Results	5
2.	Te	est Methodology	6
3.	Fa	acilities and Accreditation	6
4.	Ca	alibration and Uncertainty	7
4	.1.	Measuring Instrument Calibration	7
4	.2.	Measurement Uncertainty	8
5.	Ec	quipment Under Test	9
6.	Sy	ystem Specification1	0
7.	C	omposition of Ingredients for Tissue Simulating Liquids1	1
8.	Ti	ssue Dielectric Parameters1	2
8	.1.	Liquid Check Results1	3
9.	S	ystem Verification1	5
9	.1.	System Check Results	6
10.		SAR Measurement Procedures1	7
11.		RF Output Power Verification1	8
1	1.1	RF OUTPUT POWER FOR 2.4 GHZ BAND1	8
1	1.2	2. RF OUTPUT POWER FOR 5 GHZ BANDS1	9
12.		SAR Test Results2	3
13.		Appendixes	0
1	3.1	9. System Check Plots	0
1	3.2	2. SAR Test Plots for 2.4 GHz	0
1	3.3	3. SAR Test Plots for 5 GHz bands	0
1	3.4	4. Calibration Certificate for EX3DV3 SN 3531	0
1	3.5	5. Calibration Certificate for D2450V2 SN 706 w/ extended cal. Data	0
1	3.6	6. Calibration Certificate for D5GHzV2 SN 1003	0
14.		Summary of test configurations3	1
15.		Antenna Locations & Separation Distances3	2
16.		Setup Photos	2
17.		Host Device Photos	7
<u></u>			<u> </u>
471	viPl 73	EVICES (UL CCS) FORM NO: CCSUP4031 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-088 This report shall not be reproduced except in full, without the written approval of UL CCS.	∃ 8

COMPLIANCE CERTIFICATION SERVICES (UL CCS) FORM NO: CCSUP4031B 47173 BENICIA STREET, FREMONT, CA 94538, USÁ TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

Page 4 of 38

Pass

1. Attestation of Test Results

Applicant name:	Panasonic Corporation Of North America								
EUT description:	Intel® Centrino® Advance	Intel® Centrino® Advanced-N6205							
	(Tested inside of Panasor	nic Tablet PC, Model CF-19)							
Model number:	WL11A								
Device category:	Portable								
Exposure category:	General Population/Uncontrolled Exposure								
Date tested:	January 6,2012 – January 13,2012								
FCC / IC Rule Parts	Freq. Range [MHz]	Highest 1g SAR (mW/g)	Limit (mW/g)						
15 247 / DSS 102	2412 – 2462	0.12 W/kg (Primary Landscape)							
15.2477 1655-102	5725 – 5850	0.67 W/kg (Primary Portrait)							
	5150 – 5250	0.57 W/kg (Primary Portrait)	1.6						
15.407	5250 – 5350	0.72 W/kg (Primary Portrait)							
	5470 – 5725 0.86 W/kg (Primary Portrait)								
Applicable Standards T									

OET Bulletin 65 Supplement C 01-01,

IEEE STD 1528: 2003

Compliance Certification Services, Inc. (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government (NIST Handbook 150, Annex A). This report is written to support regulatory compliance of the applicable standards stated above.

Approved & Released For CCS By:

Seenay Shih

Sunny Shih Engineering Team Leader Compliance Certification Services (UL CCS) Tested By:

Chakrit Thammanavarat SAR Engineer Compliance Certification Services (UL CCS)

2. Test Methodology

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C Edition 01-01, IEEE STD 1528:2003, and the following KDB Procedures.

- 248227 SAR measurement procedures for 802.11a/b/g transmitters
- 865664 SAR 3 to 6 GHz Rev
- 447498 D01 Mobile Portable RF Exposure v04
- 616217 D03 SAR Supp Note and Netbook Laptop V01

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://www.ccsemc.com</u>

4. Calibration and Uncertainty

4.1. Measuring Instrument Calibration

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

Name of Equipment	Manufaaturar	Turne/Medial	Sorial No.	Cal. Due date			
Name of Equipment	Manufacturer Type/Moder		Senai No.	MM	DD	Year	
Robot - Six Axes	Stäubli	TX90 XL	N/A			N/A	
Robot Remote Control	Stäubli	CS8C	N/A			N/A	
DASY5 Measurement Server	SPEAG	SEUMS014AA	1064			N/A	
Probe Alignment Unit	SPEAG	LB5 / 80	N/A			N/A	
Oval Flat Phantom (ELI v5.0 (A))	SPEAG	QD OVA001 BB	1117			N/A	
Oval Flat Phantom (ELI v5.0 (B))	SPEAG	QD OVA001 BB	1121			N/A	
Dielectric Probe Kit	HP	85070C	N/A	N/A			
Network Analyzer	Agilent	E5071B	MY42100131	2	2	2012	
Synthesized Signal Generator	Agilent	8665B	3438A00633	1	28	2012	
E-Field Probe	SPEAG	EX3DV3	3531	12 19		2012	
Thermometer	EXTECH	Thermometer	SCL29766	5	17	2012	
Data Acquisition Electronics	SPEAG	DAE4	1259	5	3	2012	
System Validation Dipole	SPEAG	D2450V2	706	4	19	2012	
System Validation Dipole	SPEAG	D5GHzV2	1003	8	23	2012	
Power Meter	HP	438A	3513U04320	9	17	2012	
Power Sensor	Agilent	8481A	2237A31744	8	17	2013	
Amplifier	Mini-Circuits	ZVE-8G	90606		N/A		
Amplifier	Mini-Circuits	ZHL-42W	D072701-5	N/A			
Simulating Liquid	SPEAG	M2450	N/A	Withir	ו 24 h	rs of first test	
Simulating Liquid	SPEAG	MSL5800	N/A	Withir	ו 24 h	rs of first test	

Note:

*Per KDB 450824 D02 requirements for dipole calibration, UL CCS has adopted two years calibration intervals. On annual basis, each measurement dipole has been evaluated and is in compliance with the following criteria:

- 1. There is no physical damage on the dipole
- 2. System validation with specific dipole is within 10% of calibrated value.
- 3. Return-loss is within 20% of calibrated measurement. (Verification data include with D2450V2 calibration certificate)
- 4. Impedance is within 5Ω of calibrated measurement. (Verification data include with dipole D2450V2 calibration certificate)

4.2. Measurement Uncertainty

Measurement uncertainty for 300 MHz to 3 GHz averaged over 1 gram

		_			-	
Component	error, %	Pro	be Distribution	Divisor	Sensitivity	U (Xi), %
Measurement System						
Probe Calibration (k=1)	5.50		Normal	1	1	5.50
Axial Isotropy	1.15	Rec	ctangular	1.732	0.7071	0.47
Hemispherical Isotropy	2.30	Rec	ctangular	1.732	0.7071	0.94
Boundary Effect	0.90	Rec	ctangular	1.732	1	0.52
Probe Linearity	3.45	Rec	ctangular	1.732	1	1.99
System Detection Limits	1.00	Rec	ctangular	1.732	1	0.58
Readout Electronics	0.30		Normal	1	1	0.30
Response Time	0.80	Rec	ctangular	1.732	1	0.46
Integration Time	2.60	Rec	ctangular	1.732	1	1.50
RF Ambient Conditions - Noise	3.00	Rec	ctangular	1.732	1	1.73
RF Ambient Conditions - Reflections	3.00	Rec	ctangular	1.732	1	1.73
Probe Positioner Mechanical Tolerance	0.40	Rec	ctangular	1.732	1	0.23
Probe Positioning with respect to Phantom	2.90	Rec	ctangular	1.732	1	1.67
Extrapolation, Interpolation and Integration	1.00	Rec	ctangular	1.732	1	0.58
Test Sample Related						
Test Sample Positioning	2.90		Normal	1	1	2.90
Device Holder Uncertainty	3.60		Normal	1	1	3.60
Output Power Variation - SAR Drift	5.00	Red	ctangular	1.732	1	2.89
Phantom and Tissue Parameters			-			
Phantom Uncertainty (shape and thickness)	4.00	Rec	ctangular	1.732	1	2.31
Liquid Conductivity - deviation from target	5.00	Rec	ctangular	1.732	0.64	1.85
Liquid Conductivity - measurement	-0.76		Normal	1	0.64	-0.49
Liquid Permittivity - deviation from target	5.00	Red	ctangular	1.732	0.6	1.73
Liquid Permittivity - measurement	-4.87		Normal	1	0.6	-2.92
Combined Standard Uncertainty Uc(y) =						9.89
Expanded Uncertainty U. Covera	de Factor	= 2	. > 95 % Conf	idence =	19.79	%
Expanded Uncertainty U. Covera	de Factor	r = 2	. > 95 % Conf	idence =	1.57	dB
,,, _, _, _, _, _, _, _, _,	3	_	,			
3 to 6 GHz averaged over 1 gram						
Component	error	; %	Distribution	Divisor	Sensitivity	U (Xi), %
Component Measurement System	error	; %	Distribution	Divisor	Sensitivity	U (Xi), %
Component Measurement System Probe Calibration (k=1) @ 5GHz	error	°, %	Distribution	Divisor 1	Sensitivity	U (XI), %
Component Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy	error	; % 6.55	Distribution Normal Rectangular	Divisor 1	Sensitivity 1 0 7071	U (Xi), % 6.55
Component Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy	error	6.55 1.15	Distribution Normal Rectangular	Divisor 1 1.732	Sensitivity 1 0.7071	U (Xi), % 6.55 0.47
Component Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy	error 6	5.55 1.15 2.30	Distribution Normal Rectangular Rectangular	Divisor 1 1.732 1.732	Sensitivity 1 0.7071 0.7071	U (XI), % 6.55 0.47 0.94
Store Griz averaged over Fight Component Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect		5.55 5.55 1.15 2.30 0.90	Distribution Normal Rectangular Rectangular Rectangular	Divisor 1 1.732 1.732 1.732	Sensitivity 1 0.7071 0.7071 1	U (XI), % 6.55 0.47 0.94 0.52
Store Griz averaged over Fighth Component Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity	error 6 1 2 0 0	5.55 1.15 2.30 0.90 3.45	Distribution Normal Rectangular Rectangular Rectangular Rectangular	Divisor 1 1.732 1.732 1.732 1.732	Sensitivity 1 0.7071 0.7071 1 1	U (XI), % 6.55 0.47 0.94 0.52 1.99
Component Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits	error 6 1 2 0 0 0 0 0	5, % 5.55 1.15 2.30 0.90 3.45 1.00	Distribution Normal Rectangular Rectangular Rectangular Rectangular Rectangular	Divisor 1 1.732 1.732 1.732 1.732 1.732 1.732	Sensitivity 1 0.7071 0.7071 1 1 1 1	U (X), % 6.55 0.47 0.94 0.52 1.99 0.58
Store of the averaged over ingram Component Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics		5.55 5.55 5.55 5.55 5.55 5.55 5.55 5.230 5.90 5.45 5.45 5.00 5.45 5.00	Distribution Normal Rectangular Rectangular Rectangular Rectangular Rectangular Normal	Divisor 1 1.732 1.732 1.732 1.732 1.732 1.732 1.732	Sensitivity 1 0.7071 0.7071 1 1 1 1 1 1	U (X), % 6.55 0.47 0.94 0.52 1.99 0.58 1.00
Store Griz averaged over Fighth Component Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time	error 6 2 2 0 0 1 1 1 1 0	5.55 1.15 2.30 0.90 3.45 1.00 1.00 0.80	Distribution Normal Rectangular Rectangular Rectangular Rectangular Normal Rectangular	Divisor 1 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732	Sensitivity 1 0.7071 0.7071 1 1 1 1 1 1 1	U (X), % 6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46
Store of the averaged over ingram Component Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time		5.55 1.15 2.30 0.90 3.45 1.00 1.00 0.80 2.60	Distribution Normal Rectangular Rectangular Rectangular Rectangular Normal Rectangular Rectangular	Divisor 1 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732	Sensitivity 1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U (X), % 6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50
Store of the averaged over ingram Component Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise	error 6 1 2 2 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0	5, % 5.55 1.15 2.30 0.90 3.45 1.00 1.00 0.80 2.60 3.00	Distribution Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular	Divisor 1 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732	Sensitivity 1 1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U (X), % 6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73
Store of the averaged over ingram Component Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise RE Ambient Conditions - Reflections	error	5, % 5.55 1.15 2.30 0.90 3.45 1.00 1.00 0.80 2.60 3.00 3.00	Distribution Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular	Divisor 1 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732	Sensitivity 1 1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U (X), % 6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73 1.73
Store of the averaged over ingram Component Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise RF Ambient Conditions - Reflections Probe Desitioner Mechanical Tolerance		; % 3.55 1.15 2.30 0.90 3.45 1.00 1.00 0.80 2.60 3.00 3.00 0.40	Distribution Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular	Divisor 1 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732	Sensitivity 1 1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U (X), % 6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73 1.73 0.23
Store Griz averaged over Fighth Component Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise RF Ambient Conditions - Reflections Probe Positioner Mechanical Tolerance Denotioning with respont to Electrome		; % 5.55 1.15 2.30 0.90 3.45 1.00 1.00 0.80 2.60 3.00 3.00 3.00 0.40	Distribution Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular	Divisor 1 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732	Sensitivity 1 1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U (X), % 6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73 1.73 0.23
Store of the averaged over regram Component Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise RF Ambient Conditions - Reflections Probe Positioner Mechanical Tolerance Probe Positioning with respect to Phantom		; % 3.55 1.15 2.30 0.90 3.45 1.00 1.00 0.80 2.60 3.00 3.00 0.40 2.90 0.90	Distribution Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular	Divisor 1 1.732	Sensitivity 1 1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U (X), % 6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73 1.73 1.73 0.23 1.67
Store Griz averaged over Fight Component Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise RF Ambient Conditions - Reflections Probe Positioner Mechanical Tolerance Probe Position, Interpolation and Integration		; % 5.55 1.15 2.30 0.90 3.45 1.00 1.00 0.80 2.60 3.00 3.00 3.00 2.90 3.90	Distribution Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular	Divisor 1 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732	Sensitivity 1 1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U (X), % 6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73 1.73 1.73 0.23 1.67 2.25
Store Griz averaged over Fight Component Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise RF Ambient Conditions - Reflections Probe Positioner Mechanical Tolerance Probe Positioning with respect to Phantom Extrapolation, Interpolation and Integration Test Sample Related	error	5, % 5,55 1,15 2,30 0,90 3,45 1,00 1,00 0,80 2,60 3,00 0,80 0,260 3,00 0,40 2,90 3,90	Distribution Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular	Divisor 1 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732 1.732	Sensitivity 1 1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U (X), % 6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73 1.73 0.23 1.67 2.25
Store of the averaged over regram Component Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise RF Ambient Conditions - Reflections Probe Positioner Mechanical Tolerance Probe Positioning with respect to Phantom Extrapolation, Interpolation and Integration Test Sample Related		, % 5.55 1.15 2.30 0.90 3.45 1.00 0.80 2.60 3.00 0.40 2.90 3.90 1.10	Distribution Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular	Divisor 1 1.732	Sensitivity 1 0.7071 0.7071 1 1 1 1 1 1 1 1 1	U (X), % 6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73 1.73 1.73 0.23 1.67 2.25
Component Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise RF Ambient Conditions - Reflections Probe Positioner Mechanical Tolerance Probe Positioning with respect to Phantom Extrapolation, Interpolation and Integration Test Sample Related Test Sample Positioning		, % 5.55 1.15 2.30 0.90 3.45 1.00 0.80 2.60 3.00 0.80 2.60 3.00 0.3.00 0.2.90 0.2.90 1.10 3.60	Distribution Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular	Divisor 1 1.732	Sensitivity	U (X), % 6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73 1.73 0.23 1.67 2.25 1.10 3.60
Store of the averaged over regram Component Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise RF Ambient Conditions - Reflections Probe Positioner Mechanical Tolerance Probe Positioning with respect to Phantom Extrapolation, Interpolation and Integration Test Sample Related Test Sample Positioning Device Holder Uncertainty Output Power Variation - SAR Drift		, % 5.55 1.15 2.30 0.90 3.45 1.00 1.00 0.80 2.60 3.00 0.40 2.90 3.00 1.10 3.60 5.00	Distribution Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular	Divisor 1 1.732	Sensitivity	U (X), % 6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73 1.73 0.23 1.67 2.25 1.10 3.60 2.89
Store of the averaged over a gram Component Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise RF Ambient Conditions - Reflections Probe Positioner Mechanical Tolerance Probe Positioning with respect to Phantom Extrapolation, Interpolation and Integration Test Sample Related Test Sample Positioning Device Holder Uncertainty Output Power Variation - SAR Drift Phantom and Tissue Parameters		, % 5.55 1.15 2.30 0.90 0.30 1.00 0.80 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.40 0.50 0.40 0.50 0.40 0.50 0.55 0.55 0.55 0.90 0	Distribution Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular	Divisor 1 1.732	Sensitivity	U (X), % 6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73 1.73 0.23 1.67 2.25 1.10 3.60 2.89
Store of the averaged over a gram Component Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise RF Ambient Conditions - Reflections Probe Positioner Mechanical Tolerance Probe Positioning with respect to Phantom Extrapolation, Interpolation and Integration Test Sample Related Test Sample Positioning Device Holder Uncertainty Output Power Variation - SAR Drift Phantom and Tissue Parameters Phantom Uncertainty (shape and thickness)		, % 3.55 1.15 2.30 0.90 3.45 1.00 3.45 1.00 3.45 3.00 4.00	Distribution Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular	Divisor 1 1.732 1.73	Sensitivity 1 1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U (X), % 6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73 1.73 0.23 1.67 2.25 1.10 3.60 2.89 2.31
Store of the averaged over a gram Component Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise RF Ambient Conditions - Reflections Probe Positioner Mechanical Tolerance Probe Positioning with respect to Phantom Extrapolation, Interpolation and Integration Test Sample Related Test Sample Positioning Device Holder Uncertainty Output Power Variation - SAR Drift Phantom and Tissue Parameters Phantom Uncertainty (shape and thickness) Liquid Conductivity - deviation from target		, % 3.55 1.15 2.30 3.45 1.00 3.45 1.00 3.45 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 4.00	Distribution Normal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular	Divisor 1 1.732	Sensitivity 1 1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U (X), % 6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73 1.73 0.23 1.67 2.25 1.10 3.60 2.89 2.31 1.85
Store of the averaged over a gram Component Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise RF Ambient Conditions - Reflections Probe Positioner Mechanical Tolerance Probe Positioning with respect to Phantom Extrapolation, Interpolation and Integration Test Sample Related Test Sample Positioning Device Holder Uncertainty Output Power Variation - SAR Drift Phantom and Tissue Parameters Phantom Uncertainty (shape and thickness) Liquid Conductivity - deviation from target		, % 3.55 1.15 2.30 0.90 3.45 1.00 3.45 1.00 3.45 1.00 3.40 2.60 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 4.00 5.00	Distribution Normal Rectangular Normal Rectangular	Divisor 1 1.732	Sensitivity 1 1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U (X), % 6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73 1.73 0.23 1.67 2.25 1.10 3.60 2.89 2.31 1.85 2.45
Store of the averaged over a gram Component Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise RF Ambient Conditions - Reflections Probe Positioner Mechanical Tolerance Probe Positioning with respect to Phantom Extrapolation, Interpolation and Integration Test Sample Related Test Sample Positioning Device Holder Uncertainty Output Power Variation - SAR Drift Phantom and Tissue Parameters Phantom Uncertainty (shape and thickness) Liquid Conductivity - deviation from target Liquid Conductivity - measurement		, % 5.55 1.15 2.30 0.90 3.45 1.00 1.00 0.80 2.60 3.00 0.40 2.90 3.00 0.40 2.90 3.00 0.40 0.90 1.10 3.60 5.00 1.00 1.00 0.90 0.80 0.90 0.80 0.90 0.80 0.90 0.80 0.90 0.80 0.90 0.80 0.90 0	Distribution Normal Rectangular Rectangula	Divisor 1 1.732 1.73	Sensitivity 1 1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U (X), % 6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73 1.73 0.23 1.67 2.25 1.10 3.60 2.89 2.31 1.85 3.15 2.45
Store of Fighth Component Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise RF Ambient Conditions - Reflections Probe Positioner Mechanical Tolerance Probe Positioning with respect to Phantom Extrapolation, Interpolation and Integration Test Sample Related Test Sample Positioning Device Holder Uncertainty Output Power Variation - SAR Drift Phantom and Tissue Parameters Phantom Uncertainty (shape and thickness) Liquid Conductivity - deviation from target Liquid Conductivity - deviation from target	error () () () () () () () () () ()	, % 5.55 1.15 2.30 0.90 3.45 1.00 0.80 2.60 3.00 0.80 2.60 3.00 0.40 0.20 3.00 0.40 0.90 3.60 5.00 1.10 3.60 5.00 1.10 3.60 5.00 1.10 5.00 1.10 5.00 1.10 5.00 1.10 5.00 1.10 5.00 1.10 5.00 1.10 5.00 1.10 5.00 1.10 5.00 1.10 5.00 1.00 5.00 1.10 5.00 1.00 5.00 5	Distribution Normal Rectangular Rectangula	Divisor 1.732	Sensitivity 1 1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U (X), % 6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73 1.73 0.23 1.67 2.25 1.10 3.60 2.89 2.31 1.85 3.15 3.46 2.55
Component Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise RF Ambient Conditions - Reflections Probe Positioning with respect to Phantom Extrapolation, Interpolation and Integration Test Sample Related Test Sample Positioning Device Holder Uncertainty Output Power Variation - SAR Drift Phantom and Tissue Parameters Phantom Uncertainty (shape and thickness) Liquid Conductivity - measurement Liquid Permittivity - deviation from target Liquid Permittivity - measurement uncertainty		, % 5.55 1.15 2.30 0.90 3.45 1.00 1.00 0.80 2.60 3.00 0.40 0.20 3.00 0.40 0.3.00 1.10 3.60 5.00 1.10 1.00 1.00 0.90 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.15 1.00 1.00 0.80 0.90 1.00 0.80 0.90 1.00 0.80 0.90 1.00 0.80 0.90 0.80 0.80 0.90 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.90 0.80 0.90 0.80 0.90 0.80 0.90 0.80 0.90 0.80 0.90 0.80 0.90 0.80 0.90 0.80 0.90	Distribution Normal Rectangular Rectangula	Divisor 1 1.732 1.73	Sensitivity 1 1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U (X), % 6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73 1.73 0.23 1.67 2.25 1.10 3.60 2.89 2.31 1.85 3.15 3.46 -2.69
Component Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise RF Ambient Conditions - Reflections Probe Positioner Mechanical Tolerance Probe Positioning with respect to Phantom Extrapolation, Interpolation and Integration Test Sample Related Test Sample Positioning Device Holder Uncertainty Output Power Variation - SAR Drift Phantom and Tissue Parameters Phantom Uncertainty (shape and thickness) Liquid Conductivity - deviation from target Liquid Permittivity - deviation from target Liquid Permittivity - deviation from target	error 6 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0	, % 5.55 1.15 2.30 0.90 3.45 1.00 0.80 0.80 0.40 2.60 0.40 2.90 3.00 0.40 2.90 3.00 0.40 0.90 1.10 3.60 5.00 4.00 5.00 4.92 0.00 1.15 5.55 5	Distribution Normal Rectangular Rectangula	Divisor 1 1.732 1.73	Sensitivity 1 1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U (X), % 6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73 1.73 0.23 1.67 2.25 1.10 3.60 2.89 2.31 1.85 3.15 3.46 -2.69 11.24
Component Measurement System Probe Calibration (k=1) @ 5GHz Axial Isotropy Hemispherical Isotropy Boundary Effect Probe Linearity System Detection Limits Readout Electronics Response Time Integration Time RF Ambient Conditions - Noise RF Ambient Conditions - Reflections Probe Positioner Mechanical Tolerance Probe Positioning with respect to Phantom Extrapolation, Interpolation and Integration Test Sample Related Test Sample Positioning Device Holder Uncertainty Output Power Variation - SAR Drift Phantom and Tissue Parameters Phantom Uncertainty (shape and thickness) Liquid Conductivity - deviation from target Liquid Conductivity - deviation from target Liquid Permittivity - deviation from target	error 6 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0	, % 5.55 1.15 2.30 0.90 3.45 1.00 0.80 0.80 0.40 2.60 0.40 2.90 3.00 0.40 2.90 3.40 0.40 0.40 0.90 4.00 5.00 4.00 5.00 4.00 5.00 4.92 0.00 0.90 0.80 0.90 0.80 0.90 0.80 0.90 0.80 0.90 0.80 0.90 0.80 0.90 0.80 0.90 0.80 0.90 0.80 0.90 0.80 0.90 0.80 0.90 0.80 0.90 0.80 0.90 0.90 0.80 0.90 0.90 0.80 0.90 0.90 0.80 0.00 0.40 0.00 0.90 0.00 0.90 0.90 0.80 0.90 0.40 0.90 0.80 0.90 0.80 0.90 0.80 0.90 0	Distribution Normal Rectangular Sormal Rectangular Rectangular Sormal Rectangular Normal Rectangular Sormal Rectangular Normal Rectangular Rectangular Sormal Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Rectangular Sormal Rectangular Normal Rectangular Sormal Rectangular Normal Rectangular Normal Rectangular Normal Rectangular Rectangular Normal Rec	Divisor 1 1.732 1.73	Sensitivity 1 1 0.7071 0.7071 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	U (X), % 6.55 0.47 0.94 0.52 1.99 0.58 1.00 0.46 1.50 1.73 1.73 0.23 1.67 2.25 1.10 3.60 2.89 2.31 1.85 3.15 3.46 2.69 11.24 %

Page 8 of 38

COMPLIANCE CERTIFICATION SERVICES (UL CCS)FORM NO: CCSUP4031B47173 BENICIA STREET, FREMONT, CA 94538, USATEL: (510) 771-1000FAX: (510) 661-0888This report shall not be reproduced except in full, without the written approval of UL CCS.

5. Equipment Under Test

Intel® Centrino® Advanced-N6205, Model WL11A								
(Tested inside of Panasonic Tablet PC, Model CF-19)								
Normal operation:	 Laptop mode (notebook) Tablet with Multiple display orientations supporting both portrait and landscape configurations. 							
Antenna tested:	Manufactured Intel Corporation	<u>Part number</u> Main (Chain A) Antenna: DFUP1886ZA-1 Aux (Chain B) Antenna: DFUP1886ZA-2						
Antenna-to-antenna/user separation distances:	See Section 15 for details of antenna locations and separation distances.							
Assessment for SAR evaluation for Simultaneous transmission:	WWAN co-located RF exposure assessment will be addressed in a separate FCC application filed under WWAN application.							

Page 9 of 38

6. System Specification

The DASY system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing validating the proper functioning of the system.

7. Composition of Ingredients for Tissue Simulating Liquids

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients		Frequency (MHz)										
(% by weight)	450		83	835		915		1900		2450		
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body		
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2		
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04		
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0		
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0		
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0		
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0		
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7		
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5		
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78		

Salt: 99+% Pure Sodium Chloride Water: De-ionized, 16 MΩ+ resistivity Sugar: 98+% Pure Sucrose

+ resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

Simulating Liquids for 5 GHz, Manufactured by SPEAG

Ingredients	(% by weight)
Water	78
Mineral oil	11
Emulsifiers	9
Additives and Salt	2

Page 11 of 38

8. Tissue Dielectric Parameters

The simulating liquids are checked at the beginning of a series of SAR measurements to determine if the dielectric parameters are within the tolerances of the specified target values. For frequencies in 300 MHz to just under 2 GHz, the measured conductivity and relative permittivity were within \pm 5% of the target values. For frequencies above 2 GHz the measured conductivity was within \pm 5% of the target values. The measured relative permittivity tolerance was within \pm 10% of the target value.

Reference Values of Tissue Dielectric Parameters for Head & Body Phantom

The body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	He	ad	Body		
Target Frequency (MHZ)	ε _r	σ (S/m)	ε _r	σ (S/m)	
150	52.3	0.76	61.9	0.8	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
835	41.5	0.9	55.2	0.97	
900	41.5	0.97	55	1.05	
915	41.5	0.98	55	1.06	
1450	40.5	1.2	54	1.3	
1610	40.3	1.29	53.8	1.4	
1800 – 2000	40	1.4	53.3	1.52	
2450	39.2	1.8	52.7	1.95	
3000	38.5	2.4	52	2.73	
5800	35.3	5.27	48.2	6	

(ϵ_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Reference Values of Tissue Dielectric Parameters for Body Phantom (for 3000 MHz – 5800 MHz)

In the current guidelines and draft standards for compliance testing of mobile phones (i.e., IEEE P1528, OET 65 Supplement C), the dielectric parameters suggested for head and body tissue simulating liquid are given only at 3.0 GHz and 5.8 GHz. As an intermediate solution, dielectric parameters for the frequencies between 5 to 5.8 GHz were obtained using linear interpolation (see table below).

SPEAG has developed suitable head and body tissue simulating liquids consisting of the following ingredients: de-ionized water, salt and a special composition including mineral oil and an emulsifier. Dielectric parameters of these liquids were measured using an HP 8570C Dielectric Probe Kit in conjunction with an HP 8753ES Network Analyzer (30 kHz – 6G Hz). The differences with respect to the interpolated values were well within the desired \pm 5% for the whole 5 to 5.8 GHz range.

f (MU-)	Body	Poforonco	
1 (IVII 12)	rel. permittivity	conductivity	Reference
3000	52.0	2.73	Standard
5100	49.1	5.18	Interpolated
5200	49.0	5.30	Interpolated
5300	48.9	5.42	Interpolated
5400	48.7	5.53	Interpolated
5500	48.6	5.65	Interpolated
5600	48.5	5.77	Interpolated
5700	48.3	5.88	Interpolated
5800	48.2	6.00	Standard

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Page 12 of 38

8.1. **Liquid Check Results**

Date	Freq. (MHz)		Liquid Parameters		Measured	Target	Delta (%)	Limit ±(%)
04/00/0040	Dedu 0450	e'	50.1925	Relative Permittivity (c _r):	50.19	52.70	-4.76	5
01/06/2012	BOUY 2450	e"	14.3603	Conductivity (σ):	1.96	1.95	0.32	5
01/06/2012	Dady 2110	e'	50.3273	Relative Permittivity (c _r):	50.33	52.76	-4.61	5
	BOUY 2410	e"	14.2074	Conductivity (σ):	1.90	1.91	-0.19	5
01/06/2012	Dady 2425	e'	50.2450	Relative Permittivity (c _r):	50.25	52.73	-4.71	5
	BOUY 2435	e"	14.3010	Conductivity (σ):	1.94	1.93	0.27	5
04/00/0040			50.1011	Relative Permittivity (c _r):	50.10	52.67	-4.87	5
01/06/2012	BODY 2475	e"	14.4596	Conductivity (σ):	1.99	1.99	0.24	5
04/00/0040	Dedu 0450	e'	50.2576	Relative Permittivity (c _r):	50.26	52.70	-4.63	5
01/09/2012	BODY 2450	e"	14.2796	Conductivity (σ):	1.95	1.95	-0.24	5
01/09/2012		e'	50.3870	Relative Permittivity (c _r):	50.39	52.76	-4.50	5
	Body 2410	e"	14.1264	Conductivity (σ):	1.89	1.91	-0.76	5
01/09/2012 Body		e'	50.3112	Relative Permittivity (c _r):	50.31	52.73	-4.58	5
	Body 2435	e"	14.2217	Conductivity (σ):	1.93	1.93	-0.29	5
01/09/2012	Body 2475	e'	50.1626	Relative Permittivity (c _r):	50.16	52.67	-4.76	5
		e"	14.3874	Conductivity (σ):	1.98	1.99	-0.26	5
	Body 5180	e'	49.1900	Relative Permittivity (c _r):	49.19	49.05	0.29	10
		e"	18.7807	Conductivity (σ):	5.41	5.27	2.62	5
	Body 5200	e'	49.1650	Relative Permittivity (c _r):	49.17	49.02	0.30	10
		e"	18.8120	Conductivity (σ):	5.44	5.29	2.73	5
01/00/2012	Body 5500	e'	48.6235	Relative Permittivity (c _r):	48.62	48.61	0.02	10
01/03/2012	Body 5500	e"	19.1401	Conductivity (o):	5.85	5.64	3.70	5
	Body 5800	e'	48.0441	Relative Permittivity (ε_r):	48.04	48.20	-0.32	10
	Body Sooo	e"	19.4279	Conductivity (o):	6.27	6.00	4.42	5
	Body 5825	e'	48.0543	Relative Permittivity (ε_r):	48.05	48.20	-0.30	10
	Body 3023	e"	19.4369	Conductivity (o):	6.30	6.00	4.92	5
	Body 5180	e'	48.1603	Relative Permittivity (ε_r):	48.16	49.05	-1.81	10
	Body 5100	e"	18.4385	Conductivity (o):	5.31	5.27	0.75	5
	Body 5200	e'	48.1342	Relative Permittivity (ε_r):	48.13	49.02	-1.81	10
	B00y 5200	e"	18.4559	Conductivity (o):	5.34	5.29	0.78	5
01/11/2012	Pody 5500	e'	47.6855	Relative Permittivity (ε_r):	47.69	48.61	-1.91	10
01/11/2012	Body 5500	e"	18.7463	Conductivity (o):	5.73	5.64	1.57	5
	Body 5800	e'	47.1801	Relative Permittivity (c _r):	47.18	48.20	-2.12	10
	B00y 5000	e"	18.9058	Conductivity (o):	6.10	6.00	1.62	5
	Body 5825	e'	47.1353	Relative Permittivity (c _r):	47.14	48.20	-2.21	10
	воау 5825	e"	18.9169	Conductivity (o):	6.13	6.00	2.12	5

Page 13 of 38

REPORT NO: 11J14001-2 FCC ID: ACJ9TGWL11A

Date	Freq. (MHz)		Liquid Parameters		Measured	Target	Delta (%)	Limit ±(%)
	Rody 5190	e'	47.1106	Relative Permittivity (ε_r):	47.11	49.05	-3.95	10
01/12/2012	B00y 5100	e"	18.4591	Conductivity (σ):	5.32	5.27	0.86	5
	Rody 5200	e'	47.0875	Relative Permittivity (ε_r):	47.09	49.02	-3.94	10
	BOUY 5200	e"	18.5000	Conductivity (σ):	5.35	5.29	1.03	5
	Rody 5500	e'	46.5418	Relative Permittivity (ε_r):	46.54	48.61	-4.26	10
	Body 5500	e"	18.8187	Conductivity (o):	5.76	5.64	1.96	5
	Body 5800	e'	46.0583	Relative Permittivity (ε_r):	46.06	48.20	-4.44	10
	Body 5000	e"	19.0996	Conductivity (σ):	6.16	6.00	2.66	5
	Rody 5825	e'	46.0360	Relative Permittivity (ε_r):	46.04	48.20	-4.49	10
	B00y 5025	e"	19.1229	Conductivity (σ):	6.19	6.00	3.23	5
	Body 5180	e'	47.2279	Relative Permittivity (ε_r):	47.23	49.05	-3.71	10
	Body 5160	e"	17.8549	Conductivity (σ):	5.14	5.27	-2.44	5
	Body 5200	e'	47.2250	Relative Permittivity (ε_r):	47.23	49.02	-3.66	10
		e"	17.8999	Conductivity (σ):	5.18	5.29	-2.25	5
01/13/2012	Body 5500	e'	46.6823	Relative Permittivity (ε_r):	46.68	48.61	-3.97	10
01/13/2012		e"	18.0601	Conductivity (σ):	5.52	5.64	-2.15	5
	Body 5800	e'	46.2534	Relative Permittivity (ε_r):	46.25	48.20	-4.04	10
		e"	18.2711	Conductivity (σ):	5.89	6.00	-1.79	5
	Body 5825	e'	46.2035	Relative Permittivity (ε_r):	46.20	48.20	-4.14	10
	B00y 3023	e"	18.2803	Conductivity (o):	5.92	6.00	-1.32	5
	Body 5180	e'	47.5750	Relative Permittivity (ε_r):	47.58	49.05	-3.00	10
	Body 5100	e"	18.0243	Conductivity (σ):	5.19	5.27	-1.52	5
	Body 5200	e'	47.5890	Relative Permittivity (c _r):	47.59	49.02	-2.92	10
	Body 5200	e"	18.0880	Conductivity (σ):	5.23	5.29	-1.22	5
01/18/2012	Body 5500	e'	47.0697	Relative Permittivity (ε_r):	47.07	48.61	-3.18	10
01/10/2012	Body 5500	e"	18.3165	Conductivity (σ):	5.60	5.64	-0.76	5
	Body 5800	e'	46.6304	Relative Permittivity (ε_r):	46.63	48.20	-3.26	10
	Body 5000	e"	18.6384	Conductivity (o):	6.01	6.00	0.18	5
	Body 5825	e'	46.6097	Relative Permittivity (ε_r):	46.61	48.20	-3.30	10
	воау 5825	e"	18.6363	Conductivity (o):	6.04	6.00	0.60	5

9. System Verification

The system performance check is performed prior to any usage of the system in order to verify SAR system accuracy. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

System Performance Check Measurement Conditions

- The measurements were performed in the flat section of the TWIN SAM or ELI phantom, shell thickness: 2.0 ±0.2 mm (bottom plate) filled with Body or Head simulating liquid of the following parameters.
- The DASY system with an Isotropic E-Field Probe was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole.
 For 5 GHz band The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (2.4 GHz) fine cube was chosen for cube integration and Special 8x8x10 (5 GHz) fine cube was chosen for cube integration
- Distance between probe sensors and phantom surface was set to 2.5 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2.5 mm
- The dipole input powers (forward power) were 100 mW.
- The results are normalized to 1 W input power.

Cal. certificate #	Validation	Cal. date	Freq.	Ref. SAR values (mW/g) (from cal. certificate)			
	uipole		(1011 12)	Tissue:	Head	Body	
D24501/2,706 Apr10		4/10/10	2450	1g SAR:	51.6	52.4	
D2450V2-706_Apr10	D2450V2	4/19/10	2400	10g SAR:	24.4	24.5	
		0/00/44	5200	1g SAR:	76.5	74.5	
			5200	10g SAR:	21.8	20.8	
			5500	1g SAR:	80.9	80	
D5GH2-1005_Aug11	D3G12V2	0/23/11	5500	10g SAR:	23.1	22.3	
			5800	1g SAR:	76.3	76.3	
			0000	10g SAR:	21.7	21.2	

Reference SAR Values for HEAD & BODY-tissue from calibration certificate of SPEAG.

Page 15 of 38

9.1. System Check Results

Date Tested	System Validation Dipole	Freq. (MHz)	Mea Normaliz)	sured zed to 1 W)	Target	Delta (%)	Tolerance (%)	
01/06/12	D2450V2-706	2450	1g SAR:	52.70	52.40	0.57	+10	
01/00/12	Body	2430	10g SAR:	24.40	24.50	-0.41	10	
01/00/12	D2450V2-706	2450	1g SAR:	53.8	52.40	2.67	+10	
01/03/12	Body	2430	10g SAR:	25.1	24.50	2.45	10	
01/09/12	D5GHzV2	5200	1g SAR:	73.9	74.5	-0.81	+10	
	Body	5200	10g SAR:	20.7	20.8	-0.48	10	
	D5GHzV2	5500	1g SAR:	76.1	80	-4.88	+10	
	Body	5500	10g SAR:	21.4	22.3	-4.04	ΞĪŪ	
	D5GHzV2	5800	1g SAR:	71.3	76.3	-6.55	+10	
	Body	5600	10g SAR:	20.1	21.2	-5.19	ΞĪŪ	
01/11/12 D5GHzV2 Body D5GHzV2 Body D5GHzV2 Body	5200	1g SAR:	74.2	74.5	-0.40	+10		
	Body	5200	10g SAR:	20.7	20.8	-0.48	ΞĪŪ	
	D5GHzV2	5500	1g SAR:	74.0	80	-7.50	+10	
	Body	5500	10g SAR:	20.6	22.3	-7.62	±10	
	D5GHzV2	5800	1g SAR:	72.1	76.3	-5.50	+10	
	Body	5600	10g SAR:	20.2	21.2	-4.72	ΞĪŪ	
	D5GHzV2	5200	1g SAR:	73.8	74.5	-0.94	+10	
	Body	5200	10g SAR:	20.7	20.8	-0.48	10	
01/12/12	D5GHzV2	5500	1g SAR:	75.0	80	-6.25	+10	
01/12/12	Body	5500	10g SAR:	20.9	22.3	-6.28	±ιυ	
	D5GHzV2	5800	1g SAR:	77.3	76.3	1.31	+10	
	Body	5600	10g SAR:	21.6	21.2	1.89	ΞĪŪ	
	D5GHzV2	5200	1g SAR:	71.4	74.5	-4.16	+10	
	Body	5200	10g SAR:	20.0	20.8	-3.85	ΞĪŪ	
01/12/12	D5GHzV2	5500	1g SAR:	74.7	80	-6.63	+10	
01/13/12	Body	5500	10g SAR:	20.7	22.3	-7.17	ΞĪŪ	
	D5GHzV2	5900	1g SAR:	70.6	76.3	-7.47	110	
	Body	5600	10g SAR:	19.6	21.2	-7.55	±10	
	D5GHzV2	5500	1g SAR:	81.0	80	1.25	+10	
01/10/12	Body	5500	10g SAR:	22.7	22.3	1.79	±10	
01/10/12	D5GHzV2	5800	1g SAR:	80.4	76.3	5.37	+10	
	Body	5600	10g SAR:	22.6	21.2	6.60	±10	

Page 16 of 38

10. SAR Measurement Procedures

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures \geq 7x7x9 (above 4.5 GHz) or 5x5x7 (below 3 GHz) points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a onedimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

11. RF Output Power Verification

The following procedures had been used to prepare the EUT for the SAR test. The client provided a special driver and program, Intel DRTU v1.3.12-0263, which enable a user to control the frequency and output power of the module.

11.1. RF OUTPUT POWER FOR 2.4 GHZ BAND

2.4 GHz Band								
Mode	Ch. #	Freq.	Original Targ from Project	et Pwr (dBm) #11J13739-3	Actual Measur	Actual Measured Pwr (dBm)		
		(1011 12)	Chain A	Chain B	Chain A	Chain B		
	1	2412	15.5					
	6	2437	15.7		15.7			
002 116	11	2462	15.5					
002.110	1	2412		15.6		15.7		
	6	2437		15.5				
	11	2462		15.6				
	1	2412	14.0					
	6	2437	16.6		16.7			
902 11a	11	2462	14.0					
002.11g	1	2412		14.1				
	6	2437		16.5				
	11	2462		14.1				
	1	2412	13.1					
	6	2437	16.5					
	11	2462	12.4					
	1	2412		13.1				
802.11n HT20	6	2437		16.8		16.8		
	11	2462		12.8				
	1	2412	11.6	11.6				
	6	2437	13.7	13.7				
	11	2462	11.9	11.7				
	3	2422	9.1					
	6	2437	16.6					
	9	2450	9.6					
	3	2422		9.6				
802.11n HT40	6	2437		16.4				
	9	2450		10.0				
	3	2422	8.0	8.0				
	6	2437	13.7	13.7				
	9	2450	8.6	8.6				

Notes:

1. The modes with highest output power channel were chosen for the conducted output power.

2. Original target power is from SAR Report #11J13739-3. Refer to original report (FCC ID: PD962205ANH) for Average Power information as documented in 09/13/2010 original filing.

Page 18 of 38

11.2. RF OUTPUT POWER FOR 5 GHZ BANDS

5.2 GHz Band									
Mode	Ch. #	Freq. (MHz)	Original Targ from Project	jet Pwr (dBm) #11J13739-3	Actual Measured Pwr (dBm)				
			Chain A	Chain B	Chain A	Chain B			
	36	5180	16.1		16.2				
	40	5200	16.0						
802 119	48	5240	16.1						
002.11a	36	5180		16.2		16.2			
	40	5200		16.1					
	48	5240		16.1					
	36	5180	15.6						
	40	5200	16.1						
	48	5240	16.1						
	36	5180		15.6					
802.11n HT20	40	5200		16.1					
	48	5240		16.0					
	36	5180	10.5	10.5					
	40	5200	11.0	11.1					
	48	5240	11.0	10.5					
	38	5190	11.1						
	46	5230	16.1						
802 11n HT40	38	5190		11.1					
002.1111140	46	5230		16.0					
	38	5190	8.5	8.3					
	46	5230	11.7	10.6					

Notes:

1. The modes with highest output power channel were chosen for the conducted output power.

2. Original target power is from SAR Report #11J13739-3. Please refer to original report (FCC ID: PD962205ANH) for Average Power information as documented in 09/13/2010 original filing.

Page 19 of 38

REPORT NO: 11J14001-2 FCC ID: ACJ9TGWL11A

5.3 GHz Band								
Mode	Ch. #	Freq. (MHz)	Original Targ from Project	et Pwr (dBm) #11J13739-3	Actual Measured Pwr (dBm)			
			Chain A	Chain B	Chain A	Chain B		
	52	5260	16.1					
	60	5300	16.2		16.3			
802 11a	64	5320	16.1					
002.11a	52	5260		16.2				
	60	5300		16.2		16.3		
	64	5320		16.2				
	52	5260	16.2					
	60	5300	16.1					
	64	5320	16.0					
	52	5260		16.2				
802.11n HT20	60	5300		16.1				
	64	5320		16.2				
	52	5260	10.6	10.9				
	60	5300	11.0	10.2				
	64	5320	10.5	10.3				
	54	5270	16.5		16.6			
	62	5310	11.2					
902 11n UT40	54	5270		16.6		16.7		
002.11111140	62	5310		11.1				
	54	5270	10.8	11.3				
	62	5310	7.9	7.5				

Notes:

1. The modes with highest output power channel were chosen for the conducted output power.

2. Original target power is from SAR Report #11J13739-3. Please refer to original report (FCC ID: PD962205ANH) for Average Power information as documented in 09/13/2010 original filing.

Page 20 of 38

5.5 GHz Band								
Mode	Ch. #	Freq.	Original Targ from Project	et Pwr (dBm) #11J13739-3	Actual Measured Pwr (dBm)			
		(101112)	Chain A	Chain B	Chain A	Chain B		
	100	5500	16.6		16.6			
	120	5600	16.6		16.6			
802 112	140	5700	16.6		16.6			
002.11a	100	5500		16.6		16.6		
	120	5600		16.7		16.7		
	140	5700		16.5		16.5		
	100	5500	16.7					
	120	5600	16.7					
	140	5700	16.5					
	100	5500		16.6				
802.11n HT20	120	5600		16.6				
	140	5700		16.7				
	100	5500	11.3	10.9				
	120	5600	11.5	12.2				
	140	5700	12.0	11.7				
	102	5510	13.7					
	118	5590	16.5					
	134	5670	16.5					
	102	5510		13.6				
802.11n HT40	118	5590		16.7				
	134	5670		16.7				
	102	5510	10.3	10.8				
	118	5590	11.2	11.2				
	134	5670	11.4	11.8				

Notes:

- 1. The modes with highest output power channel were chosen for the conducted output power.
- 2. Original target power is from SAR Report #11J13739-3. Please refer to original report (FCC ID: PD962205ANH) for Average Power information as documented in 09/13/2010 original filing.

Page 21 of 38

5.8 GHz Band								
Mode	Ch. #	Freq. (MHz)	Original Targ from Project	Original Target Pwr (dBm) from Project#11J13739-3		Actual Measured Pwr (dBm)		
			Chain A	Chain B	Chain A	Chain B		
	149	5745	16.6		16.6			
	157	5785	16.5					
802 112	165	5825	16.5					
002.11a	149	5745		16.5				
	157	5785		16.5		16.5		
	165	5825		16.5				
	149	5745	16.7					
	157	5785	16.7					
	165	5825	16.6					
	149	5745		16.7				
802.11n HT20	157	5785		16.6				
	165	5825		16.6				
	149	5745	13.6	13.7				
	157	5785	13.7	13.7				
	165	5825	13.6	13.7				
	151	5755	16.7					
	159	5795	16.6					
802 11n HT40	151	5755		16.5				
002.1111140	159	5795		16.6				
	151	5755	13.6	13.7				
	159	5795	13.5	13.7				

Notes:

1. The modes with highest output power channel were chosen for the conducted output power.

2. Original target power is from SAR Report #11J13739-3. Please refer to original report (FCC ID: PD962205ANH) for Average Power information as documented in 09/13/2010 original filing.

Page 22 of 38

12. SAR Test Results

(1) Bottom Face (Chain A & B)

Mode	Channel	f (MHz)	Avg. Output	Power (dBm)	Measured Result (mW/g)	
Mode	Channel		Chain A	Chain B	1g-SAR	10g-SAR
	1	2412				
	6	2437	15.7		0.014	0.00662
802 11h	11	2462				
002.110	1	2412		15.7	0.031	0.012
	6	2437				
	11	2462				
	1	2412				
802.11g	6	2437	16.7		0.018	0.00914
	11	2462				
802.11n HT20	1	2412				
	6	2437		16.8	0.072	0.027
	11	2462				

(2) Primary Lanscape (Chain A & B)

Mode	Channel	f (MHz)	Avg. Output	Power (dBm)	Measured Result (mW/g)		
Mode	Channel		Chain A	Chain B	1g-SAR	10g-SAR	
	1	2412					
	6	2437	15.7		0.021	0.011	
802 11h	11	2462					
002.110	1	2412		15.7	0.12	0.065	
	6	2437					
	11	2462					
	1	2412					
802.11g	6	2437	16.7		0.026	0.013	
	11	2462					
	1	2412					
802.11n HT20	6	2437		16.8	0.065	0.036	
	11	2462					

Note(s):

1. Testing was performed on the channel with the highest output power only as the SAR was \leq 0.8 W/kg with the operating frequency band having a range of < 100 MHz. Per KDB 447498 1) e) i).

Page 23 of 38

(3) Primary Portrait (Chain B)

Mode	Channel	f (MHz)	Avg. Output	Power (dBm)	Measured Result (mW/g)	
Mode			Chain A	Chain B	1g-SAR	10g-SAR
802.11b	1	2412		15.7	0.067	0.035
	6	2437				
	11	2462				
802.11n HT20	1	2412				
	6	2437		16.8	0.093	0.047
	11	2462				

(4) Secondary Portrait (Chain A)

Mode	Channel	f (M山云)	Avg. Output	Power (dBm)	Measured Result (mW/g)	
Mode	Channel		Chain A	Chain B	1g-SAR	10g-SAR
802.11b	1	2412				
	6	2437	15.7		0.060	0.032
	11	2462				
802.11g	1	2412				
	6	2437	16.7		0.073	0.039
	11	2462				

(5) Lap-Held (Chain A & B)

Mada	Channel	f (MHz)	Avg. Output	Power (dBm)	Measured Result (mW/g)	
Mode	Channer		Chain A	Chain B	1g-SAR	10g-SAR
	1	2412				
	6	2437	15.7		0.024	0.011
902 11h	11	2462				
002.110	1	2412		15.7	0.025	0.012
	6	2437				
	11	2462				
	1	2412				
802.11g	6	2437	16.7		0.031	0.015
	11	2462				
	1	2412				
802.11n HT20	6	2437		16.8	0.024	0.011
	11	2462				

Note(s):

1. Testing was performed on the channel with the highest output power only as the SAR was \leq 0.8 W/kg with the operating frequency band having a range of < 100 MHz. Per KDB 447498 1) e) i).

Page 24 of 38

(1) Bottom Face (Chain A & B) 5.2 GHz Band

Mode C	Channel	nel f (MHz)	Avg. Output Power (dBm)		Measured R	Noto	
	Channel		Chain A	Chain B	1g-SAR	10g-SAR	NOLE
_	36	5180	16.1		0.024	0.00999	
	40	5200					1
902 110	48	5240					1
002.1 TA	36	5180		16.2	0.033	0.013	
	40	5200					1
	48	5240					1

5.3 GHz Band

Mode	Channel		Avg. Output	Power (dBm)	Measured R	esult (mW/g)	Note
Mode	Channel	I (IVI⊓∠)	Chain A	Chain B	1g-SAR	10g-SAR	
	52	5260					1
002 11-	60	5300	16.3		0.033	0.013	
	64	5320					1
002.11a	52	5260					1
	60	5300		16.3	0.036	0.014	
	64	5320					1
802.11n HT40	54	5270	16.6		0.022	0.0076	
	62	5310					1
	54	5270		16.7	0.038	0.015	
	62	5310					1

5.5 GHz Band

Mode	Channel	f (MHz)	Avg. Output Power (dBm)		Measured Result (mW/g)		Noto
Widde			Chain A	Chain B	1g-SAR	10g-SAR	NOLE
	100	5500					2
802.11a	120	5600	16.6		0.046	0.016	
	140	5700					2
	100	5500					2
	120	5600		16.7	0.058	0.022	
	140	5700					2

5.8 GHz Band

Mode	Channel	f (MHz)	Avg. Output Power (dBm)		Measured R	Noto	
Widde			Chain A	Chain B	1g-SAR	10g-SAR	NOLE
	149	5745	16.6		0.028	0.012	
802.11a	157	5785					1
	165	5825					1
	149	5745					1
	157	5785		16.5	0.049	0.019	
	165	5825					1

Note(s):

- 1. Testing was performed on the channel with the highest output power only as the SAR was \leq 0.8 W/kg with the operating frequency band having a range of < 100 MHz. Per KDB 447498 1) e) i).
- Testing was performed on the channel with the highest output power only as the SAR was ≤ 0.4 W/kg with the operating frequency band having a range of ≤ 200 MHz. Per KDB 447498 1) e) ii).

Page 25 of 38

(2) Primary Landscape (Chain A & B) 5.2 GHz Band

Mode Ch	Channel	f (MHz)	Avg. Output Power (dBm)		Measured R	Noto	
	Channel		Chain A	Chain B	1g-SAR	10g-SAR	Note
	36	5180	16.1		0.018	0.004	
	40	5200					1
902 110	48	5240					1
802.118	36	5180		16.2	0.054	0.171	
	40	5200					1
	48	5240					1

5.3 GHz Band

Mode	Channel		Avg. Output	Power (dBm)	Measured R	esult (mW/g)	Note
Mode	Channel	1 (IVII 12)	Chain A	Chain B	1g-SAR	10g-SAR	
	52	5260					1
	60	5300	16.3		0.013	0.004	
802 112	64	5320					1
002.11a	52	5260					1
	60	5300		16.3	0.058	0.018	
	64	5320					1
802.11n HT40	54	5270	16.6		0.015	0.00405	
	62	5310					1
	54	5270		16.7	0.067	0.021	
	62	5310					1

5.5 GHz Band

Mode	Channel	f (MHz)	Avg. Output Power (dBm)		Measured Result (mW/g)		Noto
wode	Channel		Chain A	Chain B	1g-SAR	10g-SAR	NOLE
	100	5500					2
802.11a	120	5600	16.6		0.0144	0.00464	
	140	5700					2
	100	5500					2
	120	5600		16.7	0.028	0.00815	
	140	5700					2

5.8 GHz Band

Mode	Channel	f (MHz)	Avg. Output Power (dBm)		Measured R	Noto	
Widde			Chain A	Chain B	1g-SAR	10g-SAR	NOLE
	149	5745	16.6		0.026	0.0082	
802.11a	157	5785					1
	165	5825					1
	149	5745					1
	157	5785		16.5	0.064	0.020	
	165	5825					1

Note(s):

- 1. Testing was performed on the channel with the highest output power only as the SAR was \leq 0.8 W/kg with the operating frequency band having a range of < 100 MHz. Per KDB 447498 1) e) i).
- Testing was performed on the channel with the highest output power only as the SAR was ≤ 0.4 W/kg with the operating frequency band having a range of ≤ 200 MHz. Per KDB 447498 1) e) ii).

Page 26 of 38

(3) Primary Portrait (Chain B) 5.2 GHz Band

Mada	Channel f (N		Avg. Output Power (dBm)		Measured Result (mW/g)		Noto
Mode				Chain A	Chain B	1g-SAR	10g-SAR
	36	5180		16.2	0.565	0.226	
802.11a	40	5200					1
	48	5240					1

5.3 GHz Band

Mada	Channel f		Avg. Output Power (dBm)		Measured R	Noto	
Mode	Channel		Chain A	Chain B	1g-SAR	10g-SAR	Note
	52	5260					1
802.11a	60	5300		16.3	0.718	0.286	
	64	5320					1
802 11n HT40	54	5270		16.7	0.640	0.256	
002.1111140	62	5310					1

5.5 GHz Band

Mode C	Channel f	f (MHz)	Avg. Output Power (dBm)		Measured R	Noto	
			Chain A	Chain B	1g-SAR	10g-SAR	NOLE
	100	5500		16.6	0.771	0.031	
802.11a	120	5600		16.7	0.857	0.347	
	140	5700		16.5	0.66	0.264	

5.8 GHz Band

Mode	Channel f	nel f (MHz)	Avg. Output Power (dBm)		Measured R	Noto	
Widde			Chain A	Chain B	1g-SAR	10g-SAR	NOLE
	149	5745					1
802.11a	157	5785		16.5	0.665	0.267	
	165	5825					1

Note(s):

1. Testing was performed on the channel with the highest output power only as the SAR was ≤ 0.8 W/kg with the operating frequency band having a range of < 100 MHz. Per KDB 447498 1) e) i).

Testing was performed on the channel with the highest output power only as the SAR was ≤ 0.4 W/kg with the operating frequency band having a range of ≤ 200 MHz. Per KDB 447498 1) e) ii).

Page 27 of 38

(4) Secondary Portrait (Chain A) 5.2 GHz Band

Mada	Channel	f (MILI=)	Avg. Output Power (dBm)		Measured Result (mW/g)		Noto
Mode	Channel		Chain A	Chain B	1g-SAR	10g-SAR	note
	36	5180	16.2		0.390	0.154	
802.11a	40	5200					1
	48	5240					1

5.3 GHz Band

Mode	Channel	f (MHz)	Avg. Output Power (dBm)		Measured Result (mW/g)		Noto
			Chain A	Chain B	1g-SAR	10g-SAR	NOLE
	52	5260					1
802.11a	60	5300	16.3		0.45	0.177	
	64	5320					1
802.11n HT40	54	5270	16.6		0.492	0.194	
	62	5310					1

5.5 GHz Band

Mode	Channel	el f (MHz)	Avg. Output Power (dBm)		Measured Result (mW/g)		Noto
			Chain A	Chain B	1g-SAR	10g-SAR	NOLE
802.11a	100	5500	16.6		0.624	0.242	
	120	5600	16.6		0.501	0.192	
	140	5700	16.6		0.465	0.183	

5.8 GHz Band

Mada	Channel	f (MHz)	Avg. Output Power (dBm)		Measured Result (mW/g)		Noto
Mode			Chain A	Chain B	1g-SAR	10g-SAR	NOLE
802.11a	149	5745	16.6		0.391	0.150	
	157	5785					1
	165	5825					1

Note(s):

1. Testing was performed on the channel with the highest output power only as the SAR was \leq 0.8 W/kg with the operating frequency band having a range of < 100 MHz. Per KDB 447498 1) e) i).

Testing was performed on the channel with the highest output power only as the SAR was ≤ 0.4 W/kg with the operating frequency band having a range of ≤ 200 MHz. Per KDB 447498 1) e) ii).

Page 28 of 38

(5) Lap-Held (Chain A & B) 5.2 GHz Band

Mode	Channel	nel f (MHz)	Avg. Output Power (dBm)		Measured Result (mW/g)		Noto
			Chain A	Chain B	1g-SAR	10g-SAR	NOLE
	36	5180	16.1		0.000104	0.0000114	
	40	5200					1
902 110	48	5240					1
802.11a	36	5180		16.2	0.018	0.00674	
	40	5200					1
	48	5240					1

5.3 GHz Band

Mada	Channel		Avg. Output Power (dBm)		Measured R	Noto	
Mode	Channel		Chain A	Chain B	1g-SAR	10g-SAR	Note
	52	5260					1
	60	5300	16.3		0.000043	0.00000263	
802 112	64	5320					1
002.11a	52	5260					1
	60	5300		16.2	0.017	0.00733	
	64	5320					1
	54	5270	16.6		0.000383	0.0000815	
802.11n HT40	62	5310					1
	54	5270		16.7	0.0193	0.00689	
	62	5310					1

5.5 GHz Band

Mode	Channel	f (MHz)	Avg. Output Power (dBm)		Measured Result (mW/g)		Noto
			Chain A	Chain B	1g-SAR	10g-SAR	Note
	100	5500					2
	120	5600	16.7		0.00222	0.000542	
902 112	140	5700					2
002.11a	100	5500					2
	120	5600		16.7	0.0297	0.00972	
	140	5700					2

5.8 GHz Band

Mode	Channel	f (MHz)	Avg. Output Power (dBm)		Measured Result (mW/g)		Noto
			Chain A	Chain B	1g-SAR	10g-SAR	NOLE
	149	5745	16.6		0.0140	0.00166	
	157	5785					1
902 112	165	5825					1
002.11a	149	5745					1
	157	5785		16.5	0.029	0.00949	
	165	5825					1

Note(s):

- 1. Testing was performed on the channel with the highest output power only as the SAR was \leq 0.8 W/kg with the operating frequency band having a range of < 100 MHz. Per KDB 447498 1) e) i).
- 2. Testing was performed on the channel with the highest output power only as the SAR was ≤ 0.4 W/kg with the operating frequency band having a range of ≤ 200 MHz. Per KDB 447498 1) e) ii).

Page 29 of 38

13. Appendixes

- 13.1. System Check Plots
- 13.2. SAR Test Plots for 2.4 GHz
- 13.3. SAR Test Plots for 5 GHz bands
- 13.4. Calibration Certificate for EX3DV3 SN 3531
- 13.5. Calibration Certificate for D2450V2 SN 706 w/ extended cal. Data
- 13.6. Calibration Certificate for D5GHzV2 SN 1003

14. Summary of test configurations

Configuration	Antenna-to-User distance	SAR Require	Comments
(1) Bottom Face Tablet mode	45 mm from Main (Chain A) to user.	Yes	
	45 mm from Aux (Chain B) to user.	Yes	
Secondary Landscape	85 mm from Main (Chain A) to user.	No	
	85 mm from Aux (Chain B) to user.	No	
(2) Primary Landscape	100 mm from Main (Chain A) to user.	Yes	
	100 mm from Sub (Chain B) to user.	Yes	
(3) Primary Portrait	282 mm from Main (Chain A) to user.	No	
	16 mm from Main (Chain B) to user.	Yes	
(4) Secondary Portrait	16 mm from Main (Chain A) to user.	Yes	
	282 mm from Main (Chain B) to user.	No	
(5)Lap-held	135 mm from Main (Chain A) to user.	Yes	
	135 mm from Aux (Chain B) to user.	Yes	

Page 31 of 38