

FCC OET BULLETIN 65 SUPPLEMENT C 01-01 IEEE STD 1528:2003

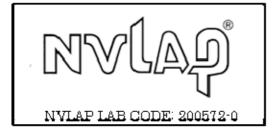
SAR EVALUATION REPORT

For

Intel® Centrino® Advanced-N6205 (Tested inside of Panasonic Tablet PC CF-H2)

> MODEL NUMBER: WL11A FCC ID: ACJ9TGWL11A

REPORT NUMBER: 32EE0254-HO-R1


ISSUE DATE: January 10, 2012

Prepared for

PANASONIC CORPORATION OF NORTH AMERICA ONE PANASONIC WAY, 4B-8 SECAUCUS, NEW JERSEY 07094, U.S.A.

Prepared by

UL Japan, Inc. Head Office EMC Lab. 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN TEL: +81 596 24 8116 FAX: +81 596 24 8124

This laboratory is accredited by the NVLAP LAB CODE 200572-0, U.S.A. The tests reported herein have been performed in accordance with its terms of accreditation. *As for the range of Accreditation in NVLAP, you may

refer to the WEB address,

http://www.ul.com/japan/jpn/pages/services/emc/

13-EM-F0429

Revision History

Rev.	Issue Date	Revisions	Revised By
	December 24, 2011	Initial Issue	
1	January 10, 2012	Deleted Section 15	M. Fujimura
		Corrected cal date and reference SAR Value of D2450V2 SN713 in Section 9.	
		*This report is a revised version of 32EE0254- HO, which is replaced with this report.	

Page 2 of 40

UL Japan, Inc. Head Office EMC Lab.

TABLE OF CONTENTS

1.	ATTE	ESTATION OF TEST RESULTS	5
2.	TEST	ſ METHODOLOGY	6
3.	FAC	ILITIES AND ACCREDITATION	6
4.	CALI	BRATION AND UNCERTANTY	
2	4.1. N	MEASURING INSTRUMENT CALIBRATION <sar measurement=""></sar>	7
4	1.2. N	MEASUREMENT UNCERTAINTY	
5.	EQU	IPMENT UNDER TEST	9
6.	SYST	TEM SPECIFICATIONS	
7.	СОМ	POSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS	
8.	TISS	UE DIELECTRIC PARAMETERS	
-	TISSUE	E PARAMETERS CHECK RESULTS	
9.	SYS	TEM VERIFICATION	
ę	9.1. 8	SYSTEM CHECK RESULTS	
10.	SA	R MEASUREMENT PROCEDURES	
11.	RF	OUTPUT POWER VERIFICATION	
	11.1.	RF OUTPUT POWER FOR 2.4 GHZ BAND	
	11.2.	RF OUTPUT POWER FOR 5 GHZ BANDS	
12.	SU	MMARY OF SAR TEST RESULTS	
	12.1.	SUMMARY OF SAR TEST CONFIGURATIONS	
	12.2.	2.4 GHz BAND	
	12.3.	5 GHz BAND	
13.	Tes	st Plots	
14.	Ар	pendixes	
	14.1.	Appendix A: System Check Plots	
	14.2.	Appendix B: Calibration Certificate for EX3DV4 SN 509	
	14.3.	Appendix C: Calibration Certificate for D2450V2 SN 713	
	14.4.	Appendix D: Calibration Certificate for D5GHzV2 SN 1020	
15.	An	tenna Locations and Separations Distances	
16.	Set	tup Photos	39
		Page 3 of 40	

UL Japan, Inc. Head Office EMC Lab.

17.	Host Device Photos	4(0
-----	--------------------	----	---

DATE: January 10, 2012

Page 4 of 40

UL Japan, Inc. Head Office EMC Lab.

1. ATTESTATION OF TEST RESULTS

•								
Company name:	PANASONIC CORPORATION OF NORTH AMERICA							
		ONE PANASONIC WAY, 4B-8						
	SECAUCUS, NEW JE	ERSEY 07094, U.S.A.						
EUT Description:	Intel® Centrino® Adv	anced-N6205 (Tested inside of Panasonic Table	et PC CF-H2)					
Model number:	WL11A							
Device Category:	Portable							
Exposure category:	General Population/U	ncontrolled Exposure						
Date of tested:	December 24, 2011	December 24, 2011						
			Limit					
FCC Rule Parts	Freq. Range [MHz]	The Highest 1g SAR	(W/kg)					
15.247 / RSS-102	2412 – 2462	0.065 mW/g (Bottom(Handle Touch))						
15.247 / R35-102	5725 – 5850	0.295 mW/g (Bottom(Handle Touch))						
	5150 – 5250	0.253 mW/g (Bottom(Handle Touch))	1.6					
15.407 / RSS-102	5250 – 5350	0.265 mW/g (Bottom(Handle Touch))						
	5470 – 5725 0.411 mW/g (Bottom(Handle Touch))							
Applicable Standards								
OET Bulletin 65 Supplement C 01-01, IEEE STD 1528: 2003,								

UL Japan, Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Japan, Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report. **Note:** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Japan, Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Japan, Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Japan, Inc. By:

M. Ferran

MITSURU FUJIMURA Leader of WiSE Japan UL Verification Services UL Japan, Inc. Tested By:

TOMOCHIKA SATO Engineer of WiSE Japan UL Verification Services UL Japan, Inc.

Page 5 of 40

UL Japan, Inc. Head Office EMC Lab.

⁴³⁸³⁻³²⁶ Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN TEL: +81 596 24 8116 FAX: +81 596 24 8124 This report shall not be reproduced except in full, without the written approval of UL Japan

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC OET Bulletin 65 Supplement C Edition 01-01, IEEE STD 1528:2003, and the following KDB Procedures.

- 248227 SAR measurement procedures for 802.11a/b/g transmitters
- 447498 D01 Mobile Portable RF Exposure v04

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 4383-326 Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN.

UL Japan, Inc. is accredited by NVLAP, Laboratory Code 200572-0

The full scope of accreditation can be viewed at http://www.ul.com/japan/jpn/pages/services/emc/about/mark1/index.jsp#nvlap

Page 6 of 40

UL Japan, Inc. Head Office EMC Lab.

4. CALIBRATION AND UNCERTANTY

4.1. MEASURING INSTRUMENT CALIBRATION <SAR measurement>

Control No.	Instrument	Manufacturer	Model No	Serial No	Test Item	Calibration Date *
						Interval(month)
MPM-01	Power Meter	Agilent	E4417A	GB41290639	SAR	2011/02/01 * 12
MPM-12	Power Meter	Anritsu	ML2495A	0825002	SAR	2011/08/09 * 12
MPSE-01	Power Sensor	Agilent	E9300B	US40010300	SAR	2011/01/28 * 12
MPSE-03	Power Sensor	Agilent	E9327A	US40440576	SAR	2011/02/02 * 12
MPSE-17	Power Sensor	Anritsu	MA2411B	011598	SAR	2011/09/02 * 12
MAT-15	Attenuator(30dB)	Agilent	8498A	US40010300	SAR	2011/02/16 * 12
MSG-10	Signal Generator	Agilent	N5181A	MY47421098	SAR	2011/09/22 * 12
MRFA-08	Pre Amplifier	TSJ	TCBP0206	-	SAR	2011/03/27 * 12
MHDC-12	Dual Directional Coupler	Hewlett Packard	772D	2839A0016	SAR	Pre Check
EST-08	Network Analyzer	Agilent	8753ES	US39174808	SAR	2011/05/11 * 12
MDPK-01	Dielectric probe kit	Agilent	85070D	702	SAR	2011/10/25 * 24
EST-46	3.5mm Calibration Kit	Agilent	85052D	MY43252869	SAR	2011/06/13 * 12
MRENT-82	Dosimetric E-Field Probe	Schmid&Partner Engineering AG	EX3DV4	3540	SAR	2011/07/21 * 12
	Data Acquisition Electronics	Schmid&Partner Engineering AG	DAE4	509	SAR	2011/07/20 * 12
COTS-MSAR-03		Schmid&Partner Engineering AG	DASY52.6.1.408	-	SAR	-
	S-Parameter Network Analyzer	Agilent	-	-	SAR	-
MDA-07	Dipole Antenna	Schmid&Partner Engineering AG	D2450V2	713	SAR	2010/09/06 * 36
MDA-08	Dipole Antenna	Schmid&Partner Engineering AG	D5GHzV2	1020	SAR	2010/08/23 * 36
MPS-01	SAM Phantom	Schmid&Partner Engineering AG	SAM Twin Phantom V4.0	1196	SAR	Pre Check
MDH-01	Device holder	Schmid&Partner Engineering AG	Mounting device for transmitter	-	SAR	Pre Check
MOS-26	Thermo-Hygrometer	CUSTOM	CTH-201	A08Q29	SAR	2011/05/26 * 12
MOS-10	Digtal thermometer	HANNA	Checktemp-2	MOS-10	SAR	2011/08/22 * 12
MBM-13	Barometer	Sunoh		837	SAR	2011/03/14 * 36
MSL2450					Daily check Target	value ± 5%
MSL Broadband 3-6GHz					Daily check Target	
SAR room					Daily check : Amb	pient Noise<0.012W/kg

Page 7 of 40

UL Japan, Inc. Head Office EMC Lab.

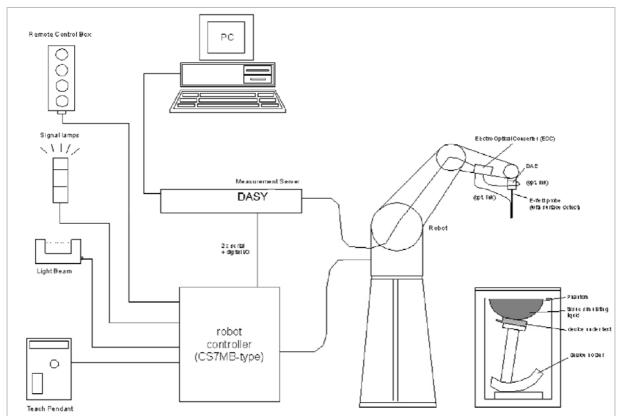
4.2. MEASUREMENT UNCERTAINTY

The uncertainty budget has been determined for the DASY5 measurement system according to the SPEAG documents[2] and is given in the following Table.

Error Description	Uncertainty	Probability	divisor	(ci)	Standard	vi
	value $\pm \%$	distribution		1g	Uncertainty	or
					(1g)	veff
Measurement System						
Probe calibration	±6.55	Normal	1	1	±6.55	∞
Axial isotropy of the probe	±4.7	Rectangular	$\sqrt{3}$	0.7	±1.9	∞
Spherical isotropy of the probe	±9.6	Rectangular	$\sqrt{3}$	0.7	±3.9	∞
Boundary effects	±2.0	Rectangular	$\sqrt{3}$	1	±1.2	∞
Probe linearity	±4.7	Rectangular	$\sqrt{3}$	1	±2.7	∞
Detection limit	±1.0	Rectangular	$\sqrt{3}$	1	±0.6	∞
Readout electronics	±0.3	Normal	1	1	±0.3	∞
Response time	±0.8	Rectangular	$\sqrt{3}$	1	±0.5	∞
Integration time	±2.6	Rectangular	$\sqrt{3}$	1	±1.5	∞
RF ambient Noise	±3.0	Rectangular	$\sqrt{3}$	1	±1.7	∞
RF ambient Reflections	±3.0	Rectangular	$\sqrt{3}$	1	±1.7	∞
Probe Positioner	±0.8	Rectangular	$\sqrt{3}$	1	±0.5	∞
Probe positioning	±9.9	Rectangular	$\sqrt{3}$	1	±5.7	∞
Max.SAR Eval.	±4.0	Rectangular	$\sqrt{3}$	1	±2.3	∞
Test Sample Related						
Device positioning	±2.9	Normal	1	1	±2.9	7
Device holder uncertainty	±3.6	Normal	1	1	±3.6	7
Power drift	±5.0	Rectangular	$\sqrt{3}$	1	±2.9	∞
Phantom and Setup						
Phantom uncertainty	±4.0	Rectangular	$\sqrt{3}$	1	±2.3	∞
Liquid conductivity (target)	±5.0	Rectangular	$\sqrt{3}$	0.64	±1.8	∞
Liquid conductivity (meas.)	+2.67	Rectangular	1	0.64	±1.7	∞
Liquid permittivity (target)	±5.0	Rectangular	$\sqrt{3}$	0.6	±1.7	∞
Liquid permittivity (meas.)	+3.35	Rectangular	1	0.6	±2.3	x
Combined Standard Uncertaint	v				±12.907	
Expanded Uncertainty (k=2)	J				±12.907 ±25.8	

Page 8 of 40

UL Japan, Inc. Head Office EMC Lab.


5. EQUIPMENT UNDER TEST

Intel® Centrino® Advanced-N6205, Model WL11A.							
(Tested inside of Panasonic Ta	(Tested inside of Panasonic Tablet PC CF-H2)						
Normal operation:	Multiple display orientations supporting portrait and landscape configurations.						
Antenna tested:	ManufacturedPart numberIntel CorporationMain (Chain A): DFUP2070ZA(1)Aux (Chain B): DFUP2070ZA(2)						
Antenna-to-antenna/user separation distances:	Refer to Sec. 15 for details of antenna locations and separation distances.						
Simultaneous transmission:	WWAN can transmit simultaneously with WiFiWWAN can transmit simultaneously with Bluetooth						
	WiFi can transmit simultaneously with Bluetooth						
Assessment for SAR evaluation for Simultaneous transmission:	WiFi and BTDue to Bluetooth's maximum output is < $60/f_{(GHz)}$ mW and standaloneSAR is not required, WiFi and Bluetooth are not considered as co- located transmitters with each other.Bluetooth Module – FCC ID: ACJ9TGBT11A, IC: 216ACFBT11A. Max. Power: 16.22 mWWWAN and BT Same as WiFi and BTWWAN and WiFiSAR is not required due to Σ (SAR1g) < SAR limit.						

Page 9 of 40

UL Japan, Inc. Head Office EMC Lab.

6. SYSTEM SPECIFICATIONS

The DASY system for performing compliance tests consists of the following items:

- A standard high precision 6-axis robot (Stäubli RX family) with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).
- A dosimetric probe, i.e., an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the (absolute) accuracy of the probe positioning.
- A computer operating Windows 2000 or Windows XP.
- DASY software.
- Remote controls with teach pendant and additional circuitry for robot safety such as warning lamps, etc.
- The SAM twin phantom enabling testing left-hand and right-hand usage.
- The device holder for handheld mobile phones.
- Tissue simulating liquid mixed according to the given recipes.
- Validation dipole kits allowing validating the proper functioning of the system.

Page 10 of 40

UL Japan, Inc. Head Office EMC Lab.

7. COMPOSITION OF INGREDIENTS FOR TISSUE SIMULATING LIQUIDS

The following tissue formulations are provided for reference only as some of the parameters have not been thoroughly verified. The composition of ingredients may be modified accordingly to achieve the desired target tissue parameters required for routine SAR evaluation.

Ingredients	Frequency (MHz)										
(% by weight)	4	450		835		915		1900		2450	
Tissue Type	Head	Body	Head	Body	Head	Body	Head	Body	Head	Body	
Water	38.56	51.16	41.45	52.4	41.05	56.0	54.9	40.4	62.7	73.2	
Salt (NaCl)	3.95	1.49	1.45	1.4	1.35	0.76	0.18	0.5	0.5	0.04	
Sugar	56.32	46.78	56.0	45.0	56.5	41.76	0.0	58.0	0.0	0.0	
HEC	0.98	0.52	1.0	1.0	1.0	1.21	0.0	1.0	0.0	0.0	
Bactericide	0.19	0.05	0.1	0.1	0.1	0.27	0.0	0.1	0.0	0.0	
Triton X-100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	36.8	0.0	
DGBE	0.0	0.0	0.0	0.0	0.0	0.0	44.92	0.0	0.0	26.7	
Dielectric Constant	43.42	58.0	42.54	56.1	42.0	56.8	39.9	54.0	39.8	52.5	
Conductivity (S/m)	0.85	0.83	0.91	0.95	1.0	1.07	1.42	1.45	1.88	1.78	

Salt: 99+% Pure Sodium Chloride

Sugar: 98+% Pure Sucrose

Water: De-ionized, 16 M Ω + resistivity HEC: Hydroxyethyl Cellulose

DGBE: 99+% Di(ethylene glycol) butyl ether, [2-(2-butoxyethoxy)ethanol]

Triton X-100 (ultra pure): Polyethylene glycol mono [4-(1,1, 3, 3-tetramethylbutyl)phenyl]ether

Simulating Liquids for 5 GHz, Manufactured by SPEAG

Ingredients	(% by weight)
Water	78
Mineral oil	11
Emulsifiers	9
Additives and Salt	2

Page 11 of 40

UL Japan, Inc. Head Office EMC Lab.

8. TISSUE DIELECTRIC PARAMETERS

The simulating liquids are checked at the beginning of a series of SAR measurements to determine if the dielectric parameters are within the tolerances of the specified target values. For frequencies in 300 MHz to just under 2 GHz, the measured conductivity and relative permittivity were within \pm 5% of the target values. For frequencies above 2 GHz the measured conductivity was within \pm 5% of the target values. The measured relative permittivity tolerance was within \pm 10% of the target value.

Reference Values of Tissue Dielectric Parameters for Head & Body Phantom

The body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations and extrapolated according to the head parameters specified in IEEE Standard 1528.

Target Frequency (MHz)	He	ad	Body		
raiget Frequency (MHZ)	ε _r	σ (S/m)	ε _r	σ (S/m)	
150	52.3	0.76	61.9	0.8	
300	45.3	0.87	58.2	0.92	
450	43.5	0.87	56.7	0.94	
750	41.96	0.89	55.6	0.96	
835	41.5	0.9	55.2	0.97	
900	41.5	0.97	55	1.05	
915	41.5	0.98	55	1.06	
1450	40.5	1.2	54	1.3	
1610	40.3	1.29	53.8	1.4	
1750	40.08	1.37	53.44	1.49	
1800 – 2000	40	1.4	53.3	1.52	
2450	39.2	1.8	52.7	1.95	
3000	38.5	2.4	52	2.73	

(ϵ_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Reference Values of Tissue Dielectric Parameters for Body Phantom (for 3000 MHz – 5800 MHz)

In the current guidelines and draft standards for compliance testing of mobile phones (i.e., IEEE P1528, OET 65 Supplement C), the dielectric parameters suggested for head and body tissue simulating liquid are given only at 3.0 GHz and 5.8 GHz. As an intermediate solution, dielectric parameters for the frequencies between 5 to 5.8 GHz were obtained using linear interpolation (see table below).

SPEAG has developed suitable head and body tissue simulating liquids consisting of the following ingredients: deionized water, salt and a special composition including mineral oil and an emulgators. Dielectric parameters of these liquids were measured suing a HP 8570C Dielectric Probe Kit in conjunction with HP 8753ES Network Analyzer (30 kHz – 6G Hz). The differences with respect to the interpolated values were well within the desired \pm 5% for the whole 5 to 5.8 GHz range.

Target Frequency (MHz)	Не	ad	Body		
raiget requeitcy (Milz)	ε _r	σ (S/m)	ε _r	σ (S/m)	
5000	36.2	4.45	49.3	5.07	
5100	36.1	4.55	49.1	5.18	
5200	36.0	4.66	49.0	5.30	
5300	35.9	4.76	48.9	5.42	
5400	35.8	4.86	48.7	5.53	
5500	35.6	4.96	48.6	5.65	
5600	35.5	5.07	48.5	5.77	
5700	35.4	5.17	48.3	5.88	
5800	35.3	5.27	48.2	6.00	

(ε_r = relative permittivity, σ = conductivity and ρ = 1000 kg/m³)

Page 12 of 40

UL Japan, Inc. Head Office EMC Lab.

Date	Freq. (MHz)		Liqu	uid Parameters	Measured	Target	Delta (%)	Limit ±(%)
2011/12/24	Body 2437	e'	51.3590	Relative Permittivity (ε_r):	51.36	52.73	-2.59	5
		-	e"	14.4681	Conductivity (σ):	1.96	1.93	1.52
	Body 2450	e'	51.3061	Relative Permittivity (ε_r):	51.31	52.70	-2.64	5
		e"	14.5293	Conductivity (σ):	1.98	1.95	1.50	5

TISSUE PARAMETERS CHECK RESULTS

Date	Freq. (MHz)		Liqu	id Parameters	Measured	Target	Delta (%)	Limit ±(%)
	Body 5200	e'	50.6642	Relative Permittivity (ε_r):	50.66	49.02	3.35	10
	B00y 5200	e"	18.2025	Conductivity (σ):	5.26	5.29	-0.60	5
	Body 5300	e'	50.4785	Relative Permittivity (ε_r):	50.48	48.88	3.26	10
	D00y 5500	e"	18.3510	Conductivity (σ):	5.41	5.41	-0.06	5
	Body 5500	e'	50.1050	Relative Permittivity (ε_r):	50.11	48.61	3.07	10
	BOUY 5500	e"	18.6501	Conductivity (σ):	5.70	5.64	1.05	5
2011/12/24	Body 5600	e'	49.9159	Relative Permittivity (ε_r):	49.92	48.48	2.97	10
2011/12/24	B00y 5000	e"	18.8011	Conductivity (σ):	5.85	5.76	1.62	5
	Body 5745	e'	49.6504	Relative Permittivity (ε_r):	49.65	48.28	2.84	10
	BOUY 5745	e"	19.0156	Conductivity (σ):	6.07	5.93	2.43	5
	Body 5785	e'	49.5707	Relative Permittivity (ε_r):	49.57	48.23	2.79	10
	DUUY 5765	e"	19.0667	Conductivity (σ):	6.13	5.98	2.62	5
	Body 5800	e'	49.5452	Relative Permittivity (ε_r):	49.55	48.20	2.79	10
	DUUY 3000	e"	19.1011	Conductivity (σ):	6.16	6.00	2.67	5

Page 13 of 40

UL Japan, Inc. Head Office EMC Lab.

9. SYSTEM VERIFICATION

The system performance check is performed prior to any usage of the system in order to verify SAR system measurement accuracy. The system performance check verifies that the system operates within its specifications of $\pm 10\%$.

Measurement Conditions

- The measurements were performed in the flat section of the SAM twin phantom filled with Head or Body simulating liquid of the following parameters.
- The DASY5 system with an Isotropic E-Field EX3DV4 SN 3540 was used for the measurements.
- The dipole was mounted on the small tripod so that the dipole feed point was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was 10 mm (above 1 GHz) and 15 mm (below 1 GHz) from dipole center to the simulating liquid surface.
- The coarse grid with a grid spacing of 15 mm was aligned with the dipole. For 5 GHz band - The coarse grid with a grid spacing of 10 mm was aligned with the dipole.
- Special 7x7x7 (2.4 GHz) fine cube was chosen for cube integration and Special 8x8x10 (5 GHz) fine cube was chosen for cube integration
- Distance between probe sensors and phantom surface was set to 2 mm.
 For 5 GHz band Distance between probe sensors and phantom surface was set to 2 mm.
- The dipole input power (forward power) was 100 mW.
- The results are normalized to 1 W input power

System	Cal. certificate #	Cal. date	Cal. Freq.	SAR Avg (mW/g)			
validation dipole			(GHz)	Tissue:	Head	Body	
D2450V2	D2450\/2 713 Sep06	9/6/10	2.45	1g SAR:	51.8	52.0	
SN 713	713 D2450V2-713_Sep06		2.45	10g SAR:	Head Body 51.8 52.0 24.3 24.2 75.9 75.2 21.6 21.1 79.1 80.0 22.4 22.2 73.1 74.5		
			5.2	1g SAR:	75.9	75.2	
			5.2	10g SAR:	21.6	21.1	
D5GHzV2	D5GHzV2-1020 Aug11	8/11/11	5.5	1g SAR:	79.1	80.0	
SN 1020	D5GHZVZ-1020_Aug11	0/11/11	5.5	10g SAR:	22.4	22.2	
			5.8	1g SAR:	73.1	74.5	
			5.0	10g SAR:	20.8	20.7	

Reference SAR Values for HEAD & BODY-tissue from calibration certificate of SPEAG.

Page 14 of 40

UL Japan, Inc. Head Office EMC Lab.

9.1. SYSTEM CHECK RESULTS

System	Date Tested	Measured (N	ormalized to 1 W)	Target	Delta (%)	Tolerance
validation dipole	Date rested	Tissue:	Body	Target	Della (%)	(%) ±10 ±10
D2450V2 (2.45GHz)	12/24/11	1g SAR:	50.1	52	-3.65	+10
	12/24/11	10g SAR:	23.6	24.2	-2.48	ŦIU
D5GHzV2 (5.2GHz)	12/24/11	1g SAR:	75.7	75.2	0.66	+10
D36112V2 (3.26112)	12/24/11	10g SAR:	20.9	21.1	-0.95	110
D5GHzV2 (5.5GHz)	12/24/11	1g SAR:	80.1	80.0	0.12	±10
D3GH2V2 (5.5GH2)	12/24/11	10g SAR:	21.9	22.2	-1.35	110
D5GHzV2 (5.8GHz)	12/24/11	1g SAR:	78.7	74.5	5.64	±10
	12/24/11	10g SAR:	21.4	20.7	3.38	ŦIU

Page 15 of 40

UL Japan, Inc. Head Office EMC Lab.

10. SAR MEASUREMENT PROCEDURES

Step 1: Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The Minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. The minimum distance of probe sensors to surface is 2.1 mm. This distance cannot be smaller than the Distance of sensor calibration points to probe tip as defined in the probe properties.

Step 2: Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY5 software can find the maximum locations even in relatively coarse grids. When an Area Scan has measured all reachable points, it computes the field maximal found in the scanned area, within a range of the global maximum. The range (in dB) is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE Standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan). If only one Zoom Scan follows the Area Scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of Zoom Scans has to be increased accordingly.

Step 3: Zoom Scan

Zoom Scans are used to assess the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The Zoom Scan measures \geq 7x7x9 (above 4.5 GHz) or 5x5x7 (below 3 GHz) points within a cube whose base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the Zoom Scan evaluates the averaged SAR for 1 g and 10 g and displays these values next to the job's label.

Step 4: Power drift measurement

The Power Drift Measurement measures the field at the same location as the most recent power reference measurement within the same procedure, and with the same settings. The Power Drift Measurement gives the field difference in dB from the reading conducted within the last Power Reference Measurement. This allows a user to monitor the power drift of the device under test within a batch process. The measurement procedure is the same as Step 1.

Step 5: Z-Scan

The Z Scan measures points along a vertical straight line. The line runs along the Z-axis of a onedimensional grid. In order to get a reasonable extrapolation, the extrapolated distance should not be larger than the step size in Z-direction.

Page 16 of 40

UL Japan, Inc. Head Office EMC Lab.

11. RF OUTPUT POWER VERIFICATION

The following procedures had been used to prepare the EUT for the SAR test. The client provided a special driver and program, Intel DRTU v1.3.12-0263, which enable a user to control the frequency and output power of the module.

2.4 GHz Band						
Mode	Ch. #	Freq.	Original Targ	et Pwr (dBm)	Actual Measu	red Pwr (dBm)
wode	Cn. #	(MHz)	Chain A	Chain B	Chain A	Chain B
	1	2412	15.5			
	6	2437	15.7		15.76	
802.11b	11	2462	15.5			
002.110	1	2412		15.6		
	6	2437		15.5		15.55
	11	2462		15.6		
	1	2412	14.0			
	6	2437	16.6		16.65	
802.11g	11	2462	14.0			
002.11g	1	2412		14.1		
	6	2437		16.5		16.56
	11	2462		14.1		
	1	2412	13.1			
	6	2437	16.5		16.53	
	11	2462	12.4			
802.11n	1	2412		13.1		
HT20	6	2437		16.8		16.90
11120	11	2462		12.8		
	1	2412	11.6	11.6		
	6	2437	13.7	13.7		
	11	2462	11.9	11.7		
	3	2422	9.1			
	6	2437	16.6		16.61	
	9	2450	9.6			
802.11n	3	2422		9.6		
HT40	6	2437		16.4		16.52
	9	2450		10.0		
	3	2422	8.0	8.0		
	6	2437	13.7	13.7		
	9	2450	8.6	8.6		

11.1. RF OUTPUT POWER FOR 2.4 GHZ BAND

Notes:

1. The modes with highest output power channel were chosen for the conducted output power.

2. Original target power is from EMC report. Please refer to original report (FCC ID: PD962205ANH) for Average Power information as documented in 09/13/2010 original filing.

Page 17 of 40

UL Japan, Inc. Head Office EMC Lab.

5.2 GHz Band						
Mode	Ch. #	Freq.	Original Targ	et Pwr (dBm)	Actual Measur	red Pwr (dBm)
Widde	011. #	(MHz)	Chain A	Chain B	Chain A	Chain B
	36	5180	16.1			
	40	5200	16.0		16.17	
802.11a	48	5240	16.1			
002.11a	36	5180		16.2		
	40	5200		16.1		16.14
	48	5240		16.1		
	36	5180	15.6			
	40	5200	16.1			
	48	5240	16.1			
802.11n	36	5180		15.6		
HT20	40	5200		16.1		
11120	48	5240		16.0		
	36	5180	10.5	10.5		
	40	5200	11.0	11.1		
	48	5240	11.0	10.5		
	38	5190	11.1			
	46	5230	16.1			
802.11n	38	5190		11.1		
HT40	46	5230		16.0		
	38	5190	8.5	8.3		
	46	5230	11.7	10.6		

11.2. **RF OUTPUT POWER FOR 5 GHZ BANDS**

Notes:

1. The modes with highest output power channel were chosen for the conducted output power.

2. Original target power is from EMC report. Please refer to original report (FCC ID: PD962205ANH) for Average Power information as documented in 09/13/2010 original filing.

Page 18 of 40

UL Japan, Inc. Head Office EMC Lab.

5.3 GHz Band						
Mode	Ch. #	Freq.	Original Targ	et Pwr (dBm)	Actual Measur	red Pwr (dBm)
IVIOUE	UII. #	(MHz)	Chain A	Chain B	Chain A	Chain B
	52	5260	16.1			
	60	5300	16.2		16.38	
802.11a	64	5320	16.1			
002.11a	52	5260		16.2		
	60	5300		16.2		16.33
	64	5320		16.2		
	52	5260	16.2			
	60	5300	16.1			
	64	5320	16.0			
	52	5260		16.2		
802.11n HT20	60	5300		16.1		
	64	5320		16.2		
	52	5260	10.6	10.9		
	60	5300	11.0	10.2		
	64	5320	10.5	10.3		
	54	5270	16.5		16.51	
	62	5310	11.2			
802.11n HT40	54	5270		16.6		16.62
002.1111140	62	5310		11.1		
	54	5270	10.8	11.3		
	62	5310	7.9	7.5		

Notes:

- 1. The modes with highest output power channel were chosen for the conducted output power.
- 2. Original target power is from EMC report. Please refer to original report (FCC ID: PD962205ANH) for Average Power information as documented in 09/13/2010 original filing.

Page 19 of 40

UL Japan, Inc. Head Office EMC Lab.

⁴³⁸³⁻³²⁶ Asama-cho, Ise-shi, Mie-ken 516-0021 JAPAN TEL: +81 596 24 8116 FAX: +81 596 24 8124 *This report shall not be reproduced except in full, without the written approval of UL Japan*

5.5 GHz Band						
Mode	Ch. #	Freq.	Original Targ	et Pwr (dBm)	Actual Measur	red Pwr (dBm)
Mode	GII. #	(MHz)	Chain A	Chain B	Chain A	Chain B
	100	5500	16.6			
	120	5600	16.6		16.68	
802.11a	140	5700	16.6			
002.11a	100	5500		16.6		
	120	5600		16.7		16.72
	140	5700		16.5		
	100	5500	16.7			
	120	5600	16.7			
	140	5700	16.5			
	100	5500		16.6		
802.11n HT20	120	5600		16.6		
	140	5700		16.7		
	100	5500	11.3	10.9		
	120	5600	11.5	12.2		
	140	5700	12.0	11.7		
	102	5510	13.7			
	118	5590	16.5			
	134	5670	16.5			
	102	5510		13.6		
802.11n HT40	118	5590		16.7		
	134	5670		16.7		
	102	5510	10.3	10.8		
	118	5590	11.2	11.2		
	134	5670	11.4	11.8		

Notes:

1. The modes with highest output power channel were chosen for the conducted output power.

2. Original target power is from EMC report. Please refer to original report (FCC ID: PD962205ANH) for Average Power information as documented in 09/13/2010 original filing.

Page 20 of 40

UL Japan, Inc. Head Office EMC Lab.

Mode	Ch. #	Freq.	Original Targ	et Pwr (dBm)	Actual Measur	red Pwr (dBm)
Nidue	Gn. #	(MHz)	Chain A	Chain B	Chain A	Chain B
	149	5745	16.6			
802.11a	157	5785	16.5		16.67	
	165	5825	16.5			
	149	5745		16.5		
	157	5785		16.5		16.65
	165	5825		16.5		
	149	5745	16.7			
	157	5785	16.7		16.73	
	165	5825	16.6			
	149	5745		16.7		16.76
802.11n HT20	157	5785		16.6		
	165	5825		16.6		
	149	5745	13.6	13.7		
	157	5785	13.7	13.7		
	165	5825	13.6	13.7		
	151	5755	16.7		16.71	
	159	5795	16.6			
802 11n HT40	151	5755		16.5		

802.11n HT40

159

151

159

5795

5755

5795

1. The modes with highest output power channel were chosen for the conducted output power.

13.6

13.5

2. Original target power is from EMC report. Please refer to original report (FCC ID: PD962205ANH) for Average Power information as documented in 09/13/2010 original filing.

16.6

13.7

13.7

DATE: January 10, 2012

Page 21 of 40

UL Japan, Inc. Head Office EMC Lab.

12. SUMMARY OF SAR TEST RESULTS

12.1. SUMMARY OF SAR TEST CONFIGURATIONS

Configuration	Antenna-to-User distance	SAR Required	Comments
(1) Bottom/Base	62.28 mm From Main (Chain A)- to-user	Yes	
	14.37 mm From Aux (Chain B)- to-user	Yes	
(2) Bottom/Base/ Tilt	18 mm From Main (Chain A)- to-user	Yes	The handle is not-removable and that is why the tilt position was used rather than a touch position during testing.
	91 mm From Aux (Chain B)- to-user	No	
Primary Landscape	200 mm From Main (Chain A)- to-user	No	This is not the most conservative antenna-to-user distance at edge mode. Per According to KDB 447498 4) b) ii) (2)
	30 mm From Aux (Chain B)- to-user	No	This is not the most conservative antenna-to-user distance at edge mode. Per According to KDB 447498 4) b) ii) (2)
Secondary Landscape	48 mm From Main (Chain A)- to-user	No	This is not the most conservative antenna-to-user distance at edge mode. According to KDB 447498 4) b) ii) (2), SAR is required only for the edge with the most conservative exposure conditions.
	190 mm From Aux (Chain B)- to-user	No	This is not the most conservative antenna-to-user distance at edge mode. According to KDB 447498 4) b) ii) (2), SAR is required only for the edge with the most conservative exposure conditions.
(3) Secondary Portrait	21 mm from Main (Chain A) antenna to edge	Yes	
(4) Primary Portrait	10.5 mm from Aux (Chain B) antenna to edge	Yes	

This test report is only for (2) Bottom/Base/Tilt. As for other test data, refer to the report number 11J13820-4 FCC SAR Report.

Page 22 of 40

UL Japan, Inc. Head Office EMC Lab.

12.2. 2.4 GHz BAND

Bottom/Base/Tilt (Chain A)

Mada	Channal	f (MHz)	Avg. Output	Power (dBm)	Measured Result (mW/g)		
Mode	Channel	I (IVI⊟Z)	Chain A	Chain B	1g-SAR	10g-SAR	
	1	2412					
	6	2437	15.76		0.064	0.026	
802.11b	11	2462					
002.110	1	2412					
	6	2437		15.55			
	11	2462					
	1	2412					
802.11g	6	2437	16.65		0.065	0.027	
	11	2462					
	1	2412					
802.11n HT20	6	2437		16.90			
	11	2462					

Note:

The modes with highest output power channel were chosen for the conducted output power.

Page 23 of 40

UL Japan, Inc. Head Office EMC Lab.

12.3. 5 GHz BAND

Bottom/Base /Tilt (Chain A)

5.2 GHz Band								
Mode	Ch. #	Freq.	Avg. Output	Power (dBm)	Results (mW/g)			
Mode	UII. #	(MHz)	Chain A	Chain B	1g-SAR	10g-SAR		
	36	5180						
	40	5200	16.17		0.253	0.110		
802.11a	48	5240						
002.118	36	5180						
	40	5200		16.14				
	48	5240						

5.3 GHz Band								
Mode	Ch. #	Freq.	Avg. Output	Power (dBm)	Measured R	esult (mW/g)		
woue	UII. #	(MHz)	Chain A	Chain B	1g-SAR	esult (mW/g) 10g-SAR 0.111		
	52	5260						
802.11a	60	5300	16.38		0.265	0.111		
	64	5320						
802.11n	54	5270		16.62				
HT40	62	5310						

5.6 GHz Band									
Mode	Ch. #	Freq.	Avg. Output Power (dBm)		Measured Result (mW/g)				
		(MHz)	Chain A	Chain B	1g-SAR	10g-SAR			
802.11a	100	5500							
	120	5600	16.68		0.411	0.176			
	140	5700							
	100	5500							
	120	5600		16.72					
	140	5700							

5.8 GHz Band										
Mode	Ch. #	Freq.	Avg. Output	Power (dBm)	Measured Result (mW/g)					
		(MHz)	Chain A	Chain B	1g-SAR	10g-SAR				
802.11a	149	5745								
	157	5785	16.67		0.295	0.130				
	165	5825								
	149	5745								
	157	5785		16.65						
	165	5825								

Note:

The modes with highest output power channel were chosen for the conducted output power.

Page 24 of 40

UL Japan, Inc. Head Office EMC Lab.

13. Test Plots

<u>2.4 GHZ</u>

Date: 2011/12/24

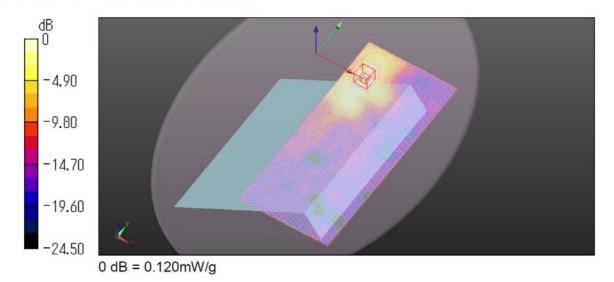
Test Laboratory: UL Japan, Inc. Head Office EMC Lab. SAR Room

Bottom/Base/Tilt

Communication System: WLAN 11a/b/g/n ; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2437 MHz; σ = 1.963 mho/m; ϵ_r = 51.352; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY5 Configuration:


- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3540; ConvF(7.64, 7.64, 7.64); Calibrated: 2011/07/21
- Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn509; Calibrated: 2011/07/20
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1045
- Measurement SW: DASY52, Version 52.6 (2);SEMCAD X Version 14.4.5 (3634)

2.45GHz_11b_Mid-Ch/Area Scan (101x221x1): Measurement grid: dx=15mm, dy=15mm

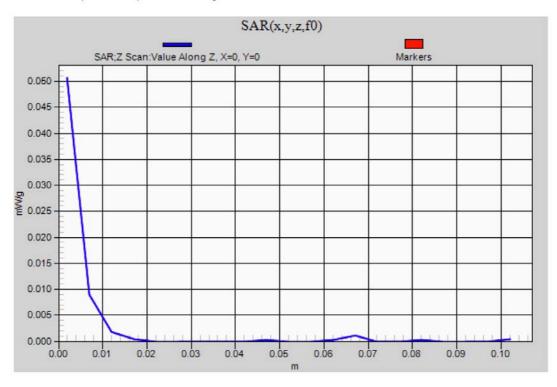
Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.118 mW/g

2.45GHz_11b_Mid-Ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

Reference Value = 4.678 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.268 W/kg SAR(1 g) = 0.064 mW/g; SAR(10 g) = 0.026 mW/g Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.116 mW/g

Page 25 of 40

UL Japan, Inc. Head Office EMC Lab.


Test Laboratory: UL Japan, Inc. Head Office EMC Lab. SAR Room

Bottom/Base/Tilt

Communication System: WLAN 11a/b/g/n ; Frequency: 2437 MHz;Duty Cycle: 1:1

2.45GHz_11b_Mid-Ch/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.051 mW/g

Page 26 of 40

UL Japan, Inc. Head Office EMC Lab.

Test Laboratory: UL Japan, Inc. Head Office EMC Lab. SAR Room

Bottom/Base/Tilt

Communication System: WLAN 11a/b/g/n ; Frequency: 2437 MHz;Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2437 MHz; σ = 1.963 mho/m; ϵ_r = 51.352; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 24.0 deg. C; Liquid Temperature: 23.0 deg. C

DASY5 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

- Probe: EX3DV4 - SN3540; ConvF(7.64, 7.64, 7.64); Calibrated: 2011/07/21

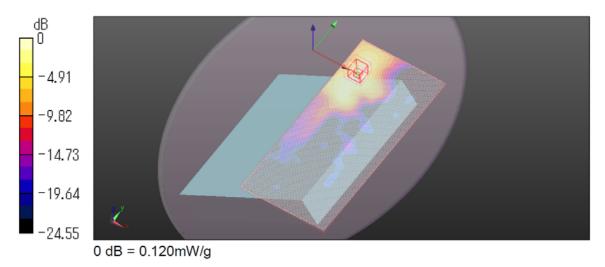
- Sensor-Surface: 2mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 2mm (Mechanical Surface Detection)

- Electronics: DAE4 Sn509; Calibrated: 2011/07/20

- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1045

- Measurement SW: DASY52, Version 52.6 (2);SEMCAD X Version 14.4.5 (3634)

2.45GHz_11g_Mid-Ch/Area Scan (101x221x1): Measurement grid: dx=15mm, dy=15mm


Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (interpolated) = 0.117 mW/g

2.45GHz_11g_Mid-Ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=3mm

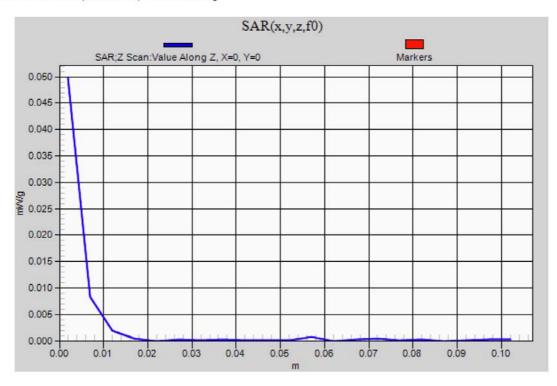
Reference Value = 4.665 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.275 W/kg

SAR(1 g) = 0.065 mW/g; SAR(10 g) = 0.027 mW/g

Info: Interpolated medium parameters used for SAR evaluation. Maximum value of SAR (measured) = 0.118 mW/g

Page 27 of 40

UL Japan, Inc. Head Office EMC Lab.


Test Laboratory: UL Japan, Inc. Head Office EMC Lab. SAR Room

Bottom/Base/Tilt

Communication System: WLAN 11a/b/g/n ; Frequency: 2437 MHz;Duty Cycle: 1:1

2.45GHz_11g_Mid-Ch/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.050 mW/g

Page 28 of 40

UL Japan, Inc. Head Office EMC Lab.

Test Laboratory: UL Japan, Inc. Head Office EMC Lab. SAR Room

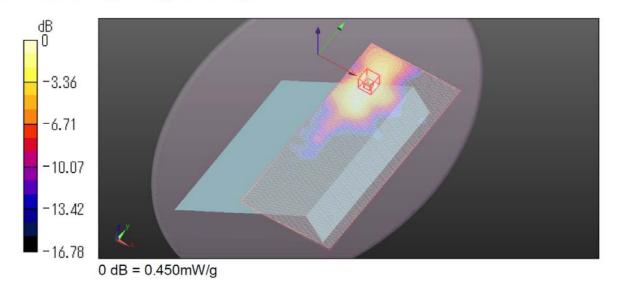
Bottom/Base/Tilt

Communication System: WLAN 11a/b/g/n ; Frequency: 5200 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5200 MHz; σ = 5.266 mho/m; ϵ_r = 50.664; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY5 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3540; ConvF(3.94, 3.94, 3.94); Calibrated: 2011/07/21
- Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn509; Calibrated: 2011/07/20
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1045
- Measurement SW: DASY52, Version 52.6 (2);SEMCAD X Version 14.4.5 (3634)


W52_11a_Mid-Ch/Area Scan 2 (101x221x1): Measurement grid: dx=15mm, dy=15mm

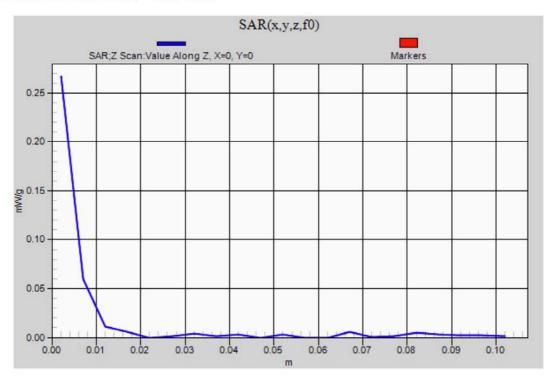
Maximum value of SAR (interpolated) = 0.412 mW/g

W52_11a_Mid-Ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm Reference Value = 7.294 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.811 W/kg SAR(1 g) = 0.253 mW/g; SAR(10 g) = 0.110 mW/g

Maximum value of SAR (measured) = 0.449 mW/g

Page 29 of 40


UL Japan, Inc. Head Office EMC Lab.

Test Laboratory: UL Japan, Inc. Head Office EMC Lab. SAR Room

Bottom/Base/Tilt

Communication System: WLAN 11a/b/g/n ; Frequency: 5200 MHz;Duty Cycle: 1:1

W52_11a_Mid-Ch/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 0.267 mW/g

Page 30 of 40

UL Japan, Inc. Head Office EMC Lab.

Test Laboratory: UL Japan, Inc. Head Office EMC Lab. SAR Room

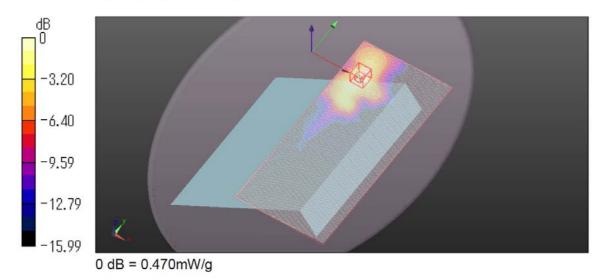
Bottom/Base/Tilt

Communication System: WLAN 11a/b/g/n ; Frequency: 5300 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5300 MHz; σ = 5.411 mho/m; ϵ_r = 50.478; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY5 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3540; ConvF(3.59, 3.59, 3.59); Calibrated: 2011/07/21
- Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn509; Calibrated: 2011/07/20
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1045
- Measurement SW: DASY52, Version 52.6 (2);SEMCAD X Version 14.4.5 (3634)


W53_11a_Mid-Ch/Area Scan (101x221x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.461 mW/g

W53_11a_Mid-Ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm Reference Value = 7.057 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.912 W/kg

SAR(1 g) = 0.265 mW/g; SAR(10 g) = 0.111 mW/g

Maximum value of SAR (measured) = 0.471 mW/g

Page 31 of 40

UL Japan, Inc. Head Office EMC Lab.

Test Laboratory: UL Japan, Inc. Head Office EMC Lab. SAR Room

Bottom/Base/Tilt

Communication System: WLAN 11a/b/g/n ; Frequency: 5300 MHz;Duty Cycle: 1:1

W53_11a_Mid-Ch/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 0.265 mW/g

Page 32 of 40

UL Japan, Inc. Head Office EMC Lab.

Test Laboratory: UL Japan, Inc. Head Office EMC Lab. SAR Room

Bottom/Base/Tilt

Communication System: WLAN 11a/b/g/n ; Frequency: 5600 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5600 MHz; σ = 5.857 mho/m; ϵ_r = 49.916; ρ = 1000 kg/m³ Phantom section: Flat Section

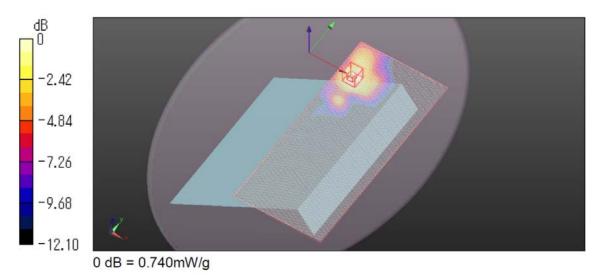
Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY5 Configuration:

- Area Scan setting - Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg

- Probe: EX3DV4 SN3540; ConvF(3.25, 3.25, 3.25); Calibrated: 2011/07/21
- Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn509; Calibrated: 2011/07/20
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1045

- Measurement SW: DASY52, Version 52.6 (2);SEMCAD X Version 14.4.5 (3634)


W56_11a_Mid-Ch/Area Scan 2 (101x221x1): Measurement grid: dx=15mm, dy=15mm

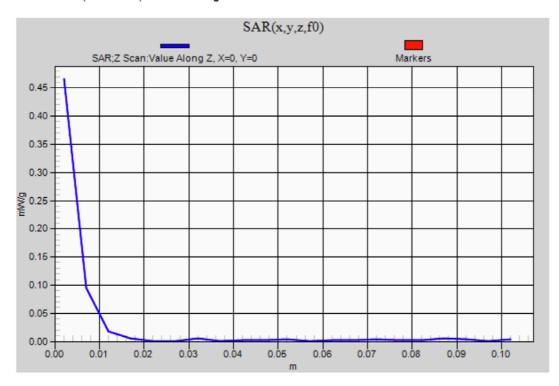
Maximum value of SAR (interpolated) = 0.679 mW/g

W56_11a_Mid-Ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm Reference Value = 9.025 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 1.425 W/kg SAR(1 g) = 0.411 mW/g; SAR(10 g) = 0.176 mW/g

Maximum value of SAR (measured) = 0.742 mW/g

Page 33 of 40


UL Japan, Inc. Head Office EMC Lab.

Test Laboratory: UL Japan, Inc. Head Office EMC Lab. SAR Room

Bottom/Base/Tilt

Communication System: WLAN 11a/b/g/n ; Frequency: 5600 MHz;Duty Cycle: 1:1

W56_11a_Mid-Ch/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 0.466 mW/g

Page 34 of 40

UL Japan, Inc. Head Office EMC Lab.

Test Laboratory: UL Japan, Inc. Head Office EMC Lab. SAR Room

Bottom/Base/Tilt

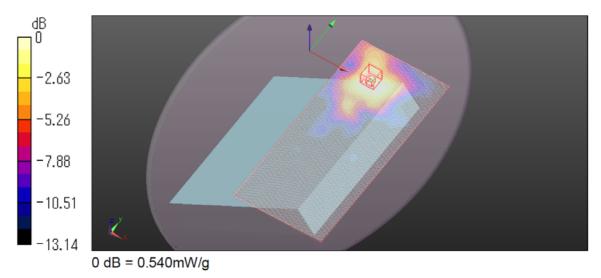
Communication System: WLAN 11a/b/g/n ; Frequency: 5785 MHz;Duty Cycle: 1:1 Medium parameters used: f = 5785 MHz; σ = 6.136 mho/m; ε_r = 49.571; ρ = 1000 kg/m³ Phantom section: Flat Section

Room Ambient Temperature: 25.0 deg. C; Liquid Temperature: 24.0 deg. C

DASY5 Configuration:

- Area Scan setting Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Probe: EX3DV4 SN3540; ConvF(3.4, 3.4, 3.4); Calibrated: 2011/07/21
- Sensor-Surface: 2mm (Mechanical Surface Detection), Sensor-Surface: 2mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn509; Calibrated: 2011/07/20
- Phantom: ELI 4.0; Type: QDOVA001BA; Serial: 1045
- Measurement SW: DASY52, Version 52.6 (2);SEMCAD X Version 14.4.5 (3634)

W58 11a Mid-Ch/Area Scan (101x221x1): Measurement grid: dx=15mm, dy=15mm


Maximum value of SAR (interpolated) = 0.545 mW/g

W58_11a_Mid-Ch/Zoom Scan (7x7x9)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2.5mm Reference Value = 8.682 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 1.099 W/kg

SAR(1 g) = 0.295 mW/g; SAR(10 g) = 0.130 mW/g

Maximum value of SAR (measured) = 0.540 mW/g

Page 35 of 40


UL Japan, Inc. Head Office EMC Lab.

Test Laboratory: UL Japan, Inc. Head Office EMC Lab. SAR Room

Bottom/Base/Tilt

Communication System: WLAN 11a/b/g/n ; Frequency: 5785 MHz;Duty Cycle: 1:1

W58_11a_Mid-Ch/Z Scan (1x1x21): Measurement grid: dx=20mm, dy=20mm, dz=5mm Maximum value of SAR (measured) = 0.460 mW/g

Page 36 of 40

UL Japan, Inc. Head Office EMC Lab.

14. Appendixes

Refer to separated files for the following appendixes

- 14.1. Appendix A: System Check Plots
- 14.2. Appendix B: Calibration Certificate for EX3DV4 SN 509
- 14.3. Appendix C: Calibration Certificate for D2450V2 SN 713
- 14.4. Appendix D: Calibration Certificate for D5GHzV2 SN 1020

Page 37 of 40

UL Japan, Inc. Head Office EMC Lab.