

FCC Test Report

FCC ID : N7NMC7350

Equipment : Wireless Module

Model No. : AirPrime MC7350

Brand Name : AirPrime

Applicant : Sierra Wireless Inc.

Address : 13811 Wireless Way Richmond, British

Columbia, Canada, V6V 3A4.

Standard : 47 CFR FCC Part 90

Received Date : Oct. 07, 2013

Tested Date : Oct. 14 ~ Nov. 27, 2013

We, International Certification Corp., would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It may be duplicated completely for legal use with the approval of the applicant. It shall not be reproduced except in full without the written approval of our laboratory.

Approved & Reviewed by:

Gary Chang / Manager

Iac MRA

TAF

Testing Laboratory

Report No.: FG3O0701P90 Report Version: Rev. 02

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	6
1.3	Test Setup Chart	6
1.4	The Equipment List	7
1.5	Test Standards	
1.6	Measurement Uncertainty	
2	TEST CONFIGURATION	g
2.1	Testing Condition and Location Information	g
2.2	The Worst Test Modes and Channel Details	g
3	TEST RESULTS	10
3.1	Effective Radiated Power	10
3.2	Radiated Emissions	13
3.3	Conducted Emissions	17
3.4	Band edge	19
3.5	Occupied Bandwidth	22
3.6	Peak to Average Ratio	24
3.7	Frequency Stability	26
4	TEST LABORATORY INFORMATION	28

Release Record

Report No.	Version	Description	Issued Date
FG3O0701P90	Rev. 01	Initial issue	Nov. 15, 2013
FG3O0701P90	Rev. 02	Revised high channel data to CH 684. Revised bandedge diagram of low channel.	Nov. 27, 2013

Report No.: FG3O0701P90 Page: 3 of 28

Summary of Test Results

FCC Rules	Test Items	Measured	Result
2.1046 / 90.635(b)	Effective Radiated Power	Power[dBm] : CDMA: 23.70	Pass
2.1053 / 90.691	Radiated Emissions	Meet the requirement of limit	Pass
2.1051 / 90.691	Conducted Emissions	Meet the requirement of limit	Pass
2.1051 / 90.691	Band edge	Meet the requirement of limit	Pass
2.1049	Occupied Bandwidth	Meet the requirement of limit	Pass
-	Peak to average ratio	Meet the requirement of limit	Pass
2.1055 / 90.213	Frequency Stability	Meet the requirement of limit	Pass

Report No.: FG3O0701P90 Page: 4 of 28

1 General Description

1.1 Information

1.1.1 Specification of the Equipment under Test (EUT)

Operating Band (MHz)	CDMA2000 1xRTT 1xEV-DO Release 0, Revision A BC10, 817.25, 823.10MHz
Modulation	QPSK, QQPSK,HPSK
H/W Version	1.0
S/W Version	SWI9x15E_04.04.00.00

1.1.2 Maximum ERP, Frequency Tolerance and Emission Designator

System	Modulation	Maximum ERP (W)	Emission Designator
CDMA2000	HPSK	0.234	1M28F9W

1.1.3 Antenna Details

Ant. No.	Туре	Gain (dBi)	Connector	Remark
1	Dipole	1	SMA	

1.1.4 EUT Operational Condition

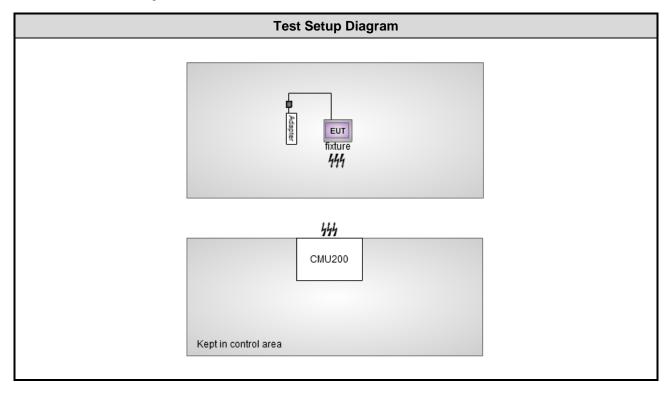
Supply Voltage	☐ AC mains	□ DC	
Type of DC Source	☐ Internal DC supply	☐ External DC adapter	
Operational Voltage			
Operational Climatic	⊠ Tnom (20°C)		☐ Tmin (-30°C)

1.1.5 Operating Channel List

CDMA2000						
Channel Frequency (MHz)						
Low	450	817.25				
High	684	823.10				

Note: Test channels reported herein were specified by applicant.

Report No.: FG3O0701P90 Page: 5 of 28



1.2 Local Support Equipment List

	Support Equipment List							
No.	Equipment	Brand	Model	S/N	FCC ID	Signal cable / Length (m)		
1	Fixture							
2	Adapter for fixture	GlobTek, Inc.	GT-41062- 1805			USB, 1.8m shielded w/o core		

Note: Item 1, 2 was provided by applicant.

1.3 Test Setup Chart

Report No.: FG3O0701P90 Page: 6 of 28

1.4 The Equipment List

Test Item	Radiated Emission						
Test Site	966 chamber1 / (03CH01-WS)						
Instrument	Manufacturer	Manufacturer Model No. Serial No. Calibration D					
3m semi-anechoic chamber	CHAMPRO	SAC-03	03CH01-WS	Jan. 04, 2013	Jan. 03, 2014		
Spectrum Analyzer	R&S	FSV40	101498	Jan. 24, 2013	Jan. 23, 2014		
Receiver	R&S	ESR3	101658	Jan. 28, 2013	Jan. 27, 2014		
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Jan. 11, 2013	Jan. 10, 2014		
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Feb. 18, 2013	Feb. 17, 2014		
Amplifier	Burgeon	BPA-530	100219	Nov. 28, 2012	Nov. 27, 2013		
Amplifier	Agilent	83017A	MY39501308	Dec. 18, 2012	Dec. 17, 2013		
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16014/4	Dec. 25, 2012	Dec. 24, 2013		
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16019/4	Dec. 25, 2012	Dec. 24, 2013		
RF Cable	HUBER+SUHNER	SUCOFLEX104	MY16139/4	Dec. 25, 2012	Dec. 24, 2013		
RF Cable-R03m	Woken	CFD400NL-LW	CFD400NL-001	Dec. 25, 2012	Dec. 24, 2013		
RF Cable-R10m	Woken	CFD400NL-LW	CFD400NL-002	Dec. 25, 2012	Dec. 24, 2013		
control	EM Electronics	EM1000	60612	N/A	N/A		

Test Item	RF Conducted						
Test Site	RF Conducted (TH01-V	RF Conducted (TH01-WS)					
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Until		
Spectrum Analyzer	R&S	FSV 40	101063	Feb. 18, 2013	Feb. 17, 2014		
TEMP&HUMIDITY CHAMBER	GIANT FORCE	GCT-225-40-SP-SD	MAF1212-002	Nov. 29, 2012	Nov. 28, 2013		
Signal Generator	R&S	SMB100A	175727	Jan. 14, 2013	Jan. 13, 2014		
Radio Communication Analyzer	R&S	CMU200	112403	Jan. 31, 2013	Jan. 30, 2014		
Note: Calibration Inter	Note: Calibration Interval of instruments listed above is one year.						

Report No.: FG3O0701P90 Page: 7 of 28

1.5 Test Standards

According to the specification of EUT, the EUT must comply with following standards.

47 CFR FCC Part 90 47 CFR FCC Part 2 ANSI C63.4-2003 ANSI / TIA / EIA-603-C -2004

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2).

Measurement Uncertainty					
Parameters	Uncertainty				
Bandwidth	±35.286 Hz				
Conducted power	±0.536 dB				
Frequency error	±35.286 Hz				
Temperature	±0.3 °C				
Conducted emission	±2.946 dB				
AC conducted emission	±2.43 dB				
Radiated emission	±2.49 dB				

Report No.: FG3O0701P90 Page: 8 of 28

2 Test Configuration

2.1 Testing Condition and Location Information

Test Item	Test Site	Ambient Condition	Tested By
RF conducted	TH01-WS	22°C / 63%	Brad Wu
Radiated Emissions	03CH01-WS	22°C / 63%	Anderson Hong

FCC site registration No.: 657002IC site registration No.: 10807A-1

2.2 The Worst Test Modes and Channel Details

Test item	Mode	Test channel
Effective Radiated Power	CDMA	450, 684
Radiated Emissions ≤ 1GHz	CDMA	684
Radiated Emissions > 1GHz	CDMA	450, 684
Conducted Emissions	CDMA 1xEV-DO	450, 684 450, 684
Band Edge	CDMA 1xEV-DO	450, 684 450, 684
Occupied Bandwidth	CDMA 1xEV-DO	450, 684 450, 684
Peak to average ratio	CDMA 1xEV-DO	450, 684 450, 684
Frequency Stability	CDMA 1xEV-DO	684 684

Report No.: FG3O0701P90 Page: 9 of 28

3 Test Results

3.1 Effective Radiated Power

3.1.1 Limit of Effective Radiated Power

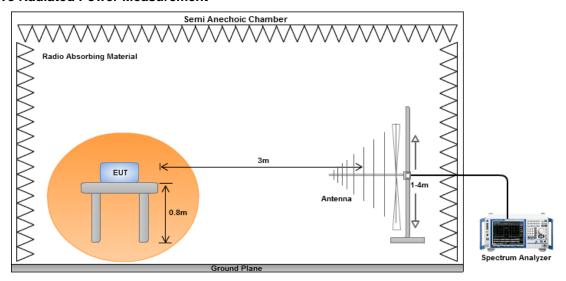
The ERP of mobile transmitters and auxiliary test transmitters must not exceed 100 Watts.

3.1.2 Test Procedures

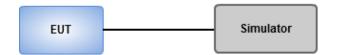
For E.R.P measurement

- 1. The EUT links up with simulator and is set to maximum output power level at low / high channel. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at a height of 0.8 m test table above the ground plane.
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.
- 4. After finding the max radiated emission, substitution method will be used for getting effective radiated power. EUT will be removed and substitution antenna will be placed at same position. Signal generator will output CW signal to substitution antenna through a RF cable. Rotate turntable and move antenna to find maximum radiated emission. Adjust output power of signal generator to let the maximum radiated emission is same as step 3. Record the output power level.
- E.I.R.P = output power of step 4 + gain of substitution antenna cable loss of RF cable. ERP can be calculated by below formula: E.R.P= E.I.R.P – 2.15dB

For Conducted power measurement


- The EUT links up with simulator and is set to maximum output power level at low / high channel.
- 2. Measure the output power of low / high channel of the EUT

Report No.: FG3O0701P90 Page: 10 of 28



3.1.3 Test Setup

Effective Radiated Power Measurement

Conducted Power Measurement

Report No.: FG3O0701P90 Page: 11 of 28

3.1.4 Test Result of Conducted Output Power (dBm)

Band	CDMA 2000 BC10					
Channel	450	684				
Frequency (MHz)	817.25	823.10				
RC1+SO55	23.81	23.91				
RC3+SO55	23.86	23.96				
RC3+SO32(+F-SCH)	23.74	23.92				
RC3+SO32(+SCH)	23.79	23.87				
RTAP 153.6	23.65	23.79				
RETAP 4096	23.61	23.72				

3.1.5 Test Result of Effective Radiated Power (dBm)

Mode	CDMA2000 RC3+SO55						
Channel	Frequency (MHz)	ERP (dBm)	Limit (dBm)	Margin (dB)	S.A Reading (dBm)	S.G Power Vaule (dBm)	Correction Factor (dB)
450	817.25	23.70	38.45	-14.75	-6.19	21.98	3.87
684	823.10	23.49	38.45	-14.96	-6.31	21.76	3.88

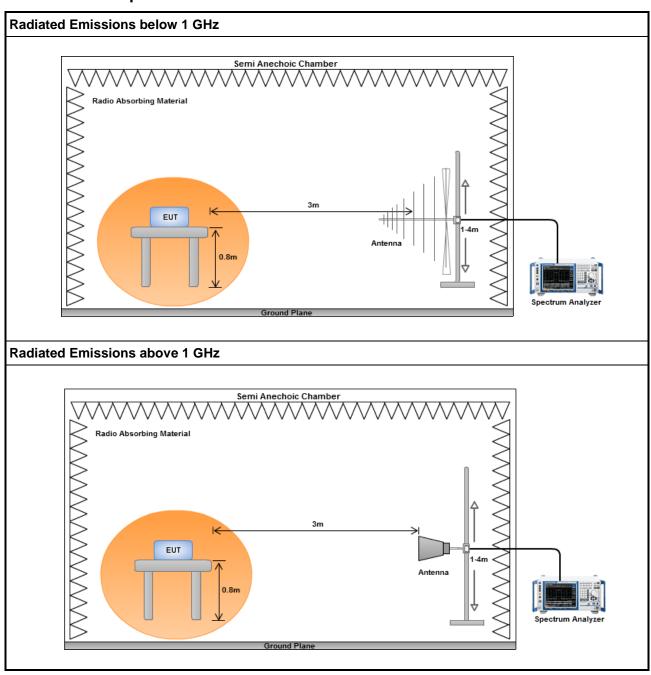
NOTE: ERP = S.G power value + correction factor - 2.15

Report No.: FG3O0701P90

3.2 Radiated Emissions

3.2.1 Limit of Radiated Emissions

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB equal to -13dBm.


3.2.2 Test Procedures

- 1. Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at a height of 0.8 m test table above the ground plane.
- 2. Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.
- 4. After finding the max radiated emission, substitution method will be used for getting effective radiated power. EUT will be removed and substitution antenna will be placed at same position. Signal generator will output CW signal to substitution antenna through a RF cable. Rotate turntable and move antenna to find maximum radiated emission. Adjust output power of signal generator to let the maximum radiated emission is same as step 3. Record the output power level.
- E.I.R.P = output power of step 4 + gain of substitution antenna cable loss of RF cable. ERP can be calculated by below formula: E.R.P= E.I.R.P – 2.15dB

Report No.: FG3O0701P90 Page: 13 of 28

3.2.3 Test Setup

Report No.: FG3O0701P90 Page: 14 of 28

3.2.4 Test Result of Radiated Emissions below 1GHz

Mode	CDMA2000 R	CDMA2000 RC3+SO55, Channel : 684							
Frequency (MHz)	Antenna Polarity	E.R.P (dBm)	Limit (dBm)	Margin (dB)	S.A Reading (dBm)	S.G Power Vaule (dBm)	Correction Factor (dB)		
32.83	Н	-56.32	-13.00	-43.32	-51.55	-42.09	-12.08		
107.61	Н	-56.55	-13.00	-43.55	-41.46	-54.75	0.35		
240.55	Н	-54.81	-13.00	-41.81	-43.22	-58.32	5.66		
264.81	Н	-51.41	-13.00	-38.41	-40.91	-54.85	5.59		
380.16	Н	-58.29	-13.00	-45.29	-49.93	-61.65	5.51		
675.06	Н	-51.57	-13.00	-38.57	-48.09	-53.71	4.29		
106.74	V	-51.33	-13.00	-38.33	-40.92	-49.55	0.37		
130.78	V	-50.70	-13.00	-37.70	-44.08	-48.60	0.05		
264.78	V	-48.18	-13.00	-35.18	-39.16	-51.62	5.59		
321.84	V	-48.37	-13.00	-35.37	-41.68	-51.79	5.57		
381.30	V	-52.68	-13.00	-39.68	-41.35	-56.04	5.51		
806.00	V	-54.47	-13.00	-41.47	-54.51	-56.17	3.85		

NOTE: ERP = S.G power value + correction factor - 2.15

Report No.: FG3O0701P90 Page: 15 of 28

3.2.5 Test Result of Radiated Emissions above 1GHz

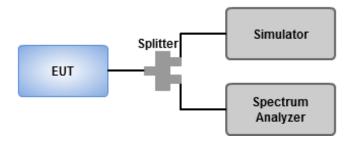
Mode	CDMA2000 R	CDMA2000 RC3+SO55, Channel : 450						
Frequency (MHz)	Antenna Polarity	E.R.P (dBm)	Limit (dBm)	Margin (dB)	S.A Reading (dBm)	S.G Power Vaule (dBm)	Correction Factor (dB)	
1634.50	Н	-47.42	-13.00	-34.42	-48.25	-50.41	5.14	
2451.75	Н	-55.69	-13.00	-42.69	-60.95	-59.63	6.09	
3269.00	Н	-50.03	-13.00	-37.03	-58.54	-53.63	5.75	
1634.50	V	-45.98	-13.00	-32.98	-46.90	-48.97	5.14	
2451.75	V	-47.68	-13.00	-34.68	-54.50	-51.62	6.09	
3269.00	V	-43.39	-13.00	-30.39	-53.28	-46.99	5.75	

Mode	CDMA2000 RC3+SO55, Channel : 684						
Frequency (MHz)	Antenna Polarity.	E.R.P (dBm)	Limit (dBm)	Margin (dB)	S.A Reading (dBm)	S.G Power Vaule (dBm)	Correction Factor (dB)
1646.20	Н	-45.37	-13.00	-32.37	-46.29	-48.33	5.11
2469.30	Н	-53.79	-13.00	-40.79	-59.23	-57.76	6.12
3292.40	Н	-47.26	-13.00	-34.26	-55.79	-50.84	5.73
1646.20	V	-43.91	-13.00	-30.91	-44.92	-46.87	5.11
2469.30	V	-45.36	-13.00	-32.36	-52.31	-49.33	6.12
3292.40	V	-44.49	-13.00	-31.49	-54.44	-48.07	5.73

NOTE: ERP = S.G power value + correction factor - 2.15

Report No.: FG3O0701P90 Page: 16 of 28

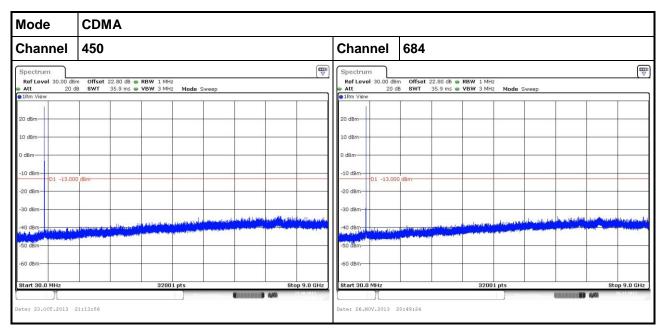
3.3 Conducted Emissions

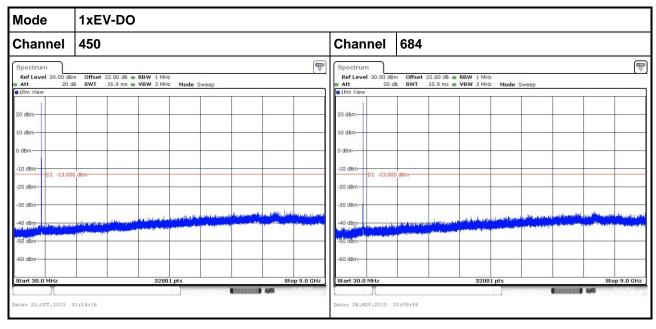

3.3.1 Limit of Conducted Emissions

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB equal to -13dBm.

3.3.2 Test Procedures

- 1. Lowest, middle and highest operating channels are tested for this item.
- 2. Scan frequency range is from 30MHz~9GHz.
- 3. Set RBW = 1MHz, VBW = 3MHz, detector = RMS, sweep time = auto.
- 4. Record the max trace value and capture the test plot of each sub frequency band.


3.3.3 Test Setup



Report No.: FG3O0701P90 Page: 17 of 28

3.3.4 Test Result of Conducted Emissions

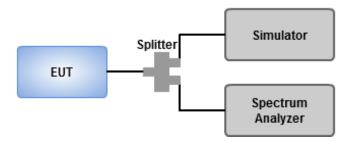
Report No.: FG3O0701P90 Page: 18 of 28

3.4 Band edge

3.4.1 Limit of band edge

For any frequency removed from the EA licensee's frequency block by up to and including 37.5 kHz, the power of any emission shall be attenuated below the transmitter power (P) in watts by at least 116 Log10 (f/6.1) decibels or 50 + 10 Log10 (P) decibels or 80 decibels, whichever is the lesser attenuation, where f is the frequency removed from the center of the outer channel in the block in kilohertz and where f is greater than 12.5 kHz

3.4.2 Test Procedures

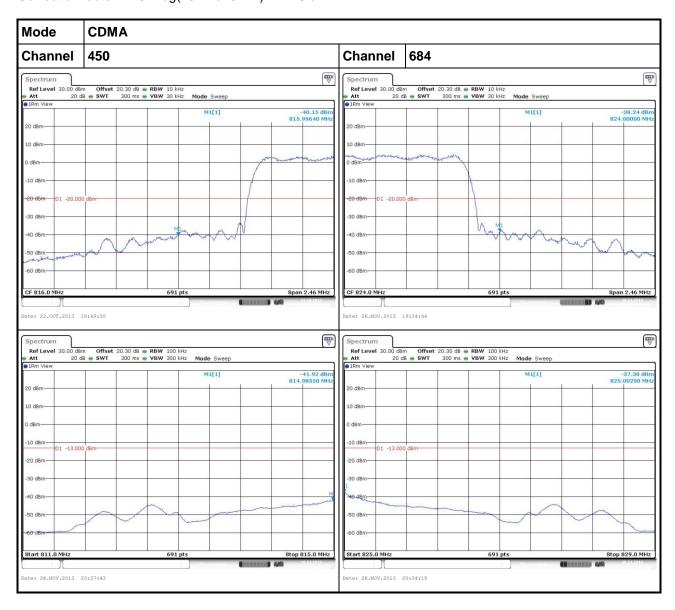

For band edge

- 1. Lowest and highest operating channels are tested for this item.
- 2. Set RBW = 10kHz, VBW=30kHz, detector = RMS, sweep time = auto
- 3. Record the max trace value and capture the test plot.

For 811~815 and 825~829 MHz band

- 1 Lowest and highest operating channels are tested for this item.
- 2 Set RBW = 100kHz, VBW=300kHz, detector = RMS, sweep time = auto
- 3 Record the max trace value and capture the test plot.

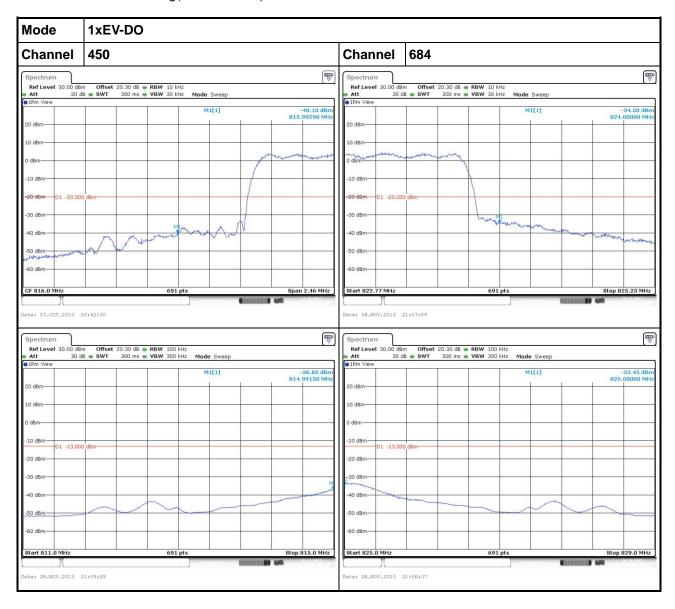
3.4.3 Test Setup


Report No.: FG300701P90 Page: 19 of 28

3.4.4 Test Result of Band Edge

MODE	Channel	Frequency (MHz)	Measured value (dBm)	Correction Factor (dB)	Correction Value(dBm)	Limit (dBm)
CDMA	450	817.25	-40.15	1.76	-38.39	-20
CDMA	684	823.10	-38.24	1.76	-36.48	-20

Note:10kHz is used for measurement since used spectrum analyser has no 15kHz (1% of 26dB bandwidth) setting. Thus correction factor is required for measured value Correction factor = 10 * log(15kHz/10kHz) = 1.76 dB

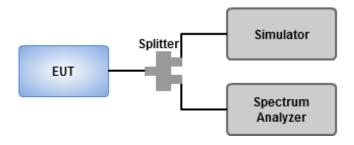

Report No.: FG3O0701P90 Page: 20 of 28

MODE	Channel	Frequency (MHz)	Measured value (dBm)	Correction Factor (dB)	Correction Value(dBm)	Limit (dBm)
1xEV-DO	450	817.25	-40.10	1.76	-38.34	-20
1xEV-DO	684	823.10	-34.50	1.76	-32.74	-20

Note:10kHz is used for measurement since used spectrum analyser has no 15kHz (1% of 26dB bandwidth) setting. Thus correction factor is required for measured value

Correction factor = 10 * log(15kHz/10kHz) = 1.76 dB

Report No.: FG3O0701P90 Page: 21 of 28

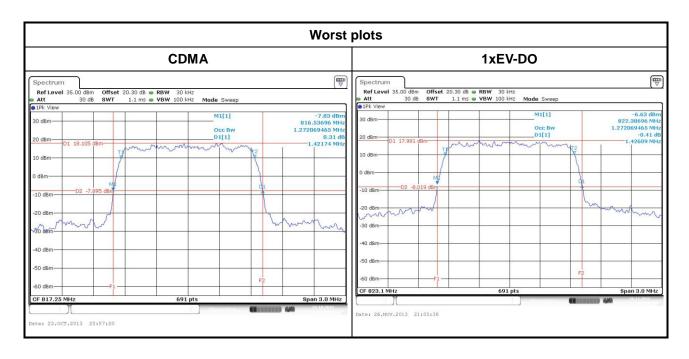


3.5 Occupied Bandwidth

3.5.1 Test Procedures

- 1. Set resolution bandwidth (RBW) = 30 kHz, Video bandwidth = 100 kHz
- 2. Detector = Sample, Trace mode = max hold.
- 3. Sweep = auto couple, Allow the trace to stabilize.
- 4. Using occupied bandwidth measurement function of spectrum analyzer to measure occupied bandwidth

3.5.2 Test Setup



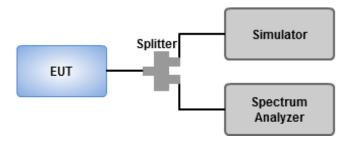
Report No.: FG3O0701P90 Page: 22 of 28

3.5.3 Test Result of Occupied Bandwidth

MODE	Channel	Frequency (MHz)	26dB BW (MHz)	99% OBW (MHz)
CDMA	450	817.25	1.4217	1.27
CDMA	684	823.10	1.4174	1.28
1xEV-DO	450	817.25	1.4217	1.27
1xEV-DO	684	823.10	1.4261	1.27

Report No.: FG3O0701P90 Page: 23 of 28

3.6 Peak to Average Ratio

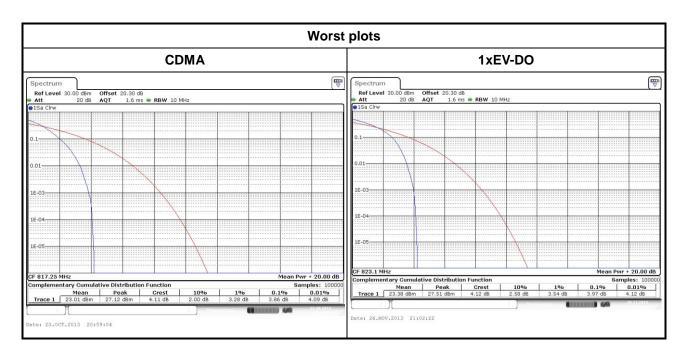

3.6.1 Limit of Peak to Average Ratio

Peak-to-average ratio (PAR) of the transmission may not exceed 13 dB

3.6.2 Test Procedures

- 1. Enable CCDF function of spectrum analyzer and set RBW=10MHz
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve
- 3. Record the maximum PAPR level associated with a probability of 0.1%.

3.6.3 Test Setup



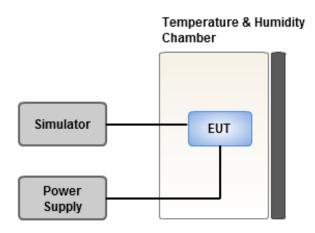
Report No.: FG3O0701P90 Page: 24 of 28

3.6.4 Test Result of Peak to Average Ratio

MODE	Channel	Frequency (MHz)	Peak to Average ratio (dB)
CDMA	450	817.25	3.86
CDMA	684	823.10	3.83
1xEV-DO	450	817.25	3.83
1xEV-DO	684	823.10	3.97

Report No.: FG3O0701P90 Page: 25 of 28

3.7 Frequency Stability


3.7.1 Limit of Frequency Stability

The frequency stability shall be less +/- 2.5ppm.

3.7.2 Test Procedures

- 1. EUT was placed at temperature chamber and connected to an external power supply.
- 2. Temperature and voltage condition shall be tested to confirm frequency stability.
- 3. Temperature range is from -30~50°C and voltage range is from lowest to highest working voltage.
- 4. Link up EUT and simulator. Confirm frequency drift value of simulator and record it.

3.7.3 Test Setup

Report No.: FG3O0701P90 Page: 26 of 28

3.7.4 Test Result of Frequency Stability

Mode	CDMA		
Temperature (°C)	Voltage (Vac)	Frequency Drift (ppm)	Limit (ppm)
50	110	0.011	2.5
40	110	0.010	2.5
30	110	0.011	2.5
20	110	0.009	2.5
10	110	0.007	2.5
0	110	0.006	2.5
-10	110	0.009	2.5
-20	110	0.005	2.5
-30	110	0.006	2.5
20	126.5	0.015	2.5
20	93.5	0.011	2.5

Mode	1xEV-DO		
Temperature (°C)	Voltage (Vac)	Frequency Drift (ppm)	Limit (ppm)
50	110	0.016	2.5
40	110	0.013	2.5
30	110	0.015	2.5
20	110	0.013	2.5
10	110	0.011	2.5
0	110	0.010	2.5
-10	110	0.011	2.5
-20	110	0.009	2.5
-30	110	0.007	2.5
20	126.5	0.017	2.5
20	93.5	0.013	2.5

Report No.: FG3O0701P90 Page: 27 of 28

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corp, it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan Hsiang. Location map can be found on our website http://www.icertifi.com.tw.

Linkou Kwei Shan

Tel: 886-2-2601-1640

No. 30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan, R.O.C.

No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan Hsiang, Tao Yuan Hsien 333, Taiwan, R.O.C.

Tel: 886-3-271-8666

If you have any suggestion, please feel free to contact us as below information

Tel: 886-3-271-8666 Fax: 886-3-318-0155

Email: ICC_Service@icertifi.com.tw

==END==

Report No.: FG3O0701P90 Page: 28 of 28