Product Technical Specification

AirPrime HL7618

December 02, 2015

Important Notice

Due to the nature of wireless communications, transmission and reception of data can never be guaranteed. Data may be delayed, corrupted (i.e., have errors) or be totally lost. Although significant delays or losses of data are rare when wireless devices such as the Sierra Wireless modem are used in a normal manner with a well-constructed network, the Sierra Wireless modem should not be used in situations where failure to transmit or receive data could result in damage of any kind to the user or any other party, including but not limited to personal injury, death, or loss of property. Sierra Wireless accepts no responsibility for damages of any kind resulting from delays or errors in data transmitted or received using the Sierra Wireless modem, or for failure of the Sierra Wireless modem to transmit or receive such data.

Safety and Hazards

Do not operate the Sierra Wireless modem in areas where cellular modems are not advised without proper device certifications. These areas include environments where cellular radio can interfere such as explosive atmospheres, medical equipment, or any other equipment which may be susceptible to any form of radio interference. The Sierra Wireless modem can transmit signals that could interfere with this equipment. Do not operate the Sierra Wireless modem in any aircraft, whether the aircraft is on the ground or in flight. In aircraft, the Sierra Wireless modem **MUST BE POWERED OFF**. When operating, the Sierra Wireless modem can transmit signals that could interfere with various onboard systems.

Note: Some airlines may permit the use of cellular phones while the aircraft is on the ground and the door is open. Sierra Wireless modems may be used at this time.

The driver or operator of any vehicle should not operate the Sierra Wireless modem while in control of a vehicle. Doing so will detract from the driver or operator's control and operation of that vehicle. In some states and provinces, operating such communications devices while in control of a vehicle is an offence.

Limitations of Liability

This manual is provided "as is". Sierra Wireless makes no warranties of any kind, either expressed or implied, including any implied warranties of merchantability, fitness for a particular purpose, or noninfringement. The recipient of the manual shall endorse all risks arising from its use.

The information in this manual is subject to change without notice and does not represent a commitment on the part of Sierra Wireless. SIERRA WIRELESS AND ITS AFFILIATES SPECIFICALLY DISCLAIM LIABILITY FOR ANY AND ALL DIRECT, INDIRECT, SPECIAL, GENERAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES INCLUDING, BUT NOT LIMITED TO, LOSS OF PROFITS OR REVENUE OR ANTICIPATED PROFITS OR REVENUE ARISING OUT OF THE USE OR INABILITY TO USE ANY SIERRA WIRELESS PRODUCT, EVEN IF SIERRA WIRELESS AND/OR ITS AFFILIATES HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR THEY ARE FORESEEABLE OR FOR CLAIMS BY ANY THIRD PARTY.

Notwithstanding the foregoing, in no event shall Sierra Wireless and/or its affiliates aggregate liability arising under or in connection with the Sierra Wireless product, regardless of the number of events, occurrences, or claims giving rise to liability, be in excess of the price paid by the purchaser for the Sierra Wireless product.

Customer understands that Sierra Wireless is not providing cellular or GPS (including A-GPS) services. These services are provided by a third party and should be purchased directly by the Customer.

<u>SPECIFIC DISCLAIMERS OF LIABILITY</u>: CUSTOMER RECOGNIZES AND ACKNOWLEDGES SIERRA WIRELESS IS NOT RESPONSIBLE FOR AND SHALL NOT BE HELD LIABLE FOR ANY DEFECT OR DEFICIENCY OF ANY KIND OF CELLULAR OR GPS (INCLUDING A-GPS) SERVICES.

Patents

This product may contain technology developed by or for Sierra Wireless Inc.

This product includes technology licensed from QUALCOMM®.

This product is manufactured or sold by Sierra Wireless Inc. or its affiliates under one or more patents licensed from InterDigital Group and MMP Portfolio Licensing.

Copyright

© 2015 Sierra Wireless. All rights reserved.

Trademarks

Sierra Wireless[®], AirPrime[®], AirLink[®], AirVantage[®], WISMO[®], ALEOS[®] and the Sierra Wireless and Open AT logos are registered trademarks of Sierra Wireless, Inc. or one of its subsidiaries.

Watcher® is a registered trademark of NETGEAR, Inc., used under license.

Windows® and Windows Vista® are registered trademarks of Microsoft Corporation.

Macintosh® and Mac OS X® are registered trademarks of Apple Inc., registered in the U.S. and other countries.

QUALCOMM® is a registered trademark of QUALCOMM Incorporated. Used under license.

Other trademarks are the property of their respective owners.

Contact Information

	Phone:	1-604-232-1488
Sales Desk:	Hours:	8:00 AM to 5:00 PM Pacific Time
	Contact:	http://www.sierrawireless.com/sales
Post:	Sierra Wireless 13811 Wireless Way Richmond, BC Canada V6V 3A4	
Technical Support:	support@sierrawirele	ess.com
RMA Support:	repairs@sierrawireles	ss.com
Fax:	1-604-231-1109	
Web:	http://www.sierrawireless.com/	

Consult our website for up-to-date product descriptions, documentation, application notes, firmware upgrades, troubleshooting tips, and press releases: <u>www.sierrawireless.com</u>

Document History

Version	Date	Updates	
1.0	August 14, 2015	Creation	
2.0	December 02, 2015	 Added: 2.12 Analog to Digital Converter (ADC1) 2.15.3 TX_ON Indicator (TX_ON) Error! Reference source not found. Error! Reference source not found. Error! Reference source not found. Error! Reference source not found. Updated: Table 2 AirPrime HL7618 Features Figure 1 AirPrime HL7618 Architecture Overview Figure 2 AirPrime HL7618 Mechanical Overview (Top View and Bottom View) Table 3 ESD Specifications Table 5 Regulation Compliance Error! Reference source not found. Error! Reference source not found. 2.2 Current Consumption (TBC) 3 Mechanical Drawings 4 FCC Legal Information Error! Reference source not found. Error! Reference source not found. 	

->> Contents

1.	INTRO	DUCTION	9
	1.1.	Common Flexible Form Factor (CF ³)	9
	1.2.	Physical Dimensions	9
	1.3.	General Features	10
	1.4.	Architecture	11
	1.5.	Interfaces	12
	1.6.	Connection Interface	12
	1.7.	ESD	13
	1.8.	Environmental and Certifications	13
	1.8.1	1. Environmental Specifications	13
	1.8.2		
	1.8.3		
	1.8.4	4. Disposing of the Product	14
	1.9.	References	14
2.	DETAI	ILED INTERFACE SPECIFICATIONS	15
	2.1.	Power Supply	15
	2.2.	Current Consumption (TBC)	15
	2.3.	VGPIO	16
	2.4.	BAT_RTC	16
	2.5.	SIM Interface	17
	2.5.7	1. UIM1_DET	17
	2.6.	USB	18
	2.7.	Electrical Information for Digital I/O	18
	2.8.	General Purpose Input/Output (GPIO)	19
	2.9.	Main Serial Link (UART1)	19
	2.10.	POWER-ON Signal (PWR_ON_N)	20
	2.11.	Reset Signal (RESET_IN_N)	
	2.12.	Analog to Digital Converter (ADC1)	21
	2.13.	Clock Interface	22
	2.14.	Debug Interfaces	22
	2.14	4.1. Trace Debug	
	2.14	4.2. JTAG	22
	2.15.	RF Interface	
	2.15		
	2.15		
		5.3. TX_ON Indicator (TX_ON)	
3.	MECH	ANICAL DRAWINGS	25

4.	FCC LEGAL INFORMATION	28
5.	TERMS AND ABBREVIATIONS	30

List of Figures

Figure 1.	AirPrime HL7618 Architecture Overview	. 11
Figure 2.	AirPrime HL7618 Mechanical Overview (Top View and Bottom View)	. 12
Figure 3.	TX_ON State During Transmission	. 24
Figure 4.	AirPrime HL7618 Mechanical Drawing	.25
Figure 5.	AirPrime HL7618 Dimensions Drawing	. 26
Figure 6.	AirPrime HL7618 Footprint	.27

→>> List of Tables

Table 1.	Supported Bands/Connectivity	9
Table 2.	AirPrime HL7618 Features	10
Table 3.	ESD Specifications	13
Table 4.	AirPrime HL7618 Environmental Specifications	13
Table 5.	Regulation Compliance	14
Table 6.	Power Supply	15
Table 7.	Current Consumption	15
Table 8.	Current Consumption per Power Supply	15
Table 9.	VGPIO Electrical Characteristics	16
Table 10.	BAT_RTC Electrical Characteristics	16
Table 11.	UIM1 Pad Description	17
Table 12.	Electrical Characteristics of UIM1	17
Table 13.	USB Pad Description	18
Table 14.	Digital I/O Electrical Characteristics	18
Table 15.	GPIO Pad Description	19
Table 16.	UART1 Pad Description	19
Table 17.	PWR_ON_N Electrical Characteristics	20
Table 18.	RESET_IN_N Electrical Characteristics	21
Table 19.	ADC Interface Pad Description	21
Table 20.	ADC Electrical Characteristics	21
Table 21.	Clock Interface Pad Description	22
Table 22.	Trace Debug Pad Description	22
Table 23.	JTAG Pad Description	22
Table 24.	RF Main Connection	23
Table 25.	RF Diversity Connection	23
Table 26.	Conducted RX Sensitivity (dBm)	23
Table 27.	TX_ON Indicator Pad Description	24
Table 28.	TX_ON Characteristics	24

1. Introduction

This document is the Product Technical Specification for the AirPrime HL7618 Embedded Module. It defines the high level product features and illustrates the interfaces for these features. This document is intended to cover the hardware aspects of the product, including electrical and mechanical.

The AirPrime HL7618 belongs to the AirPrime HL Series from Essential Connectivity Module family. These are industrial grade Embedded Wireless Modules that provides data connectivity on LTE networks (as listed in Table 1 Supported Bands/Connectivity).

The HL7618 supports a large variety of interfaces such as USB 2.0, UART, GPIOs and dual SIM to provide customers with the highest level of flexibility in implementing high-end solutions.

Table 1. S	Supported	Bands/Connectivity
------------	-----------	--------------------

RF Band	Transmit band (Tx)	Receive band (Rx)	Maximum Output Power
LTE B4	1710 to 1755 MHz	2110 to 2155 MHz	23dBm ± 2dBm
LTE B13	777 to 787 MHz	746 to 756 MHz	23dBm ± 2dBm

1.1. Common Flexible Form Factor (CF³)

The AirPrime HL7618 belongs to the Common Flexible Form Factor (CF³) family of modules. This family consists of a series of WWAN modules that share the same mechanical dimensions (same width and length with varying thicknesses) and footprint. The CF³ form factor provides a unique solution to a series of problems faced commonly in the WWAN module space as it:

- Accommodates multiple radio technologies (from 2G to LTE advanced) and band groupings
- Supports bit-pipe (Essential Module Series) and value add (Smart Module Series) solutions
- Offers electrical and functional compatibility
- Provides Direct Mount as well as Socketability depending on customer needs

1.2. Physical Dimensions

AirPrime HL7618 modules are compact, robust, fully shielded modules with the following dimensions:

- Length: 23 mm
- Width: 22 mm
- Thickness: 2.5 mm
- Weight: 3.5 g

```
Note: Dimensions specified above are typical values.
```

1.3. General Features

The table below summarizes the AirPrime HL7618 features.

Feature	Description		
Physical	 Small form factor (146-pad solderable LGA pad) – 23mm x 22mm x 2.5mm (nominal) Complete body shielding RF connection pads (RF main interface) Baseband signals connection 		
Electrical	Single or double supply voltage (VBATT and VBATT_PA) – 3.2V – 4.5V		
RF	Dual-band LTE (AWS (B4), 700 MHz (B13))		
SIM interface	 Dual SIM Single Standby (DSSS) 1.8V/3V support SIM extraction / hot plug detection SIM/USIM support Conforms with ETSI UICC Specifications. Supports SIM application tool kit with proactive SIM commands 		
Application interface	 NDIS NIC interface support (Windows 7, Windows 8, Linux) MBIM support Multiple non-multiplexed USB channel support Dial-up networking USB selective suspend to maximize power savings CMUX multiplexing over UART AT command interface – 3GPP 27.007 standard, plus proprietary extended AT commands 		
Protocol Stack	 Single mode LTE operation: LTE FDD, bandwidth 1.4-20 MHz System Release: 3GPP Rel. 9 Category 1 (up to 10 Mbit/s in downlink, 5 Mbit/s in uplink) Max modulation 64 QAM DL, 16 QAM UL Intra-frequency and inter-frequency mobility SON ANR Public Warning System PWS 		
SMS	 SMS over SGs and IMS SMS MO and MT SMS saving to SIM card or ME storage SMS reading from SIM card or ME storage SMS sorting SMS concatenation SMS Status Report SMS replacement support SMS storing rules (support of AT+CNMI, AT+CNMA) 		

Feature	Description	
	Multiple (up to 20) cellular packet data profiles	
	Sleep mode for minimum idle power draw	
	Mobile-originated PDP context activation / deactivation	
	Support QoS profile	
	 Release 97 – Precedence Class, Reliability Class, Delay Class, Peak Throughput, Mean Throughput 	
Connectivity	 Release 99 QoS negotiation – Background, Interactive, and Streaming 	
	 Static and Dynamic IP address. The network may assign a fixed IP address or dynamically assign one using DHCP (Dynamic Host Configuration Protocol). 	
	Supports PAP and CHAP authentication protocols	
	• PDP context type (IPv4, IPv6, IPv4v6). IP Packet Data Protocol context	
	RFC1144 TCP/IP header compression	
Operating temperature ranges (industrial grade):		
Environmental	 Class A: -30°C to +70°C 	
	• Class B: -40°C to +85°C	
RTC	Real Time Clock (RTC) with calendar	

1.4. Architecture

The figure below presents an overview of the AirPrime HL7618 internal architecture and external interfaces.

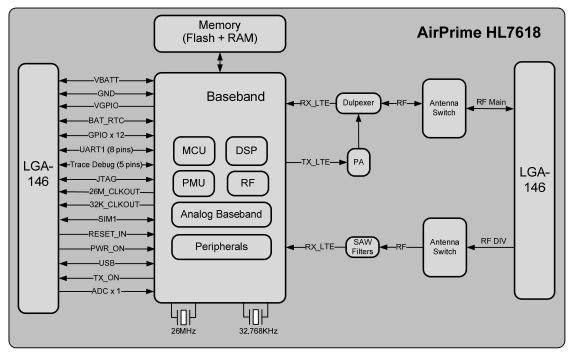


Figure 1. AirPrime HL7618 Architecture Overview

1.5. Interfaces

The AirPrime HL7618 module provides the following interfaces and peripheral connectivity:

- 1x 8-wire UART
- 1x Active Low RESET
- 1x USB 2.0
- 1x Backup Battery Interface
- 2x System Clock Out
- 1x Active Low POWER-ON
- 1x 1.8V/3V SIM
- 1x JTAG Interface
- 12x GPIOs (2 of which have multiplexes)
- 1x Main Antenna
- 1x RX Diversity
- 1x VGPIO
- 1x TX ON
- 1x ADC
- 1x Debug Interface

1.6. Connection Interface

The AirPrime HL7618 module is an LGA form factor device. All electrical and mechanical connections are made through the 146 Land Grid Array (LGA) pads on the bottom side of the PCB.

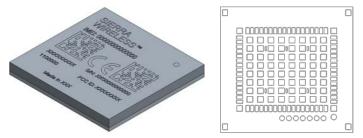


Figure 2. AirPrime HL7618 Mechanical Overview (Top View and Bottom View)

The 146 pads have the following distribution:

- 66 inner signal pads, 1x0.5mm, pitch 0.8mm
- 1 reserved test point (do not connect), 1.0mm diameter
- 7 test point (JTAG), 0.8mm diameter, 1.20mm pitch
- 64 inner ground pads, 1.0x1.0mm, pitch 1.825mm/1.475mm
- 4 inner corner ground pads, 1x1mm
- 4 outer corner ground pads, 1x0.9mm

1.7. ESD

Refer to the following table for ESD Specifications.

Note: Information specified in the following table is preliminary and subject to change.

Table 3. ESD Specifications

Category	Connection	Specification	
Operational	RF ports	IEC-61000-4-2 — Level (Electrostatic Discharge Immunity Test)	
		Unless otherwise specified:	
Non-operational Host connector interface		 JESD22-A114 +/- 1kV Human Body Model 	
		JESD22-A115 +/- 200V Machine Model	
		JESD22-C101C +/- 250V Charged Device Model	
	SIM connector	Adding ESD protection is highly recommended at the point where	
Signals	Other host signals	the USIM contacts are exposed, and for any other signals that would be subjected to ESD by the user.	

1.8. Environmental and Certifications

1.8.1. Environmental Specifications

The environmental specification for both operating and storage conditions are defined in the table below.

Table 4.	AirPrime H	L7618	Environmental	Specifications
	/ /			opoonnounomo

Conditions	Range
Operating Class A	-30°C to +70°C
Operating Class B	-40°C to +85°C
Storage	-40°C to +85°C

Class A is defined as the operating temperature ranges that the device:

- Shall exhibit normal function during and after environmental exposure.
- Shall meet the minimum requirements of 3GPP or appropriate wireless standards.

Class B is defined as the operating temperature ranges that the device:

- Shall remain fully functional during and after environmental exposure
- Shall exhibit the ability to establish an SMS or DATA call (emergency call) at all times even when one or more environmental constraint exceeds the specified tolerance.
- Unless otherwise stated, full performance should return to normal after the excessive constraint(s) have been removed.

1.8.2. Regulatory

The AirPrime HL7618 is compliant with FCC regulations.

FCC compliance will be reflected on the AirPrime HL7618 label.

 Table 5.
 Regulation Compliance

Document	Current Version	Title
GCF-CC	v3.59.0 or later	GCF Conformance Certification Criteria
FCC Part 27	NA	Miscellaneous wireless communication services

1.8.3. RoHS Directive Compliant

The AirPrime HL7618 module is compliant with RoHS Directive 2011/65/EU which sets limits for the use of certain restricted hazardous substances. This directive states that "from 1st July 2006, new electrical and electronic equipment put on the market does not contain lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) or polybrominated diphenyl ethers (PBDE)".

1.8.4. Disposing of the Product

This electronic product is subject to the EU Directive 2012/19/EU for Waste Electrical and Electronic Equipment (WEEE). As such, this product must not be disposed of at a municipal waste collection point. Please refer to local regulations for directions on how to dispose of this product in an environmental friendly manner.

1.9. References

- [1] AirPrime HL Series Customer Process Guidelines Reference Number: 4114330
- [2] AirPrime HL7618, HL7690 and HL7692 AT Commands Interface Guide Reference Number: 4118395
- [3] AirPrime HL Series Development Kit User Guide Reference Number: 4114877

2. Detailed Interface Specifications

Note: If not specified, all electrical values are given for VBATT=3.7V and an operating temperature of 25°C.

For standard applications, VBATT and VBATT_PA must be tied externally to the same power supply. For some specific applications, AirPrime HL7618 module supports separate VBATT and VBATT_PA connection if requirements below are fulfilled.

2.1. Power Supply

The AirPrime HL7618 module is supplied through the VBATT signal with the following characteristics.

Table 6. P	ower Supply
------------	-------------

Supply	Minimum	Typical	Maximum
VBATT voltage (V)	3.2 ¹	3.7	4.5
VBATT_PA voltage (V) Full Specification	3.2 ¹	3.7	4.5
VBATT_PA voltage (V) Extended Range	2.8	3.7	4.5

1 This value has to be guaranteed during the burst.

Note: Load capacitance for VBATT is around $32\mu F \pm 20\%$ embedded inside the module. Load capacitance for VBATT_PA is around $10\mu F \pm 20\%$ embedded inside the module.

2.2. Current Consumption (TBC)

The following table lists the current consumption of the AirPrime HL7618 at different conditions.

Note: Typical values are defined for VBATT/VBATT_PA at 3.7V and 25°C, for 50Ω impedance at all RF ports. Maximum values are provided for VSWR3:1 with worst conditions among supported ranges of voltages and temperature.

Table 7. Current Consumption

Parameter		Minimum	Typical	Maximum	Unit
Off mode		95.0	110	202.0	μA
Sleep mode – LTE	Band 4	1.2	1.4	6.2	mA
DRX = 1.28s USB = suspended	Band 13	1.2	1.4	6.2	mA
LTE in communication mode (TX Max)	Band 4	510.0	610.0	945.0	mA
	Band 13	460.0	540.0	720.0	mA

Table 8. O	Current Consumpt	tion per Powe	r Supply
------------	------------------	---------------	----------

Parameter (at nominal voltage, 3.7 V)			Typical	Unit
VBATT		Band 4	207	mA

Parameter (Typical	Unit		
	LTE in communication mode (TX Max) USB = disconnected	Band 13	212	mA
VPATT DA	LTE in communication mode (TX Max)	Band 4	403	mA
VBATT_PA	USB = disconnected	Band 13	328	mA

2.3. VGPIO

The VGPIO output can be used to:

- Pull-up signals such as I/Os
- Supply the digital transistors driving LEDs

The VGPIO output is available when the AirPrime HL7618 module is switched ON.

Parameter	Min	Тур	Мах	Remarks
Voltage level (V)	1.7	1.8	1.9	Both active mode and sleep mode
Current capability Active Mode (mA)	-	-	50	Power management support up to 50mA output in Active mode
Current capability Sleep Mode (mA)	-	-	3	Power management support up to 3mA output in Sleep mode
Rise Time(ms)	-	-	1.5	Start-Up time from 0V

Table 9. VGPIO Electrical Characteristics

2.4. BAT_RTC

The AirPrime HL7618 module provides an input/output to connect a Real Time Clock power supply.

This pad is used as a back-up power supply for the internal Real Time Clock. The RTC is supported when VBATT is available but a back-up power supply is needed to save date and hour when VBATT is switched off.

If VBATT is available, the back-up battery can be charged by the internal 1.8V power supply regulator.

 Table 10.
 BAT_RTC Electrical Characteristics

Parameter	Minimum	Typical	Maximum	Unit
Input voltage	-	1.8	-	V
Input current consumption	-	2.5 (TBC)	-	μA
Output voltage	-5%	1.8	+5%	V
Max charging current (@VBATT=3.7V)	-	25	-	mA

2.5. SIM Interface

The AirPrime HL7618 has one physical SIM interface, UIM1, which has optional support for dual SIM application with an external SIM switch.

It allows control of a 1.8V/3V SIM and is fully compliant with GSM 11.11 recommendations concerning SIM functions.

The five signals used by UIM1 are as follows:

- UIM1_VCC: power supply
- UIM1_CLK: clock
- UIM1_DATA: I/O port
- UIM1_RESET: reset
- UIM1_DET: SIM detection

Pad #	Signal Name	Description
26	UIM1_VCC	1.8V/3V SIM1 Power supply
27	UIM1_CLK	1.8V/3V SIM1 Clock
28	UIM1_DATA	1.8V/3V SIM1 Data
29	UIM1_RESET	1.8V/3V SIM1 Reset
64	UIM1_DET	UIM1 Detection

Parameter	Min	Тур	Max	Remarks
UIM1 Interface Voltage (V)	-	2.9	-	The appropriate output voltage is auto
(VCC,CLK,IO,RST)	-	1.80	-	detected and selected by software.
UIM1 Detect	-	1.80	-	High active
UIM1_VCC Current (mA)	-	-	10	Max output current in sleep mode = 3 mA
UIM1_VCC Line Regulation (mV/V)	-	-	50	At lout_Max
UIM1_VCC Power-up Setting Time (µs) from power down	-	10	-	

2.5.1. UIM1_DET

UIM1_DET is used to detect and notify the application about the insertion and removal of a SIM device in the SIM socket connected to the SIM interface. When a SIM is inserted, the state of UIM1_DET transitions from logic 0 to logic 1. Inversely, when a SIM is removed, the state of UIM1_DET transitions from logic 1 to logic 0.

2.6. USB

The AirPrime HL7618 has one USB interface.

Pad Number	Signal Name	I/O	Function			
12	USB_D-	I/O	USB Data Negative			
13	USB_D+	I/O	USB Data Positive			
16	USB_VBUS	I	USB VBUS			
Note: When the 5V USB supply is not available, connect USB VBUS to VBATT to supply the USB						

When the 5V USB supply is not available, connect USB_VBUS to VBATT to supply the USB interface.

2.7. Electrical Information for Digital I/O

The AirPrime HL7618 supports two groups of digital interfaces with varying current drain limits. The following list enumerates these interface groupings and the following table enumerates the electrical characteristics of each digital interface.

- Group 1 (6mA current drain limit)
 - GPIO2, GPIO4, GPIO6, GPIO8, GPIO10, GPIO11, GPIO13, GPIO14, GPIO15
- Group 2 (1mA current drain limit)
 - GPIO1, GPIO5, GPIO7
 - UART1
 - JTAG

Parameter		Symbol	Min	Тур	Max	Remarks
Input Current-High(µA)		IIH	-	-	240	
Input Curre	ent-Low(µA)	lı∟	-	-	240	
Crown 1	DC Output Current-High (mA)	I _{OH}	-	-	6	
Group 1	DC Output Current-Low (mA)	Iol	-6	-	-	
Crown O	DC Output Current-High (mA)	Іон	-	-	1	
Group 2	DC Output Current-Low (mA)					
Input Voltage-High(V)		VIH	1.19	-	2.10	
Input Voltage-Low(V)		VIL	-0.20	-	0.38	
Output \/a	tege Ligh()()	Vон	1.35	-	-	I _{OH} = -6mA
Output Voltage-High(V)		Vон	1.50	-	-	I _{OH} = -0.1mA
		Vol	-	-	0.35	I _{ОН} = 6mA
Output voi	tage-Low(V)	Vol	-	-	0.2	I _{OH} = 0.1mA

Table 14. Digital I/O Electrical Characteristics

2.8. General Purpose Input/Output (GPIO)

The AirPrime HL7618 modules provide 12 GPIOs, 2 of which have multiplexes.

Pad #	Signal Name	Multiplex	I/O	Power Supply Domain
1	GPIO1		I/O	1.8V
10	GPIO2	TRACE_DATA2	I/O	1.8V
40	GPIO7		I/O	1.8V
41	GPIO8	TRACE_CLK	I/O	1.8V
44	GPIO13		I/O	1.8V
46	GPIO6		I/O	1.8V
51	GPIO14		I/O	1.8V
52	GPIO10		I/O	1.8V
53	GPIO11		I/O	1.8V
54	GPIO15		I/O	1.8V
65	GPIO4		I/O	1.8V
66	GPIO5		I/O	1.8V

Table 15. GPIO Pad Description

2.9. Main Serial Link (UART1)

The main serial link (UART1) is used for communication between the AirPrime HL7618 module and a PC or host processor. It consists of a flexible 8-wire serial interface that complies with RS-232 interface.

The supported baud rates of the UART1 are 300, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200, 230400, 460800, 500000, 750000, 921600, 1843200, 3000000 and 3250000 bit/s.

The signals used by UART1 are as follows:

- TX data (UART1_TX)
- RX data (UART1_RX)
- Request To Send (UART1_RTS)
- Clear To Send (UART1_CTS)
- Data Terminal Ready (UART1_DTR)
- Data Set Ready (UART1_DSR)
- Data Carrier Detect (UART1_DCD)
- Ring Indicator (UART1_RI)

Note: Signal names are according to PC view.

UART1 pad description is summarized in the table below.

Table 16. UART1 Pad Description

Pad #	Signal Name*	I/O*	Description
2	UART1_RI	0	Signal incoming calls (data only), SMS, etc.
3	UART1_RTS	1	Request to send

Pad #	Signal Name*	I/O*	Description
4	UART1_CTS	0	AirPrime HL7618 is ready to receive AT commands
5	UART1_TX	I	Transmit data
6	UART1_RX	0	Receive data
7	UART1_DTR	I (active low)	Prevents the AirPrime HL7618 from entering sleep mode, switches between data mode and command mode, and wakes the module up.
8	UART1_DCD	0	Signal data connection in progress
9	UART1_DSR	0	Signal UART interface is ON

According to PC view.

2.10. POWER-ON Signal (PWR_ON_N)

A low level signal has to be provided to switch the AirPrime HL7618 module ON.

It is internally connected to the permanent 1.8V supply regulator inside the HL7618 via a pull-up resistor. Once VBAT is supplied to the HL7618 module, this 1.8V supply regulator will be enabled and so the PWR_ON_N signal is by default at high level.

The PWR_ON_N signal's characteristics are listed in the table below.

Table 17.	PWR	ON	Ν	Electrical	Characteristics

Parameter	Min	Typical	Мах
Input Voltage-Low (V)		-	0.51
Input Voltage-High (V)	1.33	-	2.2
Power-up period (ms) from PWR_ON_N falling edge	2000	-	-
PWR_ON_N assertion time (ms)	25		

Note: As PWR_ON_N is internally pulled up with $47k\Omega$, an open collector or open drain transistor must be used for ignition.

VGPIO is an output from the module that can be used to check if the module is active.

- When VGPIO = 0V, the module is OFF
- When VGPIO = 1.8V, the module is ON (it can be in idle, communication or sleep mode)

Note: PWR_ON_N signal cannot be used to power the module off. To power the module off, use AT command **AT+CPWROFF**.

2.11. Reset Signal (RESET_IN_N)

To reset the module, a low level pulse must be sent on the RESET_IN_N pad for 20ms. This action will immediately restart the AirPrime HL7618 module with the PWR_ON_N signal at low level. (If the PWR_ON_N signal is at high level, the module will be powered off.) As RESET_IN_N is internally pulled up, an open collector or open drain transistor has to be used to control this signal.

The RESET_IN_N signal will reset the registers of the CPU and reset the RAM memory as well, for the next power on.

Note: As RESET_IN_N is referenced to the VRTC ($200k\Omega$ pull-up resistor to VRTC 1.8V) an open collector or open drain transistor has to be used to control this signal.

Table 18. RESET_IN_N Electrical Characteristics

Parameter	Min	Typical	Мах
Input Voltage-Low (V)		-	0.51
Input Voltage-High (V)	1.33	-	2.2
Reset assertion time (ms)	20	-	-
Power-up period (ms) from RESET_IN_N falling edge*	2000	-	-

With the PWR_ON_N Signal at low level.

2.12. Analog to Digital Converter (ADC1)

One Analog to Digital Converter input, ADC1, is provided by the AirPrime HL7618 module. This converter is a 10-bit resolution ADC ranging from 0 to 1.2V.

The following table describes the pad description of the ADC interface.

Pad Number	Signal Name	I/O	Description
24	ADC1	1	Analog to digital converter

Typical ADC1 use is for monitoring external voltage; wherein an application is used to safely power OFF an external supply in case of overvoltage.

Table 20.	ADC Electrical Characteristics
-----------	--------------------------------

Parameter	Min	Тур	Max	Remarks
ADC1 Resolution (bits)	-	10	-	
Input Voltage Range (V)	0	-	1.2	General purpose input
Update rate per channel (kHz)	-	-	125	
Integral Nonlinearity (bits)	-	-	±2	LSB
Offset Error (bits)	-	-	±1	LSB
Gain	849	853	858	
Input Resistance (MΩ)	1	-	-	
Input Capacitance (pF)	-	1	-	

2.13. Clock Interface

The AirPrime HL7618 modules support two digital clock interfaces.

The following table describes the pad description of the clock out interfaces.

 Table 21.
 Clock Interface Pad Description

Pad Number	Signal Name	I/O	І/О Туре	Description
22	26M_CLKOUT	0	1.8V	26MHz Digital Clock output
23	32K_CLKOUT	0	1.8V	32.768kHz Digital Clock output

Enabling or disabling the clock out feature can be done using AT commands. For more information about AT commands, refer to document [2] AirPrime HL7618, HL7690 and HL7692 AT Commands Interface Guide.

2.14. Debug Interfaces

The AirPrime HL7618 module provides 2 interfaces for a powerful debug system.

2.14.1. Trace Debug

The AirPrime HL7618 module provides a Trace Debug interface, providing real-time instruction and data trace of the modem core.

Pad Number	Signal Name	Function
2	TRACE_DATA3	Trace data 3
8	TRACE_DATA1	Trace data 1
9	TRACE_DATA0	Trace data 0
10	TRACE_DATA2	Trace data 2
41	TRACE_CLK	Trace clock

Table 22. Trace Debug Pad Description

Note:

It is strongly recommended to provide access to this interface through Test Points.

2.14.2. JTAG

The JTAG interface provides debug access to the core of the HL7618. These JTAG signals are accessible through solder-able test points.

Pad Number	Signal Name	Function
236	JTAG_RESET	JTAG RESET
237	JTAG_TCK	JTAG Test Clock

Pad Number	Signal Name	Function
238	JTAG_TDO	JTAG Test Data Output
239	JTAG_TMS	JTAG Test Mode Select
240	JTAG_TRST	JTAG Test Reset
241	JTAG_TDI	JTAG Test Data Input
242	JTAG_RTCK	JTAG Returned Test Clock

Note:

It is recommended to provide access through Test Points to this interface the JTAG pads (for Failure Analysis debugging). All signals listed in table above shall be outputs on the customer board to allow JTAG debugging.

2.15. RF Interface

The RF interface of the HL7618 module allows the transmission of RF signals. This interface has a 50Ω nominal impedance.

2.15.1. RF Connection

A 50 Ω stripline can be used to connect to standard RF connectors such as SMA, UFL, etc. for antenna connection.

Pad Number	RF Signal	Impedance	VSWR Rx (max)	VSWR Tx (max)
49	RF_MAIN	50Ω	1.5:1	1.5:1

Table 25. RF Diversity Connection

Pad Number	RF Signal	Impedance	VSWR Rx (max)	VSWR Tx (max)
31	RF_DIV	50Ω	1.5:1	

2.15.2. RF Performances

RF performances are compliant with 3GPP recommendation TS 36.101.

Note: Values in the table below are preliminary and subject to change.

Table 00	Conducted	DV Compitivity	(alDura)
Table 26.	Conducted	RX Sensitivity	(автт)

Frequency E	Band	Primary (Typical)	Secondary (Typical)	SIMO (Typical)
LTE B4	Full RB; BW: 20 MHz*	-95	-95	-99
LTE B13	Full RB; BW: 10 MHz*	-98	-99	-102

Sensitivity values scale with bandwidth: x_MHz_Sensitivity = 10 MHz_Sensitivity – 10*log (10 MHz/x_MHz)

*

2.15.3. TX_ON Indicator (TX_ON)

The AirPrime HL7618 provides a signal, TX_ON, for TX indication. The TX_ON is a 2.3V signal and its status signal depends on the module transmitter state.

Refer to the following table for the status of the TX_ON signal depending on the embedded module's state.

Table 27. TX_ON Indicator Pad Description

Pad Number	Signal Name	Function	I/O type	Power Supply Domain
60	TX_ON	TX indicator	0	2.3V

Table 28. TX_ON Characteristics

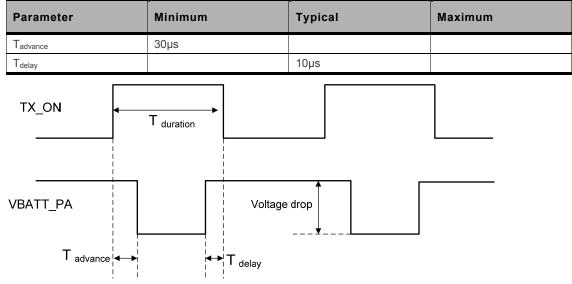


Figure 3. TX_ON State During Transmission

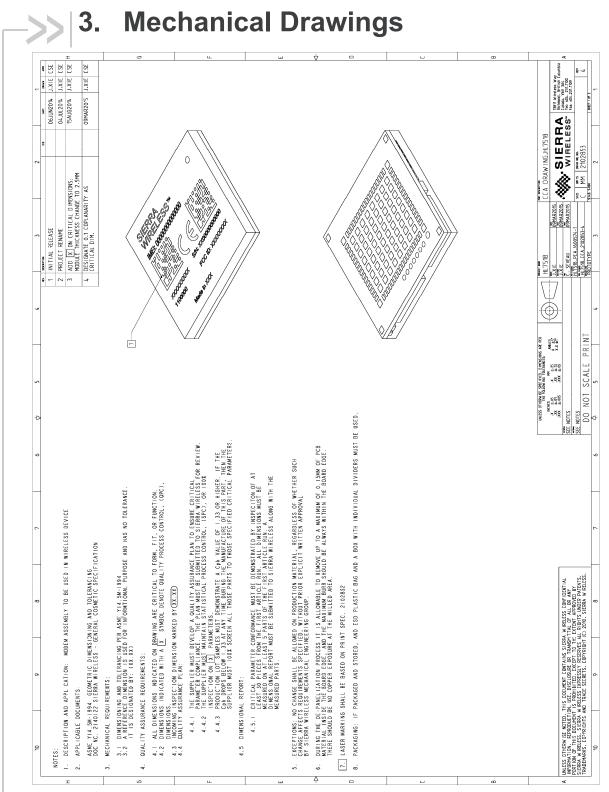


Figure 4. AirPrime HL7618 Mechanical Drawing

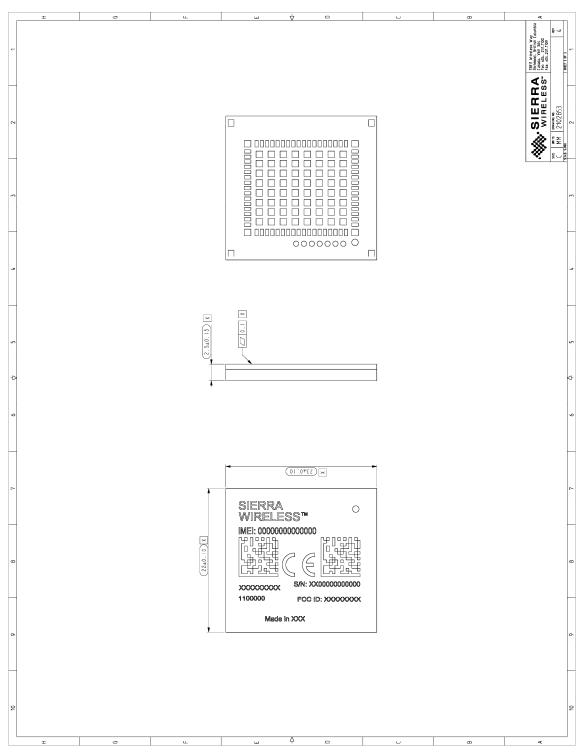


Figure 5. AirPrime HL7618 Dimensions Drawing

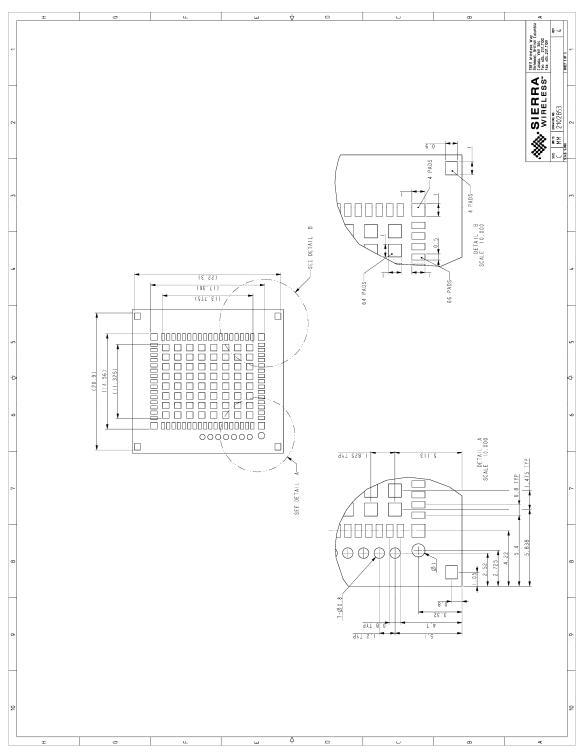
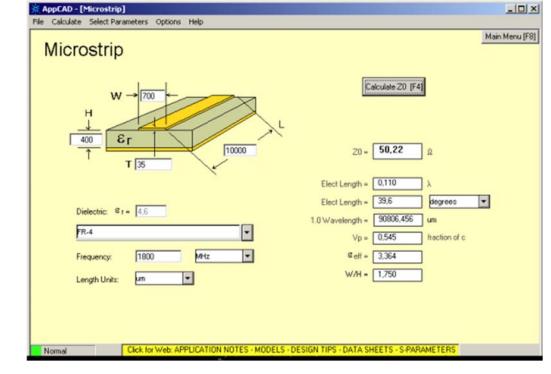


Figure 6. AirPrime HL7618 Footprint

4. FCC Legal Information

FCC Caution: Any changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate this equipment.


IMPORTANT NOTE – FCC Radiation Exposure Statement:

This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with minimum distance 20cm between the radiator & your body.

This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

The HL7618 module has been granted modular approval for mobile applications. Integrators may use the HL7618 module in their final products without additional FCC certification if they meet the following conditions. Otherwise, additional FCC approvals must be obtained.

- 1. At least 20 cm separation distance between the antenna and the user's body must be maintained at all times.
- 2. To comply with FCC regulations limiting both maximum RF output power and human exposure to RF radiation, the maximum antenna gain including cable loss in a mobile-only exposure condition must not exceed:
 - 6.99 dBi in LTE Band 4
 - 11.87 dBi in LTE Band 13
- 3. The HL7618 module must not transmit simultaneously with other collocated radio transmitters within a host device.
- 4. The RF signal must be routed on the application board using tracks with a 50Ω characteristic impedance. Basically, the characteristic impedance depends on the dielectric, the track width and the ground plane spacing. In order to respect this constraint, Sierra Wireless recommends using MicroStrip or StripLine structure and computing the Tracks width with a simulation tool (like AppCad shown in the figure below and that is available free of charge at http://www.agilent.com).

If a multi-layered PCB is used, the RF path on the board must not cross any signal (digital, analog or supply).

If necessary, use StripLine structure and route the digital line(s) "outside" the RF structure. An example of proper routing is shown in the figure below.

Stripline and Coplanar design requires having a correct ground plane at both sides. Consequently, it is necessary to add some vias along the RF path. It is recommended to use Stripline design if the RF path is fairly long (more than 3cm), since MicroStrip design is not shielded. Consequently, the RF signal (when transmitting) may interfere with neighbouring electronics (AF amplifier, etc.). In the same way, the neighbouring electronics (micro-controllers, etc.) may degrade the reception performances. The GSM/GPRS connector is intended to be directly connected to a 50Ω antenna and no matching is needed.

5. A label must be affixed to the outside of the end product into which the HL7618 module is incorporated, with a statement similar to the following:

This device contains FCC ID: N7NHL7618

 A user manual with the end product must clearly indicate the operating requirements and conditions that must be observed to ensure compliance with current FCC RF exposure guidelines.

The end product with an embedded HL7618 module may also need to pass the FCC Part 15 unintentional emission testing requirements and be properly authorized per FCC Part 15.

Note: If this module is intended for use in a portable device, you are responsible for separate approval to satisfy the SAR requirements of FCC Part 2.1093.

->>> 5. Terms and Abbreviations

Abbreviation	Definition
ADC	Analog to Digital Converter
AGC	Automatic Gain Control
AT	Attention (prefix for modem commands)
CDMA	Code Division Multiple Access
CF3	Common Flexible Form Factor
CLK	Clock
CODEC	Coder Decoder
CPU	Central Processing Unit
DAC	Digital to Analog Converter
DTR	Data Terminal Ready
EGNOS	European Geostationary Navigation Overlay Service
EMC	ElectroMagnetic Compatibility
EMI	ElectroMagnetic Interference
EN	Enable
ESD	ElectroStatic Discharges
ETSI	European Telecommunications Standards Institute
FDMA	Frequency-division multiple access
GAGAN	GPS aided geo augmented navigation
GLONASS	Global Navigation Satellite System
GND	Ground
GNSS	Global Navigation Satellite System
GPIO	General Purpose Input Output
GPRS	General Packet Radio Service
GSM	Global System for Mobile communications
Hi Z	High impedance (Z)
IC	Integrated Circuit
IMEI	International Mobile Equipment Identification
I/O	Input / Output
LED	Light Emitting Diode
LNA	Low Noise Amplifier
MAX	Maximum
MIN	Minimum
MSAS	Multi-functional Satellite Augmentation System
N/A	Not Applicable
PA	Power Amplifier
PC	Personal Computer
PCB	Printed Circuit Board
PCL	Power Control Level
PLL	Phase Lock Loop
PWM	Pulse Width Modulation

Abbreviation	Definition
QZSS	Quasi-Zenith Satellite System
RF	Radio Frequency
RFI	Radio Frequency Interference
RMS	Root Mean Square
RST	Reset
RTC	Real Time Clock
RX	Receive
SCL	Serial Clock
SDA	Serial Data
SIM	Subscriber Identification Module
SMD	Surface Mounted Device/Design
SPI	Serial Peripheral Interface
SW	Software
PSRAM	Pseudo Static RAM
TBC	To Be Confirmed
TBD	To Be Defined
TP	Test Point
ТХ	Transmit
TYP	Typical
UART	Universal Asynchronous Receiver-Transmitter
UICC	Universal Integrated Circuit Card
USB	Universal Serial Bus
UIM	User Identity Module
VBATT	Main Supply Voltage from Battery or DC adapter
VSWR	Voltage Standing Wave Ratio
WAAS	Wide Area Augmentation System