

AirPrime HL7650

Product Technical Specification

41110363 4.0 October 18, 2017

Important Notice

Due to the nature of wireless communications, transmission and reception of data can never be guaranteed. Data may be delayed, corrupted (i.e., have errors) or be totally lost. Although significant delays or losses of data are rare when wireless devices such as the Sierra Wireless modem are used in a normal manner with a well-constructed network, the Sierra Wireless modem should not be used in situations where failure to transmit or receive data could result in damage of any kind to the user or any other party, including but not limited to personal injury, death, or loss of property. Sierra Wireless accepts no responsibility for damages of any kind resulting from delays or errors in data transmitted or received using the Sierra Wireless modem, or for failure of the Sierra Wireless modem to transmit or receive such data.

Safety and Hazards

Do not operate the Sierra Wireless modem in areas where cellular modems are not advised without proper device certifications. These areas include environments where cellular radio can interfere such as explosive atmospheres, medical equipment, or any other equipment which may be susceptible to any form of radio interference. The Sierra Wireless modem can transmit signals that could interfere with this equipment. Do not operate the Sierra Wireless modem in any aircraft, whether the aircraft is on the ground or in flight. In aircraft, the Sierra Wireless modem MUST BE POWERED OFF. When operating, the Sierra Wireless modem can transmit signals that could interfere with various onboard systems.

Note:

Some airlines may permit the use of cellular phones while the aircraft is on the ground and the door is open. Sierra Wireless modems may be used at this time.

The driver or operator of any vehicle should not operate the Sierra Wireless modem while in control of a vehicle. Doing so will detract from the driver or operator's control and operation of that vehicle. In some states and provinces, operating such communications devices while in control of a vehicle is an offence

Limitations of Liability

This manual is provided "as is". Sierra Wireless makes no warranties of any kind, either expressed or implied, including any implied warranties of merchantability, fitness for a particular purpose, or noninfringement. The recipient of the manual shall endorse all risks arising from its use.

The information in this manual is subject to change without notice and does not represent a commitment on the part of Sierra Wireless. SIERRA WIRELESS AND ITS AFFILIATES SPECIFICALLY DISCLAIM LIABILITY FOR ANY AND ALL DIRECT, INDIRECT, SPECIAL, GENERAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES INCLUDING, BUT NOT LIMITED TO, LOSS OF PROFITS OR REVENUE OR ANTICIPATED PROFITS OR REVENUE ARISING OUT OF THE USE OR INABILITY TO USE ANY SIERRA WIRELESS PRODUCT, EVEN IF SIERRA WIRELESS AND/OR ITS AFFILIATES HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR THEY ARE FORESEEABLE OR FOR CLAIMS BY ANY THIRD PARTY.

Notwithstanding the foregoing, in no event shall Sierra Wireless and/or its affiliates aggregate liability arising under or in connection with the Sierra Wireless product, regardless of the number of events, occurrences, or claims giving rise to liability, be in excess of the price paid by the purchaser for the Sierra Wireless product.

Patents

This product may contain technology developed by or for Sierra Wireless Inc.

This product includes technology licensed from QUALCOMM®.

This product is manufactured or sold by Sierra Wireless Inc. or its affiliates under one or more patents licensed from MMP Portfolio Licensing.

Copyright

© 2017 Sierra Wireless. All rights reserved.

Trademarks

Sierra Wireless®, AirPrime®, AirLink®, AirVantage®, WISMO®, ALEOS® and the Sierra Wireless and Open AT logos are registered trademarks of Sierra Wireless, Inc. or one of its subsidiaries.

Watcher® is a registered trademark of NETGEAR, Inc., used under license.

Windows® and Windows Vista® are registered trademarks of Microsoft Corporation.

Macintosh® and Mac OS X® are registered trademarks of Apple Inc., registered in the U.S. and other countries.

QUALCOMM® is a registered trademark of QUALCOMM Incorporated. Used under license.

Other trademarks are the property of their respective owners.

Contact Information

Sales information and technical support, including warranty and returns	Web: sierrawireless.com/company/contact-us/ Global toll-free number: 1-877-687-7795 6:00 am to 5:00 pm PST
Corporate and product information	Web: sierrawireless.com

Document History

Version	Date	Updates	
1.0	January 26, 2017	Creation	
1.1	February 01, 2017	Changed remaining instances of SIM to USIM	
Updated: Protocol Stack row of Table 3.2 Current Consumption 3.16.2 RF Performances 4 Mechanical Drawings		 Protocol Stack row of Table 2 General Features 3.2 Current Consumption 3.16.2 RF Performances 	
3.0	June 22, 2017	Added section 5.3 Hardware Fast Shut Down Updated:	
4.0 October 18, 2017 Added 7 FCC Regulations Updated Table 43 TX_ON Burst Characteristics		9	

->>| Contents

1.	INTRO	DDU	CTION	10
	1.1.	Com	mon Flexible Form Factor (CF³)	10
	1.2.	Phys	ical Dimensions	10
	1.3.	Gene	eral Features	11
	1.4.	Arch	itecture	13
	1.5.	Inter	faces	13
	1.6.	Conr	nection Interface	14
	1.7.	ESD		15
	1.8.	Envir	onmental and Certifications	15
	1.8	.1.	Environmental Specifications	
	1.8		Regulatory	
	1.8		RoHS Directive Compliant	
	1.8		Disposing of the Product	
	1.9.	Rete	rences	16
2.	PAD [NITION	
	2.1.	Pad	Types	21
	2.2.	Pad	Configuration (Top View, Through Module)	22
3.	DETA	ILED	INTERFACE SPECIFICATIONS	23
	3.1.	Powe	er Supply	23
	3.2.	Curre	ent Consumption	24
	3.3.	VGP	IO	25
	3.4.	BAT	_RTC	25
	3.5.	USIN	/I Interface	26
	3.5	.1.	UIMx_CLK	27
	3.5	.2.	UIMx_DET	27
	3.6.	USB	Interface	28
	3.7.		rical Information for Digital I/O	
	3.8.	Gene	eral Purpose Input/Output (GPIO)	29
	3.9.	Main	Serial Link (UART1)	30
	3.10.	POW	/ER-ON Signal (PWR_ON_N)	31
	3.11.	Rese	et Signal (RESET_IN_N)	31
	3.12.	Anal	og to Digital Converter (ADC)	32
	3.13.	Clock	k Out Interface	33
	3.14.	Digita	al Audio (PCM) Interface	34
		4.1.	PCM Waveforms	
		4.2.	PCM Master Mode	
	3.1	4.3.	PCM Slave Mode	37

	3.15.	JTA(G	38
	3.	RF II 16.1. 16.2. 16.3.	nterface	39 39
4.	MEC	HANI	CAL DRAWINGS	
5.	DESI	IGN G	GUIDELINES	45
	5.1.	Pow	er-Up Sequence	45
	5.2.		ule Switch-Off	
	5.3.		lware Fast Shut Down	
	5.4.		rgency Power OFF	
	5.5.		p Mode Management	
	5.6.		er Supply Design	
	5.7.	EMC	and ESD Guidelines for USIM	47
	5.8.	ESD	Guidelines for USB	48
	5.9.	USIN	Л Application	49
	5.	9.1.	Single USIM Design	
	5.	9.2.	Dual SIM Single Standby Design	50
6.	RELI	ABIL	ITY SPECIFICATION	51
	6.1.	Relia	ability Compliance	51
	6.2.	Relia	ability Prediction Model	51
	6.	2.1.	Life Stress Test	
	•	2.2.	Environmental Resistance Stress Tests	
		2.3.	Corrosive Resistance Stress Tests	
		2.4.	Thermal Resistance Cycle Stress Tests	
	-	2.5.	Mechanical Resistance Stress Tests	
		2.6.	Handling Resistance Stress Tests	
7.	FCC	REGI	ULATIONS	56
8.	. ORDERING INFORMATION58			
9	TERI	MS AI	ND ABBREVIATIONS	59

_>> List of Figures

Figure 1.	Architecture Overview	13
Figure 2.	Mechanical Overview (Top and Bottom Views)	14
Figure 3.	AirPrime HL7650 Top View	14
Figure 4.	AirPrime HL7650 Bottom View	14
Figure 5.	Pad Configuration	22
Figure 6.	UIMx Timing Waveform	27
Figure 7.	CLKOUTx Timing Waveform	33
Figure 8.	PCM Timing Waveform	35
Figure 9.	PCM Master Mode Timing	36
Figure 10.	PCM Master Mode Timing	37
Figure 11.	JTAG Timing Waveform	38
Figure 12.	TX_ON State During Transmission	41
Figure 13.	Mechanical Drawing	42
Figure 14.	Dimensions Drawing	43
Figure 15.	Footprint	44
Figure 16.	PWR_ON_N Sequence with VGPIO Information	45
Figure 17.	Power OFF Sequence for PWR_ON_N, VGPIO	45
Figure 18.	Fast Shutdown Power OFF Sequence	46
Figure 19.	Voltage Limiter Example	47
Figure 20.	EMC and ESD Components Close to the USIM	48
Figure 21.	ESD Protection for USB	48
Figure 22.	Single USIM Application (1 USIM Slot and 1 USIM Connector)	49
Figure 23.	Dual SIM Single Standby Application (1 USIM Slot and 2 USIM Connectors)	50

41110363 Rev 4.0 October 18, 2017 7

List of Tables

Table 1.	Supported Bands/Connectivity	.10
Table 2.	General Features	.11
Table 3.	ESD Specifications	. 15
Table 4.	Environmental Specifications	. 15
Table 5.	Pad Definition	. 17
Table 6.	Pad Types	.21
Table 7.	Power Supply Pad Description	.23
Table 8.	Power Supply Electrical Characteristics	. 23
Table 9.	Current Consumption	.24
Table 10.	Current Consumption per Power Supply	. 24
Table 11.	VGPIO Pad Description	.25
Table 12.	VGPIO Electrical Characteristics	.25
Table 13.	BAT_RTC Pad Description	.25
Table 14.	BAT_RTC Electrical Characteristics	.26
Table 15.	UIM1 Pad Description	.26
Table 16.	UIM2 Pad Description	.26
Table 17.	UIM1 and UIM2 Electrical Characteristics	.27
Table 18.	USB Pad Description	. 28
Table 19.	USB Electrical Characteristics.	.28
Table 20.	Digital I/O Electrical Characteristics	. 29
Table 21.	GPIO Pad Description	.29
Table 22.	UART1 Pad Description	.30
Table 23.	PWR_ON_N Pad Description	.31
Table 24.	PWR_ON_N Electrical Characteristics	.31
Table 25.	RESET_IN_N Pad Description	.32
Table 26.	RESET_IN_N Electrical Characteristics	.32
Table 27.	ADC Pad Description	.32
Table 28.	ADC Electrical Characteristics	.32
Table 29.	Clock Out Interface Pad Description	.33
Table 30.	Clock Out Interface Electrical Characteristics	.33
Table 31.	Digital Audio Pad Description	.34
Table 32.	Digital Audio Electrical Characteristics	.34
Table 33.	PCM Master Mode Parameters	.36
Table 34.	PCM Slave Mode Parameters	.37
Table 35.	JTAG Pad Description	.38
Table 36.	JTAG Electrical Characteristics	.38
Table 37.	RF Main Connection	. 39

Product Technical Specification

Table 38.	RF Diversity Connection	39
Table 39.	Conducted RX Sensitivity (dBm) – UMTS Bands @ 25°C	39
Table 40.	Conducted RX Sensitivity (dBm) – LTE Bands @ 25°C	40
Table 41.	TX_ON Indicator Pad Description	40
Table 42.	Burst Indicator States	40
Table 43.	TX_ON Burst Characteristics	40
Table 44.	Standards Conformity	51
Table 45.	Life Stress Test	51
Table 46.	Environmental Resistance Stress Tests	52
Table 47.	Corrosive Resistance Stress Tests	52
Table 48.	Thermal Resistance Cycle Stress Tests	53
Table 49.	Mechanical Resistance Stress Tests	54
Table 50.	Handling Resistance Stress Tests	55
Table 51.	Ordering Information	58

41110363 Rev 4.0 October 18, 2017

9

->> 1. Introduction

This document is the Product Technical Specification for the AirPrime HL7650 Embedded Module. It defines the high-level product features and illustrates the interfaces for these features. This document is intended to cover the hardware aspects of the product, including electrical and mechanical.

The AirPrime HL7650 belongs to the AirPrime HL Series from Essential Connectivity Module family. These are industrial grade Embedded Wireless Modules that provides data connectivity on LTE and 3G networks (as listed in Table 1 Supported Bands/Connectivity).

The HL7650 supports a large variety of interfaces such as USB 2.0, UART, Digital Audio, ADC, USIM and GPIOs to provide customers with the highest level of flexibility in implementing high-end solutions.

RF Band	Transmit Band (Tx)		Receive Band (Rx)		Maximum Output
	Uplink	Downlink	Uplink	Downlink	Power
LTE B3	1710 MHz	1785 MHz	1805 MHz	1880 MHz	23 dBm ± 2 dBm
LTE B5	824 MHz	849 MHz	869 MHz	894 MHz	23 dBm ± 2 dBm
LTE B8	880 MHz	915 MHz	925 MHz	960 MHz	23 dBm ± 2 dBm
LTE B28	703 MHz	748 MHz	758 MHz	808 MHz	23 dBm ± 2 dBm
UMTS B1	1920 MHz	1980 MHz	2110 MHz	2170 MHz	24 dBm +1 / -3 dBm
UMTS B5	824 MHz	849 MHz	869 MHz	894 MHz	24 dBm +1 / -3 dBm
UMTS B8	880 MHz	915 MHz	925 MHz	960 MHz	24 dBm +1 / -3 dBm

Table 1. Supported Bands/Connectivity

1.1. Common Flexible Form Factor (CF³)

The AirPrime HL7650 belongs to the Common Flexible Form Factor (CF3) family of modules. This family consists of a series of WWAN modules that share the same mechanical dimensions (same width and length with varying thicknesses) and footprint. The CF3 form factor provides a unique solution to a series of problems faced commonly in the WWAN module space as it:

- Accommodates multiple radio technologies (from 3G to LTE advanced) and band groupings
- Supports bit-pipe (Essential Module Series) and value add (Smart Module Series) solutions
- Offers electrical and functional compatibility
- Provides Direct Mount as well as Socket-ability depending on customer needs

1.2. **Physical Dimensions**

AirPrime HL7650 modules are compact, robust, fully shielded modules with the following dimensions:

Length: 23 mm Width: 22 mm Thickness: 2.5 mm Weight: 3.5 g

Note: Dimensions specified above are typical values.

41110363 Rev 4.0 10 October 18, 2017

1.3. General Features

The table below summarizes the AirPrime HL7650 features.

Table 2. General Features

Feature	Description		
Physical	 Small form factor (146-pad solderable LGA pad) – 23mm x 22mm x 2.5mm (nominal) Metal shield can RF connection pads (RF main interface) Baseband signals connection 		
Electrical	Single or double supply voltage (VBATT and VBATT_PA) – 3.2V – 4.5V		
RF	Quad-band LTE (B3, B5, B8 and B28) and tri-band UMTS (B1, B5 and B8)		
USIM interface	 Dual SIM Single Standby (DSSS) 1.8V/3V support SIM extraction / hot plug detection SIM/USIM support Conforms to ETSI UICC Specifications. Supports SIM application tool kit with proactive SIM commands 		
	Note: Although UIM2 connectivity is available in the hardware, this feature is not activated in the firmware.		
Application interface	 NDIS NIC interface support (Windows 7, Windows 8, Linux) MBIM support Multiple non-multiplexed USB channel support Dial-up networking USB selective suspend to maximize power savings CMUX multiplexing over UART AT command interface – 3GPP 27.007 standard, plus proprietary extended AT commands 		
Protocol stack	 LTE mode operation: LTE FDD, bandwidth 1.4-20 MHz System Release: 3GPP Rel. 9 Category 1 (up to 10 Mbit/s in downlink, 5 Mbit/s in uplink) Rx Diversity Max modulation 64 QAM DL, 16 QAM UL Intra-frequency and inter-frequency mobility SON ANR Public Warning System PWS HSDPA (High Speed Downlink Packet Access) Compliant with 3GPP Rel. 8 Category 10 (10.1Mbps) IPv6 support HSUPA (High Speed Uplink Packet Access) Compliant with 3GPP Release 8 Category 6 (5.76Mbps) 		

Feature	Description		
SMS	 SMS over SGs and IMS SMS MO and MT SMS saving to SIM card or ME storage SMS reading from SIM card or ME storage SMS sorting SMS concatenation SMS Status Report 		
	 SMS replacement support SMS storing rules (support of AT+CNMI, AT+CNMA) 		
Connectivity	 Multiple (up to 20) cellular packet data profiles Sleep mode for minimum idle power draw Mobile-originated PDP context activation / deactivation Support QoS profile Release 97 – Precedence Class, Reliability Class, Delay Class, Peak Throughput, Mean Throughput Release 99 QoS negotiation – Background, Interactive, and Streaming Static and Dynamic IP address. The network may assign a fixed IP address or dynamically assign one using DHCP (Dynamic Host Configuration Protocol). Supports PAP and CHAP authentication protocols PDP context type (IPv4, IPv6, IPv4v6). IP Packet Data Protocol context RFC1144 TCP/IP header compression 		
Environmental	Operating temperature ranges (industrial grade): • Class A: -30°C to +70°C • Class B: -40°C to +85°C		
RTC	Real Time Clock (RTC) with calendar		

1.4. Architecture

The figure below presents an overview of the AirPrime HL7650 internal architecture and external interfaces.

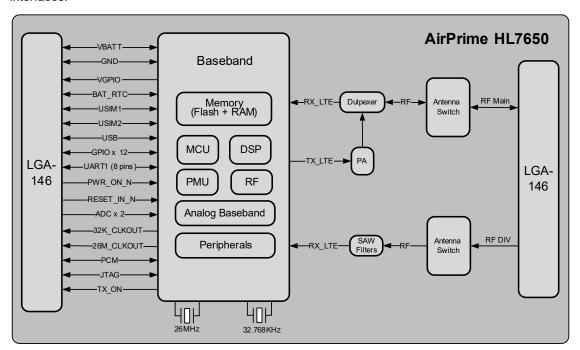


Figure 1. Architecture Overview

1.5. Interfaces

The AirPrime HL7650 module provides the following interfaces and peripheral connectivity:

- 1x VGPIO
- 1x BAT RTC Backup Battery Interface
- 2x 1.8V/3V USIM
- 1x USB 2.0
- 12x GPIOs (1 of which is multiplexed)
- 1x 8-wire UART
- 1x Active Low PWR_ON_N
- 1x Active Low RESET_IN_N
- 2x ADC
- 2x System Clock out (32.768 KHz and 26 MHz)
- 1x Digital Audio Interface (PCM)
- 1x JTAG Interface
- 1x RF Main Antenna
- 1x RF Diversity
- 1x TX Indicator

1.6. Connection Interface

The AirPrime HL7650 module is an LGA form factor device. All electrical and mechanical connections are made through the 146 Land Grid Array (LGA) pads on the bottom side of the PCB.

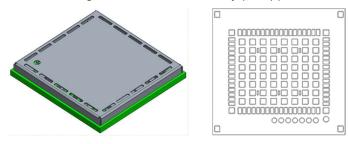


Figure 2. Mechanical Overview (Top and Bottom Views)

The 146 pads have the following distribution:

- 66 inner signal pads, 1x0.5mm, pitch 0.8mm
- 1 reserved test point (do not connect), 1.0mm diameter
- 7 test point (JTAG), 0.8mm diameter, 1.20mm pitch
- 64 inner ground pads, 1.0x1.0mm, pitch 1.825mm/1.475mm
- 4 inner corner ground pads, 1x1mm
- 4 outer corner ground pads, 1x0.9mm

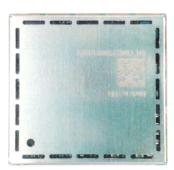


Figure 3. AirPrime HL7650 Top View

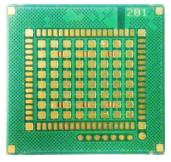


Figure 4. AirPrime HL7650 Bottom View

1.7. ESD

Refer to the following table for ESD Specifications.

Table 3. ESD Specifications

Category	Connection	Specification	
Operational	RF ports	IEC-61000-4-2 — Level (Electrostatic Discharge Immunity Test)	
Non-operational	Host connector interface	Unless otherwise specified: • JESD22-A114 ± 1kV Human Body Model • JESD22-A115 ± 200V Machine Model • JESD22-C101C ± 250V Charged Device Model	
	USIM connector	Adding ESD protection is highly recommended at the point where	
Signals	Other host signals	the USIM contacts are exposed, and for any other signals that would be subjected to ESD by the user.	

1.8. Environmental and Certifications

1.8.1. Environmental Specifications

The environmental specification for both operating and storage conditions are defined in the table below.

Table 4. Environmental Specifications

Conditions	Range
Operating Class A	-30°C to +70°C
Operating Class B	-40°C to +85°C
Storage	-40°C to +85°C

Class A is defined as the operating temperature ranges that the device:

- Shall exhibit normal function during and after environmental exposure.
- Shall meet the minimum requirements of 3GPP or appropriate wireless standards.

Class B is defined as the operating temperature ranges that the device:

- · Shall remain fully functional during and after environmental exposure
- Shall exhibit the ability to establish an SMS or DATA call (emergency call) at all times even when one or more environmental constraint exceeds the specified tolerance.
- Unless otherwise stated, full performance should return to normal after the excessive constraint(s) have been removed.

1.8.2. Regulatory

Sierra Wireless hereby declares that the HL7650 is in compliance with all essential requirements of Directive <TBD>.

 ϵ

The Declaration of Conformity will be available for viewing at the following location in the EU community:

Sierra Wireless (UK) Limited Suite 5, The Hub Fowler Avenue Farnborough Business Park Farnborough, United Kingdom GU14 7JP

1.8.3. RoHS Directive Compliant

The AirPrime HL7650 module is compliant with RoHS Directive 2011/65/EU which sets limits for the use of certain restricted hazardous substances. This directive states that "from 1st July 2006, new electrical and electronic equipment put on the market does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) or polybrominated diphenyl ethers (PBDE)".

1.8.4. Disposing of the Product

This electronic product is subject to the EU Directive 2012/19/EU for Waste Electrical and Electronic Equipment (WEEE). As such, this product must not be disposed of at a municipal waste collection point. Please refer to local regulations for directions on how to dispose of this product in an environmental friendly manner.

16

1.9. References

[1] AirPrime HL Series Customer Process Guidelines

Reference Number: 4114330

[2] AirPrime HL76xx AT Commands Interface Guide

Reference Number: 4118395

[3] AirPrime HL Series Development Kit User Guide

Reference Number: 4114877

41110363 Rev 4.0 October 18, 2017

2. Pad Definition

AirPrime HL7650 pads are divided into 2 functional categories.

- Core functions and associated pads cover all the mandatory features for M2M connectivity and will be available by default across all CF³ family of modules. These Core functions are always available and always at the same physical pad location. A customer platform using only these functions and associated pads is guaranteed to be forward and/or backward compatible with the next generation of CF³ modules.
- Extension functions and associated pads bring additional capabilities to the customer. Whenever an Extension function is available on a module, it is always at the same pad location.

Other pads marked as "not connected" or "reserved" should not be used.

Table 5. Pad Definition

Pad #	Signal Name	Function	I/O	I/O HW Reset State	Active Low/High	Power Supply Domain	Recommendation for Unused Pads	Туре
1	GPIO1	General purpose input/output	I/O	I, T	-	1.8V	Left Open	Extension
2	UART1_RI	UART1 Ring indicator	0	O, L	-	1.8V	Connect to test point	Core
3	UART1_RTS	UART1 Request to send	1	I, T/PU	L	1.8V	Connect to test point	Core
4	UART1_CTS	UART1 Clear to send	0	I, T/PU	L	1.8V	Connect to test point	Core
5	UART1_TX	UART1 Transmit data	I	I, T/PD	-	1.8V	Connect to test point	Core
6	UART1_RX	UART1 Receive data	0	I, T/PU	-	1.8V	Connect to test point	Core
7	UART1_DTR	UART1 Data terminal ready	1	I, T/PD	L	1.8V	Connect to test point	Core
8	UART1_DCD	UART1 Data carrier detect	0	O, L	L	1.8V	Connect to test point	Core
9	UART1_DSR	UART1 Data set ready	0	O, H	L	1.8V	Connect to test point	Core
10	GPIO2	General purpose input/output	I/O	O, L	-	1.8V	Connect to test point	Core
11	RESET_IN_N	Input reset signal	I	N/A	L	1.8V	Left Open	Core

Pad #	Signal Name	Function	I/O	I/O HW Reset State	Active Low/High	Power Supply Domain	Recommendation for Unused Pads	Туре
12	LICP D	USB Data Negative (Low / Full Speed)	I/O	Т		3.3V	Connect to toot point	Extension
12	USB_D-	USB Data Negative (High Speed)	1/0	I	-	0.38V	Connect to test point	Extension
13	USB_D+	USB Data Positive (Low / Full Speed)	- I/O	Т		3.3V	Connect to test point	Extension
13	USB_D+	USB Data Positive (High Speed)	1/0	1	-	0.38V	Connect to test point	Exterision
14	NC	Not Connected	-	-	-			Not connected
15	NC	Not Connected	-	-	-			Not connected
16	USB_VBUS	USB VBUS	1	N/A	-	5V	Connect to test point	Extension
17	NC	Not Connected (Reserved for future use)	-	-	-		Left Open	Not connected
18	NC	Not Connected (Reserved for future use)	-	-	-		Left Open	Not connected
19	NC	Not Connected (Reserved for future use)	-	-	-		Left Open	Not connected
20	NC	Not Connected (Reserved for future use)	-	-	-		Left Open	Not connected
21	BAT_RTC	Power supply for RTC backup	I/O	N/A	-	1.8V	Left Open	Extension
22	26M_CLKOUT	26MHz System Clock Output	0	I, T/PD	-	1.8V	Left Open	Extension
23	32K_CLKOUT	32.768kHz System Clock Output	0	I, T/PD	-	1.8V	Left Open	Extension
24	ADC1	Analog to digital converter	1	N/A	-	1.2V	Left Open	Extension
25	ADC0	Analog to digital converter	1	N/A	-	1.2V	Left Open	Extension
26	UIM1_VCC	1.8V/3V USIM1 Power supply	0	N/A	-	1.8V/3V	Mandatory connection	Core
27	UIM1_CLK	1.8V/3V USIM1 Clock	0	O, L	-	1.8V/3V	Mandatory connection	Core
28	UIM1_DATA	1.8V/3V USIM1 Data	I/O	O, L	-	1.8V/3V	Mandatory connection	Core
29	UIM1_RESET	1.8V/3V USIM1 Reset	0	O, L	L	1.8V/3V	Mandatory connection	Core
30	GND	Ground	0V	N/A	-	0V	Mandatory connection	Extension
31	RF_DIV	RF Input - Diversity	-	N/A	-		Mandatory connection	Extension
32	GND	Ground	0V	N/A	-	0V	Mandatory connection	Extension
33	PCM_OUT	PCM data out	0	I, T/PD	-	1.8V	Left Open	Extension
34	PCM_IN	PCM data in	I	I, T/PD	-	1.8V	Left Open	Extension
35	PCM_SYNC	PCM sync out	I/O	I, T/PD	-	1.8V	Left Open	Extension

Pad #	Signal Name	Function	I/O	I/O HW Reset State	Active Low/High	Power Supply Domain	Recommendation for Unused Pads	Туре
36	PCM_CLK	PCM clock	I/O	I, T/PD	-	1.8V	Left Open	Extension
37	GND	Ground	0V	N/A	-	0V	Mandatory connection	Core
38	NC	Not Connected (Reserved for future use)	-	-	-		Left Open	Not connected
39	GND	Ground	0V	N/A	-	0V	Mandatory connection	Core
40	GPIO7	General purpose input/output	I/O	I, T/PD	-	1.8V	Left Open	Core
41	GPIO8	General purpose input/output	I/O	O, L	-	1.8V	Connect to test point	Core
42	NC	Not Connected (Reserved for future use)	-	-	-		Left Open	Not connected
43	NC	Not Connected (Reserved for future use)	-	-	-		Left Open	Not connected
44	GPIO13	General purpose input/output	0	I, T/PU	-	1.8V	Left Open	Extension
45	VGPIO	GPIO voltage output	0	N/A	-	1.8V	Left Open	Core
46	GPIO6	General purpose input/output	I/O	I, T/PD	-	1.8V	Left Open	Core
47	NC	Not Connected (Reserved for future use)	-	-	-		Left Open	Not connected
48	GND	Ground	0V	N/A	-	0V	Mandatory connection	Core
49	RF_MAIN	RF Input/output	-	N/A	-		Mandatory connection	Core
50	GND	Ground	0V	N/A	-	0V	Mandatory connection	Core
51	GPIO14	General purpose input/output	I	I, T/PU	-	1.8V	Left Open	Extension
52	GPIO10	General purpose input/output	I/O	I, T/PD	-	1.8V	Left Open	Extension
53	GPIO11	General purpose input/output	I/O	I, T/PD	-	1.8V	Left Open	Extension
54	GPIO15	General purpose input/output	I/O	I, T/PU	-	1.8V	Left Open	Extension
55	UIM2_VCC	1.8V/3V USIM2 Power supply	0	N/A	-	1.8V/3V	Mandatory connection	Core
56	UIM2_DATA	1.8V/3V USIM2 Data	I/O	O, L	-	1.8V/3V	Mandatory connection	Core
57	UIM2_RESET	1.8V/3V USIM2 Reset	0	O, L	L	1.8V/3V	Mandatory connection	Core
58	UIM2_CLK	1.8V/3V USIM2 Clock	0	O, L		1.8V/3V	Mandatory connection	Core
59	PWR_ON_N	Active Low Power On control signal	I	N/A	L	1.8V	Mandatory connection	Core
60	TX_ON	TX burst indicator	0	N/A		2.3V	Left Open	Extension

Pad #	Signal Name	Function	I/O	I/O HW Reset State	Active Low/High	Power Supply Domain	Recommendation for Unused Pads	Туре
61	VBATT_PA	Power supply (refer to section 3.1 Power Supply for more information)	1	N/A	-	3.2V (min) 3.7V (typ) 4.5V (max)	Mandatory connection	Core
62	VBATT_PA	Power supply (refer to section 3.1 Power Supply for more information)	1	N/A	-	3.2V (min) 3.7V (typ) 4.5V (max)	Mandatory connection	Core
63	VBATT	Power supply	I	N/A	-	3.2V (min) 3.7V (typ) 4.5V (max)	Mandatory connection	Core
64	UIM1_DET	UIM1 Detection	I/O	I, T/PD	Н	1.8V	Left Open	Core
65	UIM2_DET/GPIO4	UIM2 Detection / General purpose input/output	I/O	I, T/PD	Н	1.8V	Left Open	Extension
66	GPIO5	General purpose input/output	I/O	I, T	-	1.8V	Left Open	Extension
67-70	GND	Ground	0V	N/A		0V		Core
71 - 166	Note: These	pads are not available on the AirPrime HL76	50 modul	e.				
167 - 234	GND	Ground	0V	N/A	-	0V		Core
236	JTAG_RESET	JTAG RESET	1	I, T	L	1.8V	Left Open	Extension
237	JTAG_TCK	JTAG Test Clock	1	I, PD	-	1.8V	Left Open	Extension
238	JTAG_TDO	JTAG Test Data Output	0	O, T	-	1.8V	Left Open	Extension
239	JTAG_TMS	JTAG Test Mode Select	1	I, PU	-	1.8V	Left Open	Extension
240	JTAG_TRST	JTAG Test Reset	I	I, PD	L	1.8V	Left Open	Extension
241	JTAG_TDI	JTAG Test Data Input	ī	I, PU	-	1.8V	Left Open	Extension
242	JTAG_RTCK	JTAG Returned Test Clock	0	I, PD	-	1.8V	Left Open	Extension

Product Technical Specification Pad Definition

2.1. Pad Types

Table 6. Pad Types

Туре	Definition
1	Digital Input
0	Digital Output
1/0	Digital Input / Output
L	Active High
Н	Active Low
Т	Tristate
T/PU	Tristate with pull-up enabled
T/PD	Tristate with pull-down enabled
N/A	No Applicable

Product Technical Specification Pad Definition

2.2. Pad Configuration (Top View, Through Module)

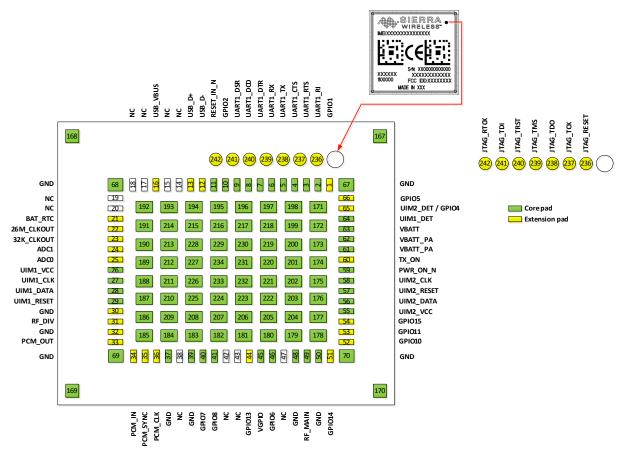


Figure 5. Pad Configuration

3. Detailed Interface Specifications

Note:

If not specified, all electrical values are given for VBATT=3.7V and an operating temperature of 25°C.

For standard applications, VBATT and VBATT_PA must be tied externally to the same power supply. For some specific applications, AirPrime HL7650 module supports separate VBATT and VBATT_PA connection if requirements below are fulfilled.

3.1. Power Supply

The AirPrime HL7650 module is supplied through the VBATT and VBATT_PA signals. Refer to the following table for the pad description of the Power Supply interface.

Table 7. Power Supply Pad Description

Pad Number	Signal Name	I/O	Description
63	VBATT	1	Power supply (base band)
61, 62	VBATT_PA	1	Power supply (radio frequency)
37, 39, 48, 67-70, 167-234	GND		Ground

Refer to the following table for the electrical characteristics of the Power Supply interface.

Table 8. Power Supply Electrical Characteristics

Supply	Minimum	Typical	Maximum
VBATT voltage (V)	3.21	3.7	4.5
VBATT_PA voltage (V) Full Specification	3.21	3.7	4.5
VBATT_PA voltage (V) Extended Range	2.82	3.7	4.5

- 1 This value has to be guaranteed during the burst
- 2 No guarantee of 3GPP performances over extended range

Note: Load capacitance for VBATT is around 140µF ± 20% embedded inside the module.

Load capacitance for VBATT_PA is around 20µF ± 20% embedded inside the module.

3.2. Current Consumption

The following table lists the current consumption of the AirPrime HL7650 at different conditions.

Note:

Typical values are defined for VBATT/VBATT_PA at 3.7V and 25° C, for 50Ω impedance at all RF ports with VSWR1:1 and CMW500. Maximum values are defined with worst conditions among supported ranges of voltages and temperature (50Ω , VSWR1:1 and CMW500).

Table 9. Current Consumption

Parameter	Typical	Maximum	Unit	
Off mode		110	300	μA
	Band 3	1.7	5.5	mA
Sleep mode – LTE DRX8	Band 5	1.9	6.0	mA
USB disconnected	Band 8	1.7	5.7	mA
GOD GIOCOTITIOGICA	Band 28	1.9	6.0	mA
Sleep mode – WCDMA	Band 1	1.2	4.95	mA
DRX8	Band 5	1.2	4.95	mA
USB disconnected	Band 8	1.2	4.95	mA
	Band 3	595	740	mA
LTE in communication mode	Band 5	585	730	mA
(TX Max)	Band 8	665	815	mA
	Band 28	765	920	mA
	Band 1	515	630	mA
WCDMA in communication mode (TX Max)	Band 5	490	605	mA
mode (17t max)	Band 8	490	610	mA

Note:

Maximum current peak measured for VSWR3:1 is 1100 mA.

Table 10. Current Consumption per Power Supply

Parameter (at nominal voltage, 3	.7 V)	Typical	Maximum	Unit
		Band 3	235	355	mA
	LTE in	Band 5	230	355	mA
	communication mode (TX Max)	Band 8	235	380	mA
VBATT	,	Band 28	240	380	mA
	WCDMA in communication mode	Band 1	130	230	mA
		Band 5	125	220	mA
	(TX Max)	Band 8	125	220	mA
		Band 3	360	385	mA
	LTE in	Band 5	355	375	mA
	communication mode (TX Max)	Band 8	430	435	mA
VBATT_PA	,	Band 28	525	540	mA
	WCDMA in	Band 1	385	400	mA
	communication mode	Band 5	365	385	mA
	(TX Max)	Band 8	365	390	mA

3.3. **VGPIO**

The VGPIO output can be used to:

- Pull-up signals such as I/Os
- Supply the digital transistors driving LEDs

The VGPIO output is available when the AirPrime HL7650 module is switched ON.

Refer to the following table for the pad description of the VGPIO interface.

Table 11. VGPIO Pad Description

Pad Number	Signal Name	I/O	Description
45	VGPIO	0	GPIO voltage output

Refer to the following table for the electrical characteristics of the VGPIO interface.

Table 12. VGPIO Electrical Characteristics

Parameter	Minimum	Typical	Maximum	Remarks
Voltage level (V)	1.7	1.8	1.9	Both active mode and sleep mode
Current capability Active Mode (mA)	-	-	50	Power management support up to 50mA output in Active mode
Current capability Sleep Mode (mA)	-	-	3	Power management support up to 3mA output in Sleep mode
Rise Time (ms)	-	-	1.5	Start-Up time from 0V

3.4. BAT RTC

The AirPrime HL7650 module provides an input/output to connect a Real Time Clock power supply.

This pad is used as a back-up power supply for the internal Real Time Clock. The RTC is supported when VBATT is available but a back-up power supply is needed to save date and hour when VBATT is switched off.

If VBATT is available, the back-up battery can be charged by the internal 1.8V power supply regulator. Refer to the following table for the pad description of the BAT_RTC interface.

Table 13. BAT_RTC Pad Description

Pad Number	Signal Name	I/O	Description
21	BAT_RTC	I/O	Power supply for RTC backup

Refer to the following table for the electrical characteristics of the BAT_RTC interface.

Table 14. BAT_RTC Electrical Characteristics

Parameter	Minimum	Typical	Maximum	Unit
Input voltage	1.7	1.8	1.9	V
Input current consumption	-	2.5 (TBC)	-	μA
Output voltage	-5%	1.8	+5%	V
Max charging current (@VBATT=3.7V)	-	25 (TBC)	-	mA

3.5. USIM Interface

The AirPrime HL7650 has two physical USIM interfaces, UIM1 and UIM2.

Both UIM1 and UIM2 allow control of a 1.8V/3V USIM and is fully compliant with GSM 11.11 recommendations concerning SIM functions.

The five signals used by the UIMx interface are as follows:

UIMx_VCC: Power supply

UIMx_CLK: ClockUIMx_DATA: I/O portUIMx_RESET: Reset

UIMx_DET: Hardware SIM detection

UIM1 is used in single SIM applications, and has optional support for dual SIM applications with an external SIM switch (for use in Dual SIM Single Standby (DSSS) applications).

A second UIM interface, UIM2, is also available for Dual SIM Single Standby (DSSS) option.

Note: Although UIM2 connectivity is available in the hardware, this feature is not activated in the firmware.

For USIM design examples, refer to section 5.9 USIM Application.

Refer to the following table for the pad description of both UIM interfaces.

Table 15. UIM1 Pad Description

Pad Number	Signal Name	Description	Multiplex
26	UIM1_VCC	1.8V/3V USIM1 Power supply	
27	UIM1_CLK	1.8V/3V USIM1 Clock	
28	UIM1_DATA	1.8V/3V USIM1 Data	
29	UIM1_RESET	1.8V/3V USIM1 Reset	
64	UIM1_DET	USIM1 Detection	

Table 16. UIM2 Pad Description

Pad Number	Signal Name	Description	Multiplex
55	UIM2_VCC	1.8V/3V USIM2 Power supply	
58	UIM2_CLK	1.8V/3V USIM2 Clock	
56	UIM2_DATA	1.8V/3V USIM2 Data	

Pad Number	Signal Name	Description	Multiplex
57	UIM2_RESET	1.8V/3V USIM2 Reset	
65	UIM2_DET	USIM2 Detection	GPIO4

Refer to the following table for the electrical characteristics of both UIM1 and UIM2 interfaces.

Table 17. UIM1 and UIM2 Electrical Characteristics

Parameter	Minimum	Typical	Maximum	Units	Remarks
111111111111111111111111111111111111111	-	2.9	-	V	The appropriate
UIMx Interface Voltage (VCC, CLK, IO, RESET)	-	1.80	-	V	output voltage is auto detected and selected by software.
UIMx Detect	-	1.80	-	V	High active
UIMx_VCC Current	-	-	10	mA	Max output current in sleep mode = 3 mA
UIMx_VCC Line Regulation	-	-	50	mV/V	At lout_Max
UIMx_VCC Power-up Setting Time from power down	-	10	-	μs	
UIMx_CLK clock period (t _{i1})	205	307	-	ns	
UIMx_CLK high time (t _{i2})	82	-	-	ns	
UIMx_CLK high time (t _{i3})	82	-	-	ns	
UIMx_CLK rise time/fall time (t_R / t_F)	-	-	50	ns	
UIMx_IO rise time/fall time (t_R / t_F)	-	-	1000	ns	

3.5.1. **UIMx_CLK**

The following figure shows the UIMx CLK timing waveform.

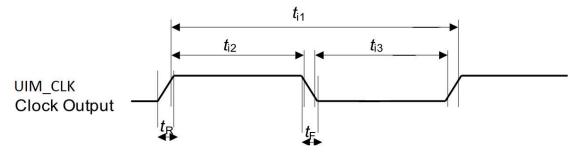


Figure 6. UIMx Timing Waveform

3.5.2. **UIMx_DET**

UIMx_DET is used to detect and notify the application about the insertion and removal of a USIM device in the USIM socket connected to the USIM interface (UIM1 or UIM2). When a USIM is inserted, the state of UIMx_DET transitions from logic 0 to logic 1. Inversely, when a USIM is removed, the state of UIMx_DET transitions from logic 1 to logic 0.

While UIM1_DET has a dedicated pad (pad 64), UIM2_DET is multiplexed with GPIO4 (pad 65).

Enabling or disabling this UIM detect feature can be done using the AT+KSIMDET command. For more information about this command, refer to document [2] AirPrime HL76xx AT Commands Interface Guide.

3.6. USB Interface

The AirPrime HL7650 has one Universal Serial Bus interface complaint with USB Rev 2.0.

Refer to the following table for the pad description of the USB interface.

Table 18. USB Pad Description

Pad Number	Signal Name	I/O	Function
12	USB_D-	I/O	USB Data Negative
13	USB_D+	I/O	USB Data Positive
16	USB_VBUS	I	USB VBUS

Note: When the 5V USB supply is not available, connect USB_VBUS to VBATT to supply the USB interface.

Refer to the following table for the electrical characteristics of the USB interface.

Table 19. USB Electrical Characteristics

Parameter	Minimum	Typical	Maximum	Units	Test Condition
Input voltage at pads USB_D+ / USB_D-	-0.3	-	3.6	V	
Voltage USB_VBUS	0	-	5.25	V	
Full Speed Mode					
Signal Rate	11.994	-	12.006	Mbit/s	
EOP (end of packet) Width	160	-	175	ns	
Rising Edge	4	-	20	ns	At 10% and 90%
Falling Edge	4	-	20	ns	At 10% and 90%
High Speed Mode					
Signal Rate	479.760	-	480.024	Mbit/s	
EOP (end of packet) Width	15.625	-	17.7073	ns	
Rising Edge	500	-		ps	At 10% and 90%
Falling Edge	500	-		ps	At 10% and 90%

3.7. Electrical Information for Digital I/O

The AirPrime HL7650 supports two groups of digital interfaces with varying current drain limits. The following list enumerates these interfaces.

- Group 1 (6mA current drain limit)
 - GPIO2, GPIO4, GPIO6, GPIO8, GPIO10, GPIO11, GPIO13, GPIO14, GPIO15
- Group 2 (1mA current drain limit)
 - GPIO1, GPIO5, GPIO7
 - UART1
 - JTAG

Refer to the following table for the electrical characteristics of the Digital I/O interface.

Table 20. Digital I/O Electrical Characteristics

Parameter		Symbol	Minimum	Maximum	Remarks
Input Curre	nt-High (µA)	I _{IH}	-	-240	
Input Curre	nt-Low (µA)	I _{IL}	-	240	
0 4	DC Output Current-High (mA)	Іон	-	6	
Group 1	DC Output Current-Low (mA)	I _{OL}	-6	-	
0	DC Output Current-High (mA)	Іон	-	1	
Group 2	DC Output Current-Low (mA)	I _{OL}	-1	-	
Input Voltag	ge-High (V)	V _{IH}	1.33	1.90	
Input Voltag	ge-Low (V)	V _{IL}	-0.20	0.34	
0.44\/-14	Link () ()	V _{OH}	1.45	-	I _{OH} = -6mA
Output Voltage-High (V)		V _{OH}	1.60	-	I _{OH} = -0.1mA
0. 4 4 \ / - 14			-	0.35	I _{OL} = 6mA
Output Volt	age-Low (V)	V _{OL}	-	0.20	I _{OL} = 0.1mA

3.8. General Purpose Input/Output (GPIO)

The AirPrime HL7650 module provides 12 GPIOs, 1 of which is multiplexed.

Refer to the following table for the pad description of the GPIO interface.

Table 21. GPIO Pad Description

Pad Number	Signal Name	Multiplex	1/0	Power Supply Domain
1	GPIO1		I/O	1.8V
10	GPIO2		I/O	1.8V
40	GPIO7		I/O	1.8V
41	GPIO8		I/O	1.8V
44	GPIO13		I/O	1.8V

Pad Number	Signal Name	Multiplex	1/0	Power Supply Domain
46	GPIO6		I/O	1.8V
51	GPIO14		I/O	1.8V
52	GPIO10		I/O	1.8V
53	GPIO11		I/O	1.8V
54	GPIO15		I/O	1.8V
65	GPIO4	UIM2_DET	I/O	1.8V
66	GPIO5		I/O	1.8V

3.9. Main Serial Link (UART1)

The main serial link (UART1) is used for communication between the AirPrime HL7650 module and a PC or host processor. It consists of a flexible 8-wire serial interface that complies with RS-232 interface.

The supported baud rates of the UART1 are 300, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 500000, 750000, 921600, 1843200, 3000000 and 3250000 bit/s.

The signals used by UART1 are as follows:

- TX data (UART1_TX)
- RX data (UART1_RX)
- Request To Send (UART1_RTS)
- Clear To Send (UART1_CTS)
- Data Terminal Ready (UART1 DTR)
- Data Set Ready (UART1 DSR)
- Data Carrier Detect (UART1_DCD)
- Ring Indicator (UART1_RI)

Note: Signal names are according to PC view.

Refer to the following table for the pad description of the main serial link (UART1) interface.

Table 22. UART1 Pad Description

Pad #	Signal Name*	I/O*	Description
2	UART1_RI	0	Signal incoming calls (data only), SMS, etc.
3	UART1_RTS	1	Request to send
4	UART1_CTS	0	AirPrime HL7650 is ready to receive AT commands
5	UART1_TX	1	Transmit data
6	UART1_RX	0	Receive data
7	UART1_DTR	I (active low)	Prevents the AirPrime HL7650 from entering sleep mode, switches between data mode and command mode, and wakes the module up.
8	UART1_DCD	0	Signal data connection in progress
9	UART1_DSR	0	Signal UART interface is ON

* According to PC view.

3.10. POWER-ON Signal (PWR_ON_N)

A low-level signal has to be provided to switch the AirPrime HL7650 module ON.

It is internally connected to the permanent 1.8V supply regulator inside the HL7650 via a pull-up resistor. Once VBAT is supplied to the HL7650 module, this 1.8V supply regulator will be enabled and so the PWR_ON_N signal is by default at high level.

Refer to the following table for the pad description of the PWR_ON_N interface.

Table 23. PWR_ON_N Pad Description

Pad Number	Signal Name	I/O	Description
59	PWR_ON_N	1	Power On the HL7650 module

Refer to the following table for the electrical characteristics of the PWR_ON_N interface.

Table 24. PWR ON N Electrical Characteristics

Parameter	Minimum	Typical	Maximum
Input Voltage-Low (V)		-	0.51
Input Voltage-High (V)	1.33	-	2.2
Power-up period (ms) from PWR_ON_N falling edge	2000	-	-
PWR_ON_N assertion time (ms)	25		

Note:

As PWR_ON_N is internally pulled up with $100k\Omega$, an open collector or open drain transistor must be used for ignition.

VGPIO is an output from the module that can be used to check if the module is active.

- When VGPIO = 0V, the module is OFF
- When VGPIO = 1.8V, the module is ON (it can be in idle, communication or sleep mode)

Note:

PWR_ON_N signal cannot be used to power the module off. To power the module off, use AT command AT+CPWROFF.

3.11. Reset Signal (RESET_IN_N)

To reset the module, a low-level pulse must be sent on the RESET_IN_N pad for 20ms. This action will immediately restart the AirPrime HL7650 module with the PWR_ON_N signal at low level. (If the PWR_ON_N signal is at high level, the module will be powered off.) As RESET_IN_N is internally pulled up, an open collector or open drain transistor should be used to control this signal.

The RESET_IN_N signal will reset the registers of the CPU and reset the RAM memory as well, for the next power on.

Note:

As RESET_IN_N is referenced to the VRTC (200k Ω pull-up resistor to VRTC 1.8V) an open collector or open drain transistor has to be used to control this signal.

Refer to the following table for the pad description of the RESET IN N interface.

Table 25. RESET_IN_N Pad Description

Pad Number	Signal Name	I/O	Description
12	RESET_IN_N	1	Hardware Reset

Refer to the following table for the electrical characteristics of the RESET_IN_N interface.

Table 26. RESET_IN_N Electrical Characteristics

Parameter	Minimum	Typical	Maximum
Input Voltage-Low (V)		-	0.51
Input Voltage-High (V)	1.33	-	2.2
Reset assertion time (ms)	20	-	-
Power-up period (ms) from RESET_IN_N falling edge*	2000	-	-

With the PWR_ON_N Signal at low level.

3.12. Analog to Digital Converter (ADC)

Two Analog to Digital Converter inputs, ADC0 and ADC1, are provided by the AirPrime HL7650 module. These converters are 10-bit resolution ADCs ranging from 0 to 1.2V.

Typical ADC use is for monitoring external voltage, wherein an application is used to safely power OFF an external supply in case of overvoltage.

Refer to the following table for the pad description of the ADC interface.

Table 27. ADC Pad Description

Pad Number	Signal Name	I/O	Description
24	ADC1	1	Analog to digital converter
25	ADC0	1	Analog to digital converter

Refer to the following table for the electrical characteristics of the ADC interface.

Table 28. ADC Electrical Characteristics

Parameter	Minimum	Typical	Maximum	Remarks
ADCx Resolution (bits)	-	10	-	
Input Voltage Range (V)	0	-	1.2	General purpose input
Update rate per channel (kHz)	-	-	125	
Integral Nonlinearity (bits)	-	-	± 2	LSB
Offset Error (bits)	-	-	± 1	LSB
Gain	849	853	858	
Absolute gain drift	-	-	± 0.05	
Input Resistance (MΩ)	1	-	-	
Input Capacitance (pF)	-	1	-	

Parameter	Minimum	Typical	Maximum	Remarks
Current tolerance	-	-	± 3%	
Quiescent current (µA)	-	710	-	
Wake-up time from power save (µs)	-	50	-	

3.13. Clock Out Interface

The AirPrime HL7650 module supports two digital clock out interfaces.

Enabling or disabling the clock out feature can be done using AT commands. For more information about AT commands, refer to document [2] AirPrime HL76xx AT Commands Interface Guide.

Refer to the following table for the pad description of the clock out interface.

Table 29. Clock Out Interface Pad Description

Pad Number	Signal Name	I/O	I/O Type	Description
22	26M_CLKOUT	0	1.8V	26MHz Digital Clock output
23	32K_CLKOUT	0	1.8V	32.768kHz Digital Clock output

Refer to the following table for the electrical characteristics of the clock out interface.

Table 30. Clock Out Interface Electrical Characteristics

Parameter	Symbol	Minimum	Typical	Maximum	Units
CLKOUTn period at 26MHz	(t _{r1})	-	38	-	ns
CLKOUTn low time at 26MHz	(t _{r2})	10	-	-	ns
CLKOUTn high time at 26MHz	(t _{r3})	10	-	-	ns
CLKOUTn period at 32.768KHz	(t _{r1})	-	-	-	ns
CLKOUTn low time at 32.768KHz	(t _{r2})	-	-	-	ns
CLKOUTn high time at 32.768KHz	(t _{r3})	-	-	-	ns
Period jitter		-	-	4	ns

The following figure shows the clock out (CLKOUT) timing waveform.

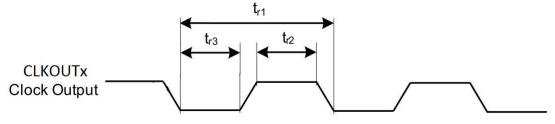


Figure 7. CLKOUTx Timing Waveform

3.14. Digital Audio (PCM) Interface

The Digital Audio (PCM) Interface allows connectivity with standard audio peripherals. It can be used, for example, to connect an external audio codec.

The programmability of this interface allows addressing a large range of audio peripherals.

The PCM interface is a high speed full duplex interface that can be used to send and receive digital audio data to external audio ICs. The Digital Audio Interface also features the following:

- PCM master or slave
- 16 bits data word length, linear mode
- MSB first
- Configurable PCM bit clock rate on 256kHz, 384kHz or 512kHz
- Long frame sync

The signals used by the Digital Audio Interface are as follows:

- PCM_SYNC: The frame synchronization signal delivers an 8 kHz frequency pulse that synchronizes the frame data in and the frame data out.
- PCM CLK: The frame bit clock signal controls data transfer with the audio peripheral.
- PCM OUT: The frame "data out" relies on the selected configuration mode.
- PCM_IN: The frame "data in" relies on the selected configuration mode.

Refer to the following table for the pad description of the digital audio interface.

Table 31. Digital Audio Pad Description

Pad #	Signal Name	I/O	I/O Type	Description
36	PCM_CLK	0	1.8V	PCM clock
35	PCM_SYNC	0	1.8V	PCM synchronization
34	PCM_IN	1	1.8V	PCM data in
33	PCM_OUT	0	1.8V	PCM data out

Refer to the following table for the electrical characteristics of the digital audio interface.

Table 32. Digital Audio Electrical Characteristics

Signal	Description	Minimum	Typical	Maximum	Unit
Tsync_low + Tsync_high	PCM_SYNC frequency		8		KHz
Tsync_low + Tsync_high	PCM_SYNC period		125		μs
Tsync_low	PCM_SYNC low time		124		μs
Tsync_high	PCM_SYNC high time		1		μs
T _{CLK-cycle}	PCM_CLK period	-	3.9	-	μs
T _{IN-setup}	PCM_IN setup time	59.6	-	-	ns

Signal	Description	Minimum	Typical	Maximum	Unit
T _{IN-hold}	PCM_IN hold time	12	-	-	ns
T _{OUT-delay}	PCM_OUT delay time	-	-	21.6	ns
T _{SYNC-delay}	PCM_SYNC output delay	-24	-	31.2	ns
VDD	PCM Signaling Voltage	1.7	1.8	1.9	V
V _{IH}	I/O Voltage input low	0.35*VDD	-	VDD+0.3	V
V _{IL}	I/O Voltage input high	-0.3	-	0.65*VDD	V
V _{OL}	I/O Voltage output low	-	-	0.45	V
V _{OH}	I/O Voltage output high	VDD-0.45	-	-	V
IL	I/O Leakage current	-	-	±0.7	μA

3.14.1. PCM Waveforms

The following figure shows the PCM timing waveform.

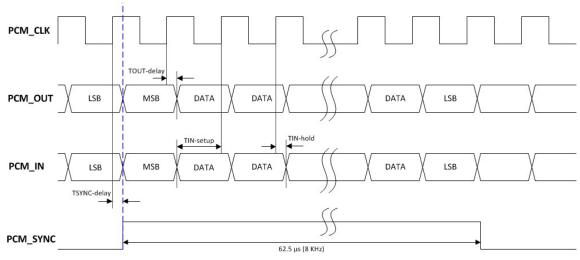


Figure 8. PCM Timing Waveform

3.14.2. PCM Master Mode

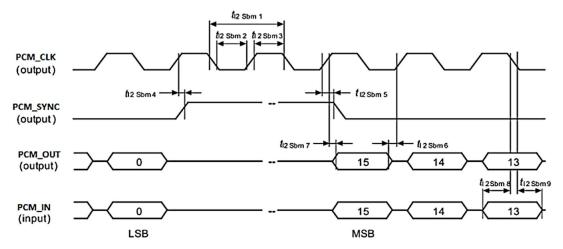


Figure 9. PCM Master Mode Timing

Table 33. PCM Master Mode Parameters

Symbol	Description	Minimum	Typical	Maximum	Unit	Test Condition
t _{I2Sbm1}	PCM_CLK clock period	T-4	Т	-	ns	T = M_T
t _{l2Sbm2}	PCM_CLK low time	T/2 - 20	T/2	-	ns	T = M_T
t _{I2Sbm3}	PCM_CLK high time	T/2 - 20	T/2	-	ns	T = M_T
t _{I2Sbm4}	PCM_SYNC high begin after clock PCM_CLK high begin	-24	-	2 x t _{cp} + 12	ns	$t_{cp} = 9.6 \text{ ns}$
t _{I2Sbm5}	PCM_SYNC high end after PCM_CLK how end	-24	-	2 x t _{cp} + 12	ns	t _{cp} = 9.6 ns
t _{I2Sbm6}	PCM_OUT invalid before PCM_CLK low-end	-	-	24	ns	
t _{I2Sbm7}	PCM_OUT valid after PCM_CLK high begin	-	-	t _{cp} + 12	ns	t _{cp} = 9.6 ns
t _{I2Sbm8}	PCM_IN setup time before PCM_CLK high end	t _{cp} + 50	-	-	ns	$t_{cp} = 9.6 \text{ ns}$
t _{I2Sbm9}	PCM_IN hold time after PCM_CLK low begin	12	-	-	Ns	

Note: T corresponds to the audio sampling rate (48 kHz, 44.1 kHz, 32 kHz, 24 kHz, 22.05 kHz, 16 kHz, 12 kHz, 11.025 kHz and 8 kHz) and to the frame length (17 bit, 18bit, 32bit, 48bit or 64 bit).

3.14.3. PCM Slave Mode

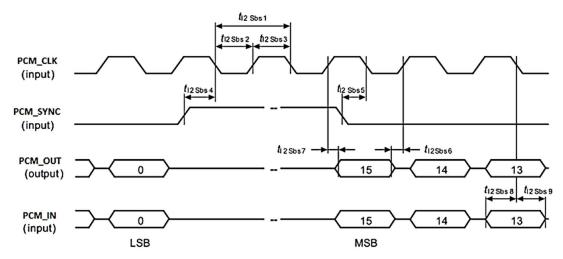


Figure 10. PCM Master Mode Timing

Table 34. PCM Slave Mode Parameters

Symbol	Description	Minimum	Typical	Maximum	Unit	Test Condition
t _{l2Sbs1}	PCM_CLK clock period	Т	-	-	n	T=M_T
t _{l2Sbs2}	PCM_CLK low time	120	-	-	ns	
t _{l2Sbs3}	PCM_CLK high time	120	-	-	ns	
t _{l2Sbs4}	PCM_SYNC high begin before PCM_CLK low begin (latching edge of PCM_CLK)	2 x t _{cp} + 17	-	-	ns	$t_{cp} = 9.6 \text{ ns}$
t _{l2Sbs5}	PCM_SYNC low begin before PCM_CLK low begin (latching edge of PCM_CLK)	2 x t _{cp} + 17	-	-	ns	t _{cp} = 9.6 ns
t _{l2Sbs6}	PCM_OUT invalid before PCM_CLK rising edge (shifting edge of PCM_CLK)	-	-	12	ns	
t _{l2Sbs7}	PCM_OUT valid after PCM_CLK rising edge (shifting edge of PCM_CLK)	-	-	3 x t _{cp} + 12	ns	t _{cp} = 9.6 ns
ti2Sbs8	PCM_IN setup time before PCM_CLK falling edge	t _{cp} + 12	-	-	ns	t _{cp} = 9.6 ns
t _{l2Sbs9}	PCM_IN hold time after PCM_CLK falling edge	24	-	-	ns	

Note: T corresponds to the audio sampling rate (48 kHz, 44.1 kHz, 32 kHz, 24 kHz, 22.05 kHz, 16 kHz, 12 kHz, 11.025 kHz and 8 kHz) and to the frame length (17 bit, 18bit, 32bit, 48bit or 64 bit).

38

3.15. JTAG

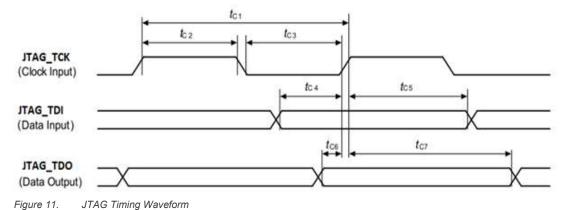
The JTAG interface provides debug access to the core of the AirPrime HL7650 module. These JTAG signals are accessible through solderable test points.

Refer to the following table for the pad description of the JTAG interface.

Table 35. JTAG Pad Description

Pad Number	Signal Name	Function
236	JTAG_RESET	JTAG RESET
237	JTAG_TCK	JTAG Test Clock
238	JTAG_TDO	JTAG Test Data Output
239	JTAG_TMS	JTAG Test Mode Select
240	JTAG_TRST	JTAG Test Reset
241	JTAG_TDI	JTAG Test Data Input
242	JTAG_RTCK	JTAG Returned Test Clock

Note:


It is recommended to provide access through Test Points to this interface the JTAG pads (for Failure Analysis debugging). All signals listed in table above shall be outputs on the customer board to allow JTAG debugging.

Refer to the following table for the electrical characteristics of the JTAG interface.

Table 36. JTAG Electrical Characteristics

Symbol	Parameter	Minimum	Typical	Maximum	Unit
F _{tck}	JTAG_TCK clock period	0.038	26	78	MHz
t _{c2}	JTAG_TCK clock period high	12	-	-	ns
t _{c3}	JTAG_TCK clock period low	12	-	-	ns
t _{c4}	JTAG_TDI setup time to JTAG_TCK	12	-	-	ns
t _{c5}	JTAG_TDI hold time from JTAG_TCK	10	-	-	ns
t _{c6}	JTAG_TDO valid before JTAG_TCK low-end	-	0	-	s
t _{c7}	JTAG_TDO valid after JTAG_TCK high begin	-	20	-	ns

The following figure shows the JTAG timing waveform.

41110363 Rev 4.0 October 18, 2017

3.16. RF Interface

The RF interface of the AirPrime HL7650 module allows the transmission of RF signals. This interface has a 50Ω nominal impedance.

Note that if the final application is a single antenna receiver (does not use the diversity antenna), it is recommended that the diversity antenna be disabled using AT command **AT+WMANTSEL**. Disabling the diversity antenna when not used:

- prevents any noise in the diversity antenna input from degrading the overall sensitivity performance of the main RF input, and
- reduces the power consumption of the module.

Refer to document [2] AirPrime HL76xx AT Commands Interface Guide for more information regarding AT+WMANTSEL.

3.16.1. RF Connection

A 50Ω (with maximum VSWR 1.1:1, and 0.5 dB loss) RF track is recommended to be connected to standard RF connectors such as SMA, UFL, etc. for antenna connection.

Refer to the following tables for the pad description of the RF interface.

Table 37. RF Main Connection

Pad Number	RF Signal	Impedance	VSWR Rx (max)	VSWR Tx (max)
49	RF_MAIN	50Ω	1.5:1	1.5:1

Table 38. RF Diversity Connection

Pad Number	RF Signal	Impedance	VSWR Rx (max)	VSWR Tx (max)
31	RF_DIV	50Ω	1.5:1	

3.16.2. RF Performances

Table 39. Conducted RX Sensitivity (dBm) - UMTS Bands @ 25°C

Frequency Band		Primary (Typical)	Secondary (Typical)
UMTS B1		-108	-111
UMTS B5	0.1% BER 12.2 kbps	-111	-112
UMTS B8		-110	-111.5

4G RF performances are compliant with 3GPP recommendation TS 36.101.

Table 40. Conducted RX Sensitivity (dBm) - LTE Bands @ 25°C

Frequency E	Band	Primary (Typical)	Secondary (Typical)	SIMO (Typical)
LTE B3	Full RB; BW: 20 MHz*	-93 (TBC)	-95.5 (TBC)	-97 (TBC)
LTE B5	Full RB; BW: 10 MHz*	-97	-99.5	-101
LTE B8	Full RB; BW: 10 MHz*	-97	-99.5	-101
LTE B28	Full RB; BW: 20 MHz*	-89	-96	-97

Sensitivity values scale with bandwidth: x_MHz_Sensitivity = 10 MHz_Sensitivity - 10*log (10 MHz/x_MHz)

3.16.3. TX_ON Indicator (TX_ON)

The AirPrime HL7650 provides a signal, TX_ON, for TX indication. The TX_ON is a 2.3V (TBC) signal and its status signal depends on the module's transmitter state.

Refer to the following table for the pad description of the TX_ON signal.

Table 41. TX_ON Indicator Pad Description

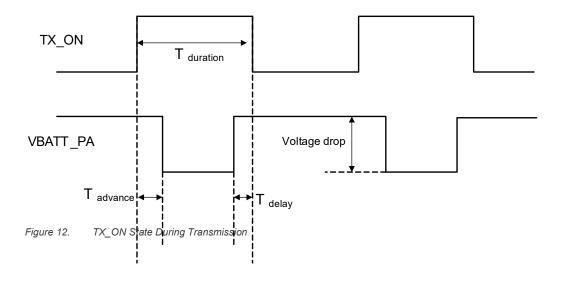
Pad Number	Signal Name	Function	I/O type	Power Supply Domain
60	TX_ON	TX indicator	0	2.3V (TBC)

Refer to the following table for the status of the TX_ON signal depending on the embedded module's state.

Table 42. Burst Indicator States

Embedded Module State	TX_ON
During TX burst	High
No TX	Low

During TX burst, there is a higher current drain from the VBATT_PA power supply which causes a voltage drop. This voltage drop from VBATT_PA is a good indication of a high current drain situation during TX burst.


The blinking frequency is about 217 Hz in 2G, continuous in 3G (TBC) and blinking in 4G at (TBC) Hz.

The output logic high duration, T_{duration}, depends on the number of TX slots and is computed as follows:

T duration = T advance + (0.577ms x number of TX slots) + T delay

Table 43. TX_ON Burst Characteristics

Parameter	Minimum	Typical	Maximum
T _{advance}	30µs		
T _{delay}		0µs	

4. Mechanical Drawings

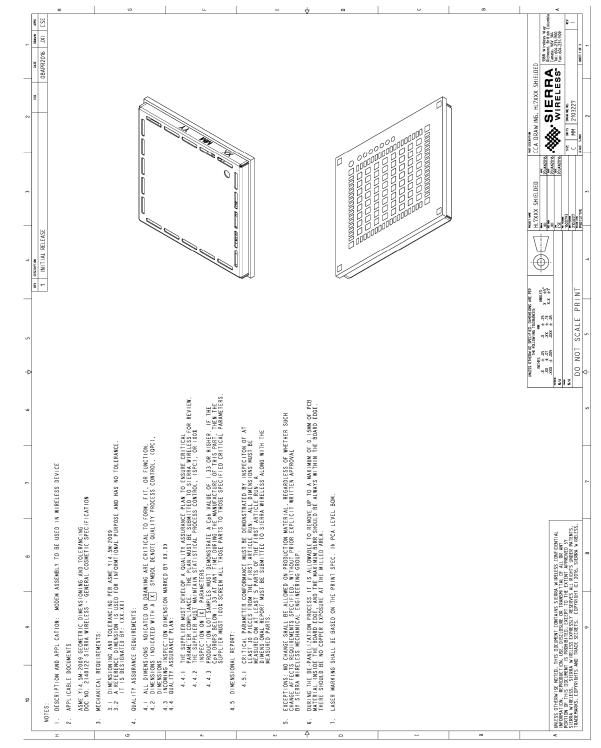


Figure 13. Mechanical Drawing

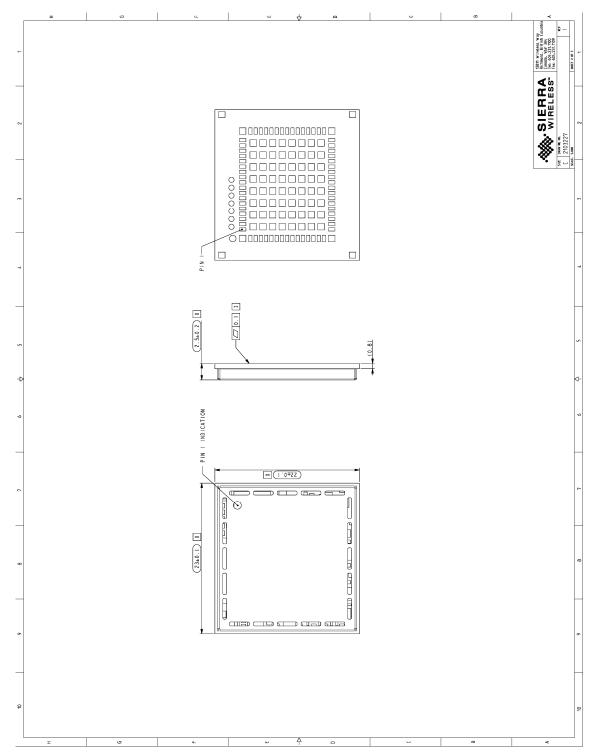


Figure 14. Dimensions Drawing

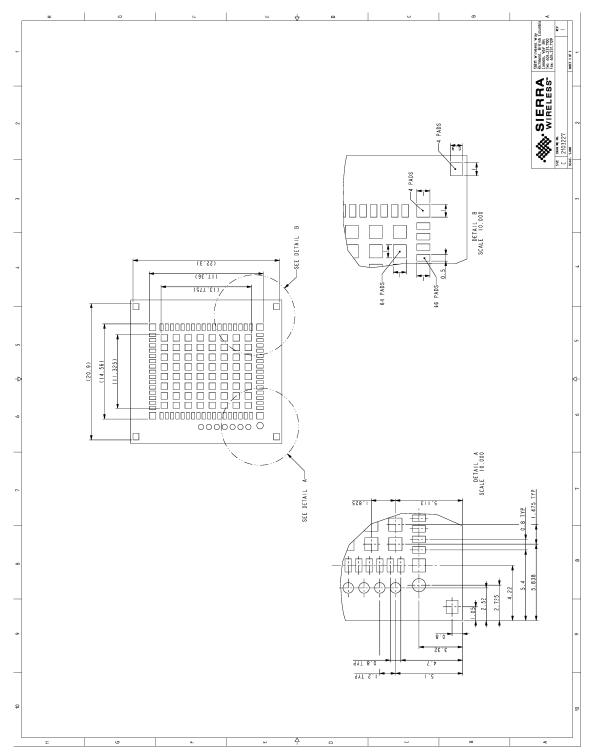


Figure 15. Footprint

5. Design Guidelines

5.1. Power-Up Sequence

Apply a low-level logic to the PWR_ON_N pad (pad 59); within approximately 25ms, VGPIO will appear to be at 1.8V. Either UART1 or the USB interface could be used to send AT commands. The AT command interface is available in about 7 seconds after PWR_ON_N for either UART or USB.

When using UART, the AT command interface is available after the transition of UART1_CTS from high to low level.

When using a USB connection, the HL7650 will start communicating with the host after USB enumeration. The time when AT commands can be sent will depend on the initialization time on the USB host.

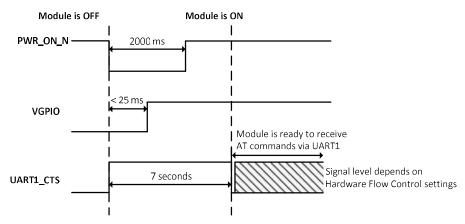


Figure 16. PWR_ON_N Sequence with VGPIO Information

Note: As PWR_ON_N is internally pulled up with $100k\Omega$, an open collector or open drain transistor must be used for ignition.

The PWR_ON_N pad has the minimum assertion time requirement of 25ms, with LOW active. Once the valid power on trigger is detected, the PWR_ON_N pad status can be left open.

5.2. Module Switch-Off

AT command AT+CPWROFF enables the user to properly switch the AirPrime HL7650 module off.

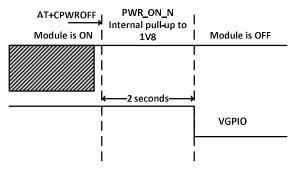
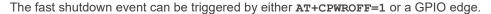



Figure 17. Power OFF Sequence for PWR_ON_N, VGPIO

Note: PWR_ON_N is internally pulled up by $100k\Omega$ to 1.8V.

5.3. Hardware Fast Shut Down

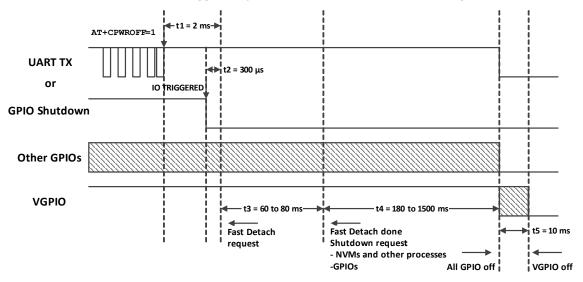


Figure 18. Fast Shutdown Power OFF Sequence

Note that the timings for fast detach and mobile shutdown (t3 and t4 in the diagram above) are dependent on operators and network conditions.

Starting the shutdown procedure during the boot phase should be avoided as this may cause the shutdown to take more time.

5.4. Emergency Power OFF

If required, the module can be switched off by controlling the RESET_IN_N pad (pad 11). This must only be used in emergency situations if the system freezes (not responding to AT commands).

To perform an emergency power off, a low-level pulse must be sent on the RESET_IN_N pad for 20ms while the PWR_ON_N signal is inactive (high level). This action will immediately shut the HL7650 module down and the registers of the CPU and RAM memory will be reset for the next power on.

5.5. Sleep Mode Management

AT command AT+KSLEEP enables sleep mode configuration. Note that this is only used with serial link UART1.

AT+KSLEEP=0:

- The module is active when DTR signal is active (low electrical level).
- When DTR is deactivated (high electrical level), the module enters sleep mode after a while.
- On DTR activation (low electrical level), the module wakes up.

AT+KSLEEP=1:

- The module determines when it enters sleep mode (when no more tasks are running).
- "0x00" character on the serial link wakes the module up.

AT+KSLEEP=2: The module never enters sleep mode.

5.6. Power Supply Design

The AirPrime HL7650 module should not be supplied with voltage over 4.5V even temporarily or however briefly.

If the system's main board power supply unit is unstable or if the system's main board is supplied with over 4.5V, even in the case of transient voltage presence on the circuit, the module's power amplifier may be severely damaged.

To avoid such issues, add a voltage limiter to the module's power supply lines so that VBATT and VBATT_PA signal pads will never receive a voltage surge over 4.5V. The voltage limiter can be as simple as a Zener diode with decoupling capacitors as shown in the diagram below.

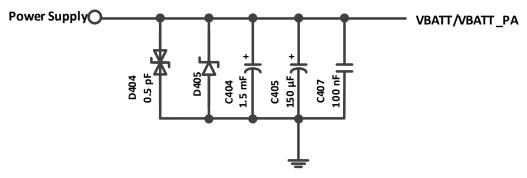


Figure 19. Voltage Limiter Example

5.7. EMC and ESD Guidelines for USIM

Decoupling capacitors must be added according to the drawings below as close as possible to the USIM connectors on UIMx_CLK, UIMx_RST, UIMx_VCC, UIMx_DATA and UIMx_DET signals to avoid EMC issues and to comply with the requirements of ETSI and 3GPP standards covering the USIM electrical interface.

A typical schematic including USIM detection is provided below.

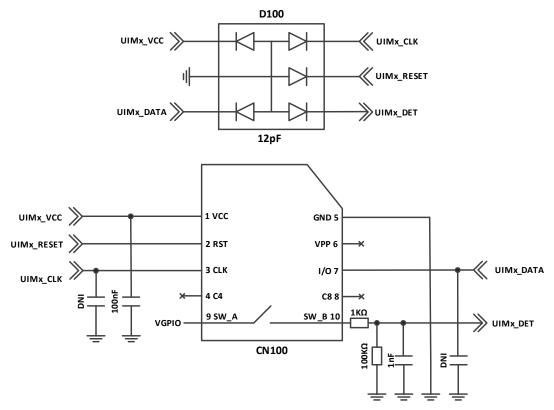


Figure 20. EMC and ESD Components Close to the USIM

Sierra Wireless recommends using diode ESDALC6V1-5P6 ESD for D100.

5.8. ESD Guidelines for USB

When the USB interface is externally accessible, it is required to have ESD protection on the USB_VBUS, USB_D+ and USB_D- signals.

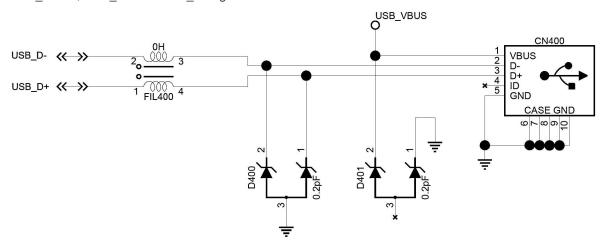


Figure 21. ESD Protection for USB

Note: It is not recommended to have an ESD diode with feedback path from USB_VBUS to either USB_D+ or USB_D-.

Sierra Wireless recommends using components:

- 90Ω DLP0NSN900HL2L EMC filter for FIL400, and
- RCLAMP0503N or ESD5V3U2U-03LRH ESD diode for D400.

5.9. USIM Application

The AirPrime HL7650 supports either a single USIM design or a dual USIM configuration using DSSS (Dual SIM Single Standby).

5.9.1. Single USIM Design

Single USIM design is supported using the following:

- 1 USIM slot
- 1 USIM connector
- 1 GPIO SIM detect

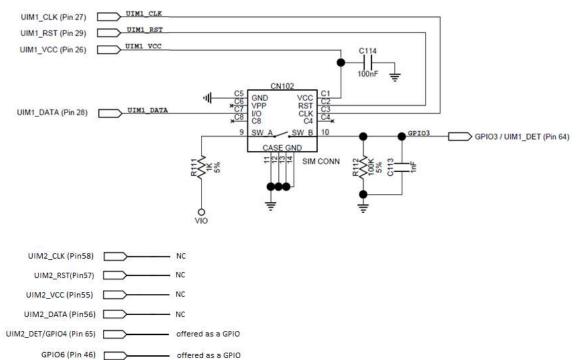


Figure 22. Single USIM Application (1 USIM Slot and 1 USIM Connector)

5.9.2. Dual SIM Single Standby Design

Dual SIM Single Standby (DSSS) with fast network switching is supported using the following:

- 1 USIM slot
- 1 or 2 external switches
- 2 USIM connectors
- 2 GPIO SIM Detect
- 1 GPIO switch command

Figure 23. Dual SIM Single Standby Application (1 USIM Slot and 2 USIM Connectors)

6. Reliability Specification

AirPrime HL7650 module is tested against the Sierra Wireless Industrial Reliability Specification defined below.

Reliability Compliance 6.1.

AirPrime HL7650 modules connected on a development kit board application are compliant with the following requirements.

Table 44. Standards Conformity

Abbreviation	Definition
IEC	International Electro technical Commission
ISO	International Organization for Standardization

Reliability Prediction Model 6.2.

Life Stress Test 6.2.1.

The following tests the AirPrime HL7650 module's product performance.

Table 45. Life Stress Test

Designation	Condition
Performance Test	Standard: N/A
PT3T & PTRT	Special conditions: Temperature: Class A: -30°C to +70°C Class B: -40°C to +85°C Rate of temperature change: ± 3°C/min Recovery time: 3 hours
	Operating conditions: Powered Duration: 14 days

41110363 Rev 4.0 October 18, 2017 51

6.2.2. Environmental Resistance Stress Tests

The following tests the AirPrime HL7650 module's resistance to extreme temperature.

Table 46. Environmental Resistance Stress Tests

Designation	Condition
Cold Test Active	Standard: IEC 680068-2-1, Test Ad
COTA	Special conditions:
	Temperature: -40°C
	Temperature variation: 1°C/min
	Operating conditions: Powered ON with a power cycle of 1 minute ON and 2 minutes OFF
	Duration: 3 days
Resistance to Heat Test	Standard: IEC 680068-2-2, Test Bb
RH	Special conditions:
	Temperature: +85°C
	Temperature variation: 1°C/min
	Operating conditions: Powered ON with a power cycle of 15 minutes ON and 15 minutes OFF
-	Duration: 50 days

6.2.3. Corrosive Resistance Stress Tests

The following tests the AirPrime HL7650 module's resistance to corrosive atmosphere.

Table 47. Corrosive Resistance Stress Tests

Designation	Condition
Humidity Test	Standard: IEC 60068-2-3, Test Ca
HUT	Special conditions: Temperature: +65°C RH: 95% Temperature variation: 3 ± 0.6°C/min
	Operating conditions: Powered on, DUT is powered up for 15 minutes and OFF for 15 minutes
	Duration: 10 days

Designation	Condition	
Component Solder Wettability CSW	Standard: JESD22 – B102, Method 1/Condition C, Solderability Test Method	
1111	Special conditions:	
Nirpring St. P. P. S.	 Test method: Dip and Look Test with Steam preconditioning 8 h ±15min. dip for 5 +0/-0.5 seconds 	
ries	Operating conditions: Un-powered	
	Duration: 1 day	
Moist Heat Cyclic Test	Standard: IEC 60068-2-30, Test Db	
МНСТ	Special conditions:	
	 Upper temperature: +40 ± 2°C 	
State of	 Lower temperature: +25 ± 5°C 	
	• RH:	
	 Upper temperature: 93% 	
	Lower temperature: 95%	
	Number of cycles: 21 (1 cycle/24 hours)	
	Temperature Variation: 3 ± 0.6°C/min	
	Operating conditions: Powered ON for 15 minutes during each 3 hours ramp up and 3 hours ramp down (in middle) for every cycle	
	Duration: 21 days	

6.2.4. Thermal Resistance Cycle Stress Tests

The following tests the AirPrime HL7650 module's resistance to extreme temperature cycling.

Table 48. Thermal Resistance Cycle Stress Tests

Designation	Condition	
Thermal Shock Test TSKT	Standard: IEC 60068-2-14, Test Na Special conditions: • Temperature: -30°C to +80°C • Temperature Variation: less than 30s • Number of cycles: 600 • Dwell Time: 10 minutes Operating conditions: Un-powered	
Temperature Change TCH	Duration: 9 days Standard: IEC 60068-2-14, Test Nb Special conditions: • Temperature: -40°C to +90°C • Temperature Variation: 3 ±- 0.6°C/min • Number of cycles: 400 • Dwell Time: 10 minutes Operating conditions: Un-powered Duration: 29 days	

6.2.5. Mechanical Resistance Stress Tests

The following tests the AirPrime HL7650 module's resistance to vibrations and mechanical shocks.

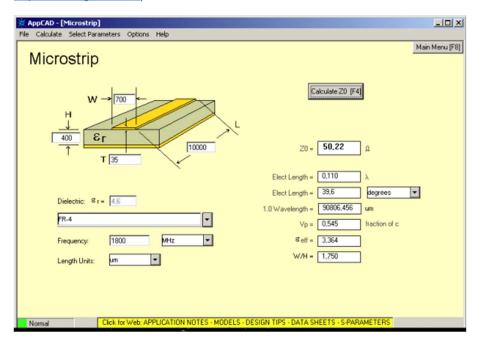
Table 49. Mechanical Resistance Stress Tests

lable 49. Mechanical Resistance Stress Tests	
Designation	Condition
Sinusoidal Vibration Test SVT	Standard: IEC 60068-2-6, Test Fc Special conditions: Frequency range: 16 Hz to 1000 Hz Displacement: 0.35mm (peak-peak) Acceleration: SG from 16 to 62 Hz GG from 62 to 200 Hz GG from 200 to 1000 Hz Sweep rate: 1 octave / cycle Number of Sweep: 20 sweeps/axis Sweep direction: ± X, ± Y, ± Z Operating conditions: Un-powered Duration: 2 days
Random Vibration Test RVT	Standard: IEC 60068-2-64, Test Fh Special conditions: • Frequency range: 10 Hz – 2000 Hz • Power Spectral Density in [(m/s²)²/Hz] • 0.1 g2/Hz at 10Hz • 0.01 g2/Hz at 250Hz • 0.005 g2/Hz at 1000Hz • 0.005 g2/Hz at 2000Hz • Peak factor: 3 • Duration per Axis: 1 hr / axis Operating conditions: Un-powered Duration: 1 day
Mechanical Shock Test MST	Standard: IEC 60068-2-27, Test Ea Special conditions: Shock Test 1: Wave form: Half sine Peak acceleration: 30g Duration: 11ms Number of shocks: 8 Direction: ±X, ±Y, ±Z Shock Test 2: Wave form: Half sine Peak acceleration: 100g Duration: 6ms Number of shocks: 3 Direction: ±X, ±Y, ±Z
	Operating conditions: Un-powered Duration: 72 hours

6.2.6. Handling Resistance Stress Tests

The following tests the AirPrime HL7650 module's resistance to handling malfunctions and damage.

Table 50. Handling Resistance Stress Tests


Designation	Condition
ESDC Test	Standard: JESD22-A114, JESD22-A115, JESD22-C101
	Special conditions:
	HBM (Human Body Model): 1KV (Class 1C) MA (Machine Madel): 200) (
	MM (Machine Model): 200VCDM (Charged Device Model): 250V (Class II)
	Operating conditions: Powered
	Duration: 3 days
ESD Test	Standard: IEC 61000-4-2
	Special conditions: Contact Voltage: ±2kV, ±4kV, ±6kV Air Voltage: ±2kV, ±4kV, ±8kV
	Operating conditions: Powered
	Duration: 3 days
Free Fall Test	Standard: IEC 60068-2-32, Test Ed
FFT 1	Special conditions: Number of drops: 2 drops per unit Height: 1m
	Operating conditions: Un-powered
States States Marie	Duration: 6 hours

7. FCC Regulations

The HL7650 module has been granted modular approval for mobile applications. Integrators may use the HL7650 module in their final products without additional FCC certification if they meet the following conditions. Otherwise, additional FCC approvals must be obtained.

- At least 20 cm separation distance between the antenna and the user's body must be maintained at all times.
- 2. To comply with FCC regulations limiting both maximum RF output power and human exposure to RF radiation, the maximum antenna gain including cable loss in a mobile-only exposure condition must not exceed:
 - 5 dBi in LTE Band 5
- The HL7650 module must not transmit simultaneously with other collocated radio transmitters within a host device.
- 4. The RF signal must be routed on the application board using tracks with a 50Ω characteristic impedance. Basically, the characteristic impedance depends on the dielectric, the track width and the ground plane spacing. In order to respect this constraint, Sierra Wireless recommends using MicroStrip or StripLine structure and computing the Tracks width with a simulation tool (like AppCad shown in the figure below and that is available free of charge at http://www.agilent.com).

If a multi-layered PCB is used, the RF path on the board must not cross any signal (digital, analog or supply).

If necessary, use StripLine structure and route the digital line(s) "outside" the RF structure. An example of proper routing is shown in the figure below.

Stripline and Coplanar design requires having a correct ground plane at both sides. Consequently, it is necessary to add some vias along the RF path. It is recommended to use Stripline design if the RF path is fairly long (more than 3cm), since MicroStrip design is not shielded. Consequently, the RF signal (when transmitting) may interfere with neighbouring electronics (AF amplifier, etc.). In the same way, the neighbouring electronics (microcontrollers, etc.) may degrade the reception performances. The antenna connector is intended to be directly connected to a 50Ω antenna and no matching is needed.

- 5. A label must be affixed to the outside of the end product into which the HL7650 module is incorporated, with a statement similar to the following:
 - This device contains FCC ID: N7NHL7650
- A user manual with the end product must clearly indicate the operating requirements and conditions that must be observed to ensure compliance with current FCC RF exposure guidelines.

The end product with an embedded HL7650 module may also need to pass the FCC Part 15 unintentional emission testing requirements and be properly authorized per FCC Part 15.

Note: If this module is intended for use in a portable device, you are responsible for separate approval to satisfy the SAR requirements of FCC Part 2.1093.

8. Ordering Information

Table 51. Ordering Information

Model Name	Description	Part Number
HL7650	HL7650 embedded module	Contact Sierra Wireless for the latest SKU
DEV-KIT	HL Series Development Kit	6000620

9. Terms and Abbreviations

Abbreviation	Definition
ADC	Analog to Digital Converter
AGC	Automatic Gain Control
AT	Attention (prefix for modem commands)
CDMA	Code Division Multiple Access
CF3	Common Flexible Form Factor
CLK	Clock
CODEC	Coder Decoder
CPU	Central Processing Unit
DAC	Digital to Analog Converter
DTR	Data Terminal Ready
EGNOS	European Geostationary Navigation Overlay Service
EMC	Electromagnetic Compatibility
EMI	Electromagnetic Interference
EN	Enable
ESD	Electrostatic Discharges
ETSI	European Telecommunications Standards Institute
FDMA	Frequency-division multiple access
GAGAN	GPS aided geo augmented navigation
GLONASS	Global Navigation Satellite System
GND	Ground
GNSS	Global Navigation Satellite System
GPIO	General Purpose Input Output
GPRS	General Packet Radio Service
GSM	Global System for Mobile communications
Hi Z	High impedance (Z)
IC	Integrated Circuit
IMEI	International Mobile Equipment Identification
I/O	Input / Output
LED	Light Emitting Diode
LNA	Low Noise Amplifier
MAX	Maximum
MIN	Minimum
MSAS	Multi-functional Satellite Augmentation System
N/A	Not Applicable
PA	Power Amplifier
PC	Personal Computer
PCB	Printed Circuit Board
PCL	Power Control Level
PLL	Phase Lock Loop
PWM	Pulse Width Modulation
QZSS	Quasi-Zenith Satellite System

60

Abbreviation	Definition
RF	Radio Frequency
RFI	Radio Frequency Interference
RMS	Root Mean Square
RST	Reset
RTC	Real Time Clock
RX	Receive
SCL	Serial Clock
SDA	Serial Data
SIM	Subscriber Identification Module
SMD	Surface Mounted Device/Design
SPI	Serial Peripheral Interface
SW	Software
PSRAM	Pseudo Static RAM
TBC	To Be Confirmed
TBD	To Be Defined
TP	Test Point
TX	Transmit
TYP	Typical
UART	Universal Asynchronous Receiver-Transmitter
UICC	Universal Integrated Circuit Card
USB	Universal Serial Bus
UIM	User Identity Module
VBATT	Main Supply Voltage from Battery or DC adapter
VSWR	Voltage Standing Wave Ratio
WAAS	Wide Area Augmentation System

41110363 Rev 4.0 October 18, 2017