

FCC CFR47 PART 22 SUBPART H
FCC CFR47 PART 24 SUBPART E
INDUSTRY CANADA RSS-132 ISSUE 2
INDUSTRY CANADA RSS-133 ISSUE 5
CLASS II PERMISSIVE CHANGE

CERTIFICATION TEST REPORT FOR

DUAL- BAND CDMA (1XRTT) MODULE
MODEL NUMBER: GTM-2

FCC ID: N7NGTM2 IC: 2417C-GTM2

REPORT NUMBER: 11U14089-1, REVISION A

ISSUE DATE: JANUARY 03, 2012

Prepared for

SIERRA WIRELESS INC. - YW
13811 WIRELESS WAY
RICHMOND, BRITISH COLUMBIA V6V3A4, CANADA

Prepared by

COMPLIANCE CERTIFICATION SERVICES (UL CCS 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000

FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

	Issue		
Rev.	Date	Revisions	Revised By
	10/18/11	Initial Issue	T. Chan
	01/03/12	Corrected Typo on Page 21 Regarding the EIRP Reading on High Channel	T. Chan

TABLE OF CONTENTS

1. AT	TESTATION OF TEST RESULTS	4
2. TE	ST METHODOLOGY	5
3. FA	CILITIES AND ACCREDITATION	5
4. CA	ALIBRATION AND UNCERTAINTY	5
4.1.	MEASURING INSTRUMENT CALIBRATION	5
4.2.	SAMPLE CALCULATION	5
4.3.	MEASUREMENT UNCERTAINTY	5
5. EC	QUIPMENT UNDER TEST	6
5.1.	DESCRIPTION OF EUT	6
5.2.	MAXIMUM OUTPUT POWER	6
5.3.	DESCRIPTION OF CLASS II PERMISSIVE CHANGE	6
5.4.	DESCRIPTION OF AVAILABLE ANTENNAS	6
5.5.	SOFTWARE AND FIRMWARE	6
5.6.	WORST-CASE CONFIGURATION AND MODE	7
5.7.	DESCRIPTION OF TEST SETUP	8
6. TE	ST AND MEASUREMENT EQUIPMENT	11
7. CC	ONDUCTED TEST RESULTS	12
7.1.	RF POWER OUTPUT	12
7.2.	SPURIOUS EMISSION AT ANTENNA TERMINAL	16
8. RA	ADIATED TEST RESULTS	21
8.1.	RADIATED POWER (ERP & EIRP)	21
8.2.	FIELD STRENGTH OF SPURIOUS RADIATION	24
8.3.	RECEIVER SPURIOUS EMISSIONS	27
8.4.	POWER LINE CONDUCTED EMISSION	32
9. MA	AXIMUM PERMISSIBLE EXPOSURE	38
40 (CETUR RUOTOS	40

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: SIERRA WIRELESS INC. - YW

13811 WIRELESS WAY

RICHMOND, BRITISH COLUMBIA V6V3A4, CANADA

EUT DESCRIPTION: DUAL- BAND CDMA (1XRTT) MODULE

MODEL: GTM-2

SERIAL NUMBER: MEIDx0414

DATE TESTED: OCTOBER 12-14, 2011

APPLICABLE STANDARDS

STANDARD TEST RESULTS

FCC PART 22H & 24E

Pass

IC RSS-132 ISSUE 2 & RSS-133 ISSUE 5

Pass

Compliance Certification Services (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By:

Tested By:

THU CHAN

ENGINEERING MANAGER

UL CCS

CHIN PANG EMC ENGINEER

Chin Pany

UL CCS

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with TIA-603-C, FCC CFR 47 Part 2, FCC CFR 47 Part 22, FCC CFR Part 24, RSS-132 Issue 2 and RSS-133 Issue 5.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) - Preamp Gain (dB)

36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a Dual- Band CDMA (1XRTT) Radio Module that is manufactured by Sierra Wireless.

GENERAL INFORMATION

Power Requirements	12 VDC/1.2A AC Adapter
List of frequencies generated or used by the EUT	32KHz & 19.2MHz

5.2. MAXIMUM OUTPUT POWER

The transmitter has an average conducted output powers as follows:

Part 22 Cellular Band

Frequency range (MHz)	Modulation	Cond	ucted	ERP				
Frequency range (wiriz)	Modulation	dBm	mW	dBm	mW			
824.7 – 848.31	1xRTT	24.30	269.15	29.67	926.8			

Part 24 PCS Band

Frequency range (MHz)	Modulation	Conducted EIRP			
Frequency range (IVII 12)	Modulation	dBm	mW	dBm	mW
1851.25 – 1908.75	1xRTT	24.25	266.1	29.88	972.7

5.3. DESCRIPTION OF CLASS II PERMISSIVE CHANGE

The major change filed under this application is to change antenna connection-antenna detect and ESD.

5.4. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a monopole external antenna, with a maximum gain of 8.2 and 7.15dBi for Cell and PCS bands respectively.

5.5. SOFTWARE AND FIRMWARE

The EUT is linked with 8960 Agilent Wireless Communication Test Set.

5.6. WORST-CASE CONFIGURATION AND MODE

The worst-case channel is determined as the channel with the highest output power.

Based on the investigation results, the highest peak power is the worst-case scenario for all measurements.

Worst-case modes:

- Cellular & PCS Bands:
 - o CDMA 1xRTT

5.7. DESCRIPTION OF TEST SETUP

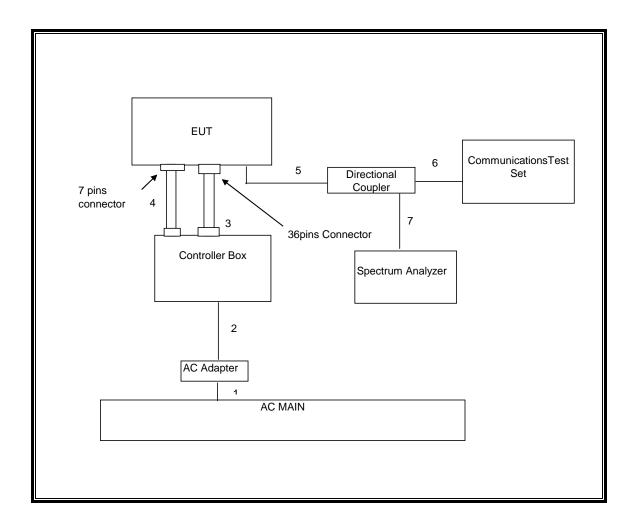
SUPPORT EQUIPMENT

PCS, 1xRTT Modulation

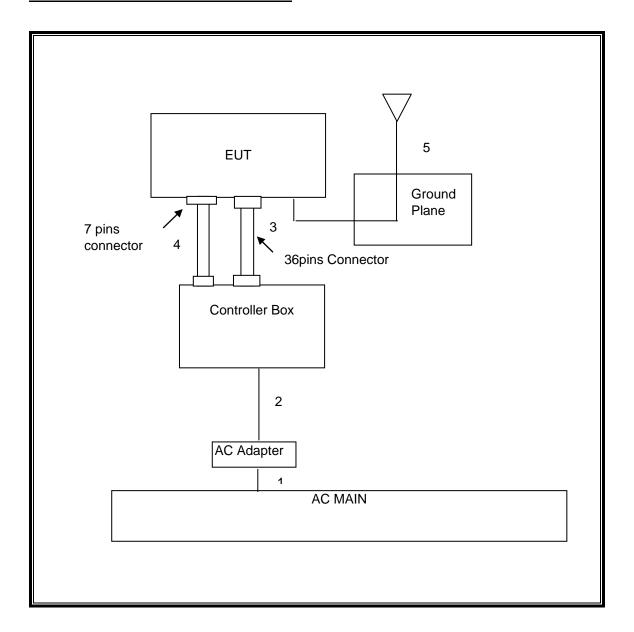
Channel	Frequency	Conducted	Conducted	Conducted	Conducted
		Peak Power	Peak Power	Avg Power	Avg Power
	(MHz)	(dBm)	(m W)	(dBm)	(m W)
Low	1851.25	29.70	933.25	24.69	294.44
Middle	1880.00	29.58	907.82	24.56	285.76
High	1908.75	29.01	796.16	24.28	267.92

I/O CABLES (Conducted Setup)

	I/O CABLE LIST								
Cable	Port	# of	Connector	Cable	Cable	Remarks			
No.		Identical	Type	Туре	Length				
		Ports							
1	AC	1	AC	Un-shielded	2.0m	N/A			
2	DC	1	DC	Un-shielded	2.0m	N/A			
3	DCM	1	36pins	Un-shielded	0.2m	N/A			
4	DCM	1	7 pins	Un-shielded	0.5m	N/A			
5	Antenna Port	1	Directional Coupler	Un-shielded	0.10m	N/A			
6	USB	1	USB	Un-shielded	2.0m	N/A			
7	SMA	1	SMA	Shielded	0.8m	N/A			


I/O CABLES (Radiated Setup)

	I/O CABLE LIST							
Cable	Port	# of	Connector	Cable	Cable	Remarks		
No.		Identical	Type	Type	Length			
		Ports						
1	AC	1	AC	Un-shielded	2.0m	N/A		
2	DC	1	DC	Un-shielded	2.0m	N/A		
3	DCM	1	36pins	Un-shielded	0.2m	N/A		
4	DCM	1	7 pins	Un-shielded	0.5m	N/A		
5	Antenna Port	1	Antenna	Un-shielded	0.3m	N/A		


TEST SETUP

The EUT is attached to the test board that is connected to an AC Adapter and Laptop during the test. A wireless link was established between the EUT and the communications test set.

SETUP DIAGRAM FOR CONDUCTED TESTS

SETUP DIAGRAM FOR RADIATED TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST						
Description	Manufacturer	Model	Asset	Cal Due		
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01178	08/15/12		
EMI Test Receiver, 30 MHz	R&S	ESHS 20	N02396	07/06/12		
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C01063	07/12/12		
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00885	01/27/12		
Antenna, Horn, 18 GHz	EMCO	3115	C00783	06/29/12		
Antenna, Horn, 18 GHz	EMCO	3115	C00943	06/29/12		
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01011	07/16/12		
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BNC	N02481	11/10/11		
Directional Coupler, 18 GHz	Krytar	1817	N02656	CNR		
Communications Test Set	Agilent / HP	E5515C	C01086	06/17/12		
Temperature / Humidity Chamber	Thermotron	SE 600-10-10	C00930	04/20/12		
Highpass Filter, 2.7 GHz	Micro-Tronics	HPM13194	N02687	CNR		
Highpass Filter, 1.5 GHz	Micro-Tronics	HPM13193	N02688	CNR		
Signal Generator, 20 GHz	Agilent / HP	E4438C	N/A	06/09/12		
Antenna, Tuned Dipole 400~1000	ETS	3121C DB4	C00993	07/16/12		

7. CONDUCTED TEST RESULTS

7.1. RF POWER OUTPUT

LIMIT

22.913(a) The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts.

24.232(b) & RSS133 § 6.4 Mobile/portable stations are limited to 2 watts e.i.r.p. peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.

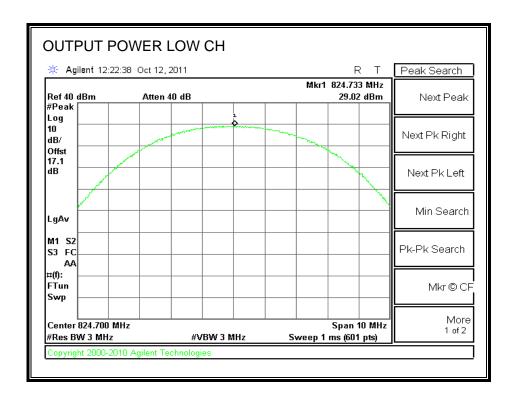
RSS-132 § 4.4 The maximum ERP shall be 6.3 Watts for mobile stations.

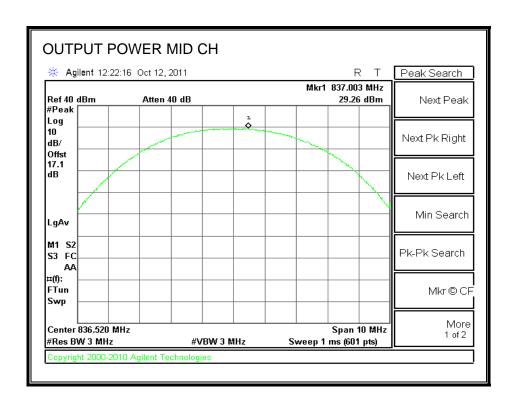
TEST PROCEDURE

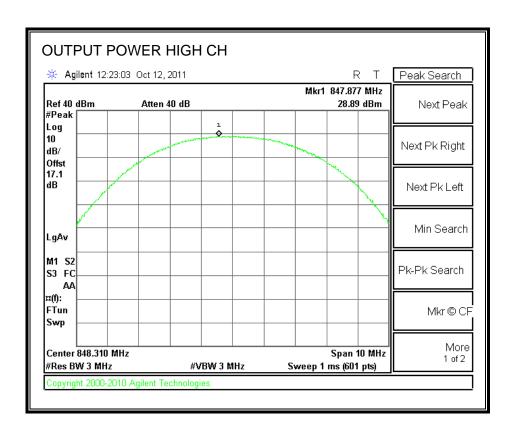
RSS-132, RSS-133, & ANSI / TIA / EIA 603C Clause 2.2.17

RESULTS

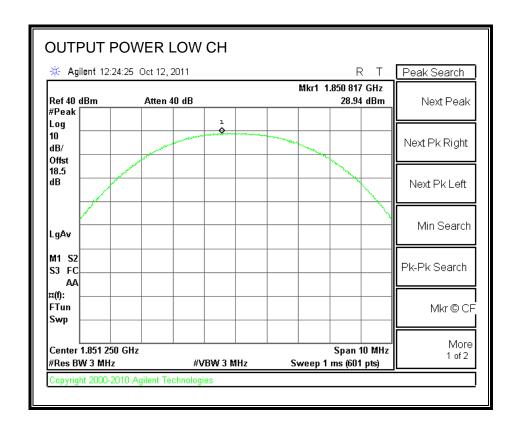
CELL, 1xRTT Modulation

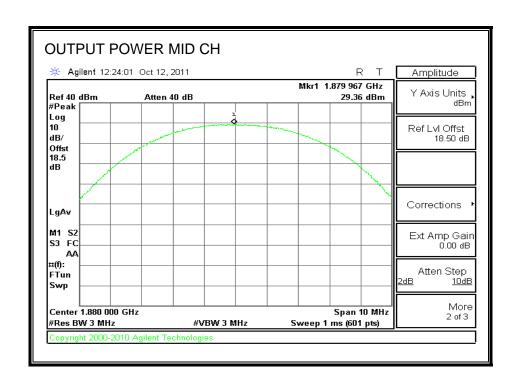

Channel	Frequency	Conducted	Conducted	Conducted	Conducted
		Peak Power	Peak Power	Avg Power	Avg Power
	(MHz)	(dBm)	(mW)	(dBm)	(mW)
Low	824.70	29.02	797.99	24.30	269.15
Middle	836.52	29.26	843.33	24.25	266.07
High	848.31	28.89	774.46	24.23	264.85

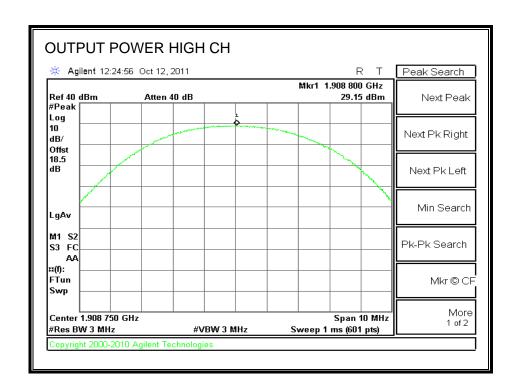

PCS. 1xRTT Modulation


Channel	Frequency	Conducted	Conducted	Conducted	Conducted
		Peak Power	Peak Power	Avg Power	Avg Power
	(MHz)	(dBm)	(mW)	(dBm)	(mW)
Low	1851.25	28.94	783.43	24.25	266.07
Middle	1880.00	29.36	862.98	24.20	263.03
High	1908.75	29.15	822.24	24.15	260.02

<u>NOTE:</u> Peak power reading at spectrum analyzer with RBW=VBW=3MHz, and average power with average power meter.


CELL PEAK POWER, 1xRTT MODULATION





PCS PEAK POWER, 1xRTT MODULATION

Page 14 of 45

TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL CCS

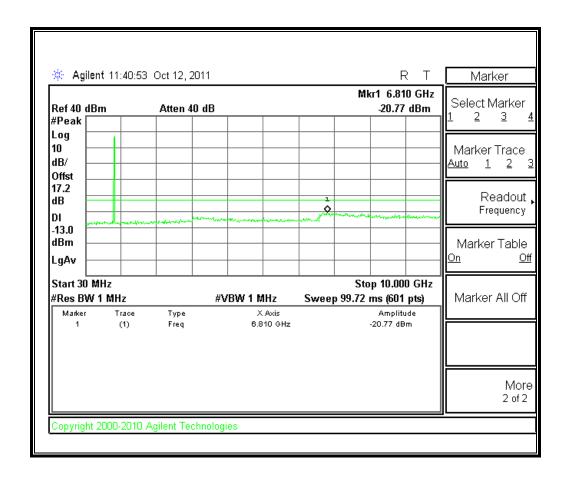
7.2. SPURIOUS EMISSION AT ANTENNA TERMINAL

LIMIT

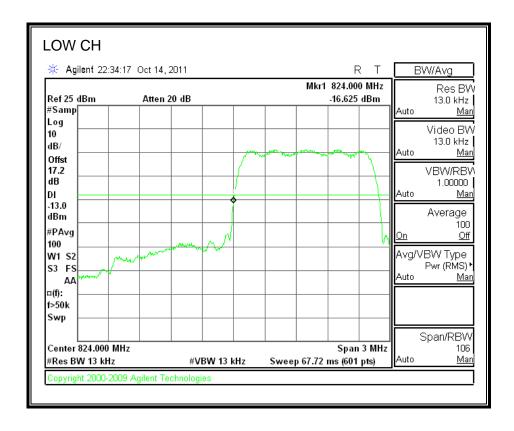
§22.917 (e) and §24.238 (a), The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB

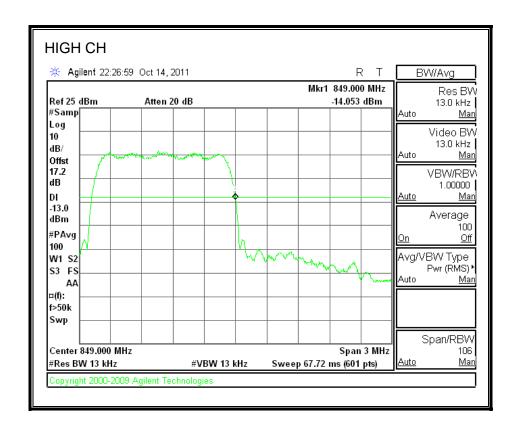
TEST PROCEDURE

ANSI / TIA / EIA 603 Clause 3.2.13 & FCC 22.917 (h)

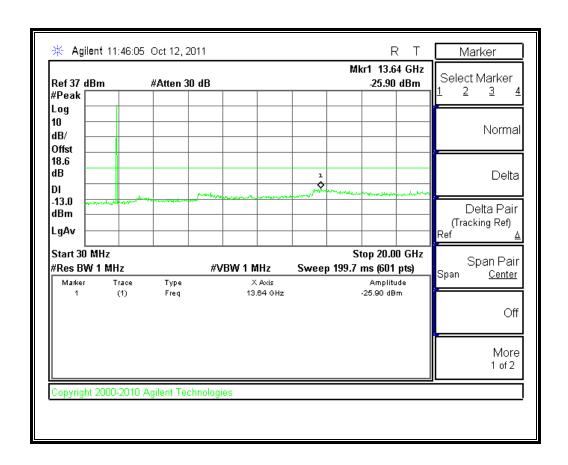

MODES TESTED

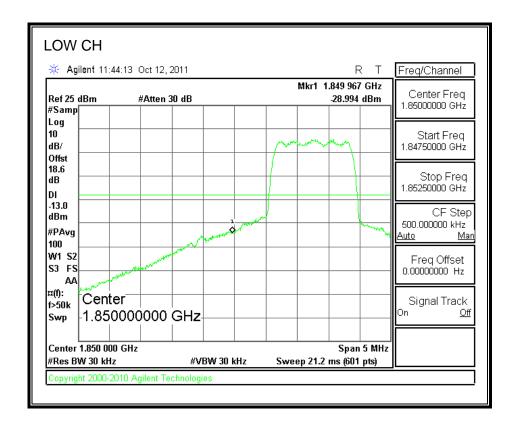
CDMA – 1xRTT

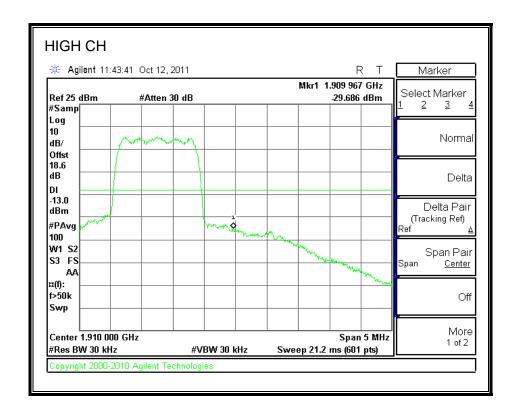

RESULTS


CELL, 1xRTT MODULATION:

MID Channel, Out-Of-Band Emissions


CELL BAND, Low Channel Band Edge




PCS 1xRTT MODULATION RESULTS

MID Channel, Out-Of-Band Emissions

PCS BAND, Low Channel Band Edge

8. RADIATED TEST RESULTS

8.1. RADIATED POWER (ERP & EIRP)

LIMIT

22.913(a) The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 Watts

24.232(b) & RSS133 § 6.4 Mobile/portable stations are limited to 2 watts e.i.r.p. peak power and the equipment must employ means to limit the power to the minimum necessary for successful communications.

RSS-132 § 4.4 The maximum ERP shall be 6.3 Watts for mobile stations.

TEST PROCEDURE

RSS-132, RSS-133, & ANSI / TIA / EIA 603C Clause 2.2.17

MODES TESTED

CDMA – 1xRTT

RESULTS for Cellular Band (ERP)

			ER	P
Mode	Channel	f (MHz)	dBm	mW
	1013	824.70	29.67	926.83
1xRTT	384	836.52	27.81	603.95
	777	848.31	28.40	691.83

RESULTS for PCS Band (EIRP)

			EIR	RP .
Mode	Channel	f (MHz)	dBm	mW
	512	1850.20	29.26	843.33
1xRTT	661	1880.00	29.63	918.33
	810	1909.80	29.88	972.75

CELL 1xRTT MODULATION

High Frequency Substitution Measurement Compliance Certification Services Chamber B

Company: Sierra Wireless
Project #: 11U14089

Date: 10/12/11
Test Engineer: Chin Pang
Configuration: EUT ALONE

Mode: TX, CELL BAND CDMA2000, 1xRTT

Test Equipment:

Receiving: Sunol T130, and 3m Chamber N-type Cable (Setup this one for testing EUT) Substitution: Dipole S/N: 00022117, 6ft SMA Cable (SN # 208947003) Warehouse.

f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	ERP	Limit	Margin	Notes
MHz	(dBm)	(H/V)	(dB)	(dBd)	(dBm)	(dBm)	(dB)	
Low Ch								
824.70	30.17	V	0.5	0.0	29.67	38.5	-8.8	
824.70	20.54	Н	0.5	0.0	20.04	38.5	-18.4	
Mid Ch								
836.52	28.31	V	0.5	0.0	27.81	38.5	-10.6	
836.52	21.79	Н	0.5	0.0	21.29	38.5	-17.2	
040.31	20.30	v	0.5	0.0	20.40	30.3	-10.0	
848.31	21.55	Н	0.5	0.0	21.05	38.5	-17.4	

Rev. 3.17.11

PCS 1xRTT MODULATION

High Frequency Fundamental Measurement Compliance Certification Services Chamber B

Company: Sierra Wireless
Project #: 11U14089
Date: 10/12/11
Test Engineer: Chin Pang
Configuration: EUT ALONE

Mode: TX, PCS BAND CDMA MODE

Test Equipment:

Receiving: Horn T59, and Camber B SMA Cables

Substitution: Horn T60 Substitution, 6ft SMA Cable (208947003) Warehouse

f	SG reading	Ant. Pol.	Cable Loss	Antenna Gain	EIRP	Limit	Delta	Notes
GHz	(dBm)	(H/V)	(dB)	(dBi)	(dBm)	(dBm)	(dB)	
Low Ch								
1.851	22.1	V	0.85	8.01	29.26	33.0	-3.7	
1.851	14.9	Н	0.85	8.01	22.06	33.0	-10.9	
Mid Ch	<u> </u>	<u></u>	-					
1.880	22.4	V	0.85	8.13	29.63	33.0	-3.4	
1.880	15.4	Н	0.85	8.13	22.72	33.0	-10.3	-
High Ch	+	i	-					
1.909	22.6	V	0.85	8.13	29.88	33.0	-3.1	
1.909	15.6	Н	0.85	8.13	22.88	33.0	-10.1	

Rev. 3.17.11

8.2. FIELD STRENGTH OF SPURIOUS RADIATION

RULE PART(S)

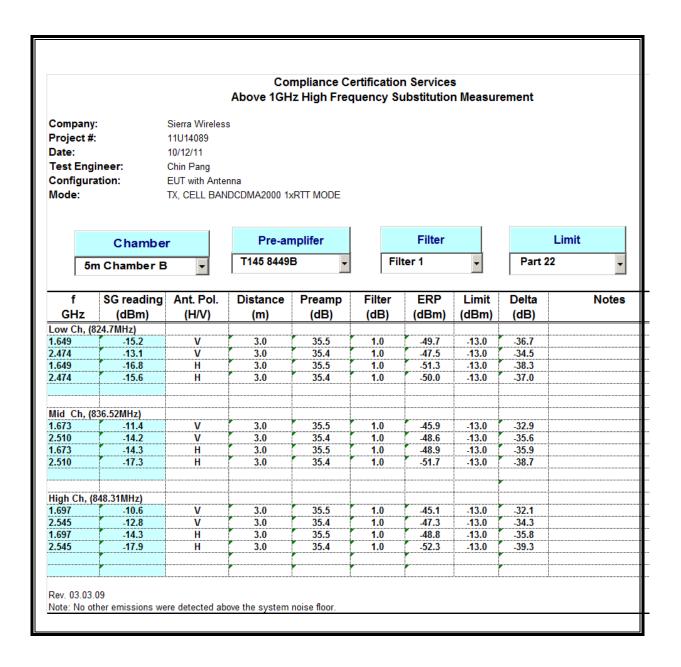
FCC: §2.1053, §22.917, §24.238 IC: RSS-132, 4.5; RSS-233, 6.5

LIMIT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log (P) dB.

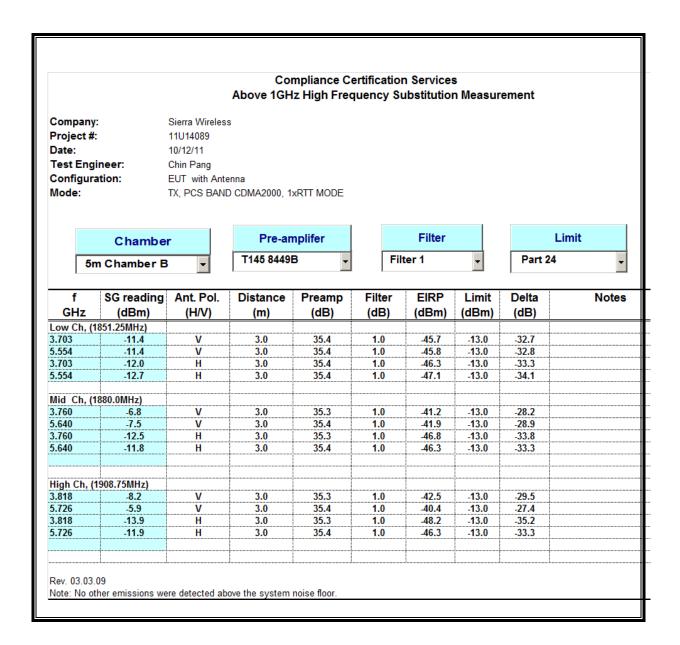
TEST PROCEDURE

For Cellular equipment - Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 100 kHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.


For PCS equipment - Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (i.e. 1 MHz or 1 percent of emission bandwidth, as specified). The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

MODES TESTED

CDMA – 1xRTT


RESULTS

CELL 1xRTT MODULATION

TEL: (510) 771-1000 This report shall not be reproduced except in full, without the written approval of UL CCS

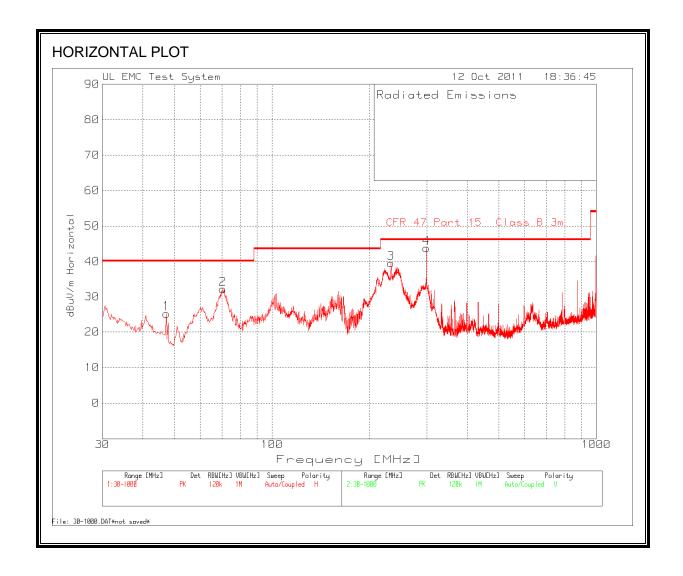
PCS 1xRTT MODULATION

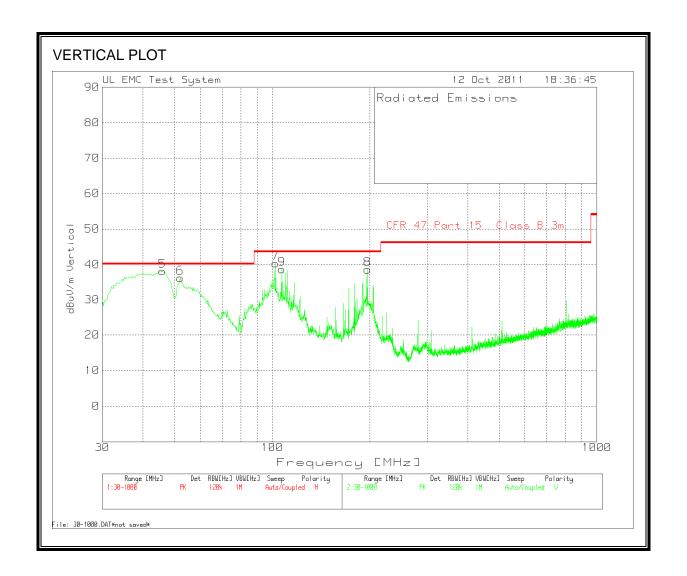
8.3. RECEIVER SPURIOUS EMISSIONS

LIMIT

RSS-Gen 7.2.2

Spurious Emission Limits for Receivers:


Spurious Frequency (MHz)	Field Strength (microvolts/m at 3 metres)
30-88	100
88-216	150
216-960	200
Above 960	500


TEST PROCEDURE

The search for spurious emissions shall be from the lowest frequency internally generated or used in the receiver (local oscillator frequency, intermediate frequency or carrier frequency), or 30 MHz, whichever is the higher, to at least 3 times the highest tunable and local oscillator frequencies.

RESULTS

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

Range 1 3	0 - 1000	MHz								
Frequency	Reading	Detector	Cable. TX	PreAmp[dE	Bilog Fac	dBuV/m	Part 15B	Margin	Height [Polarity
47.2522	43.9	PK	1	-29.4	9.7	25.2	40	-14.8	200	Horz
70.5136	52.25	PK	1.2	-29.4	8. 2	32.25	40	-7. 75	200	Horz
232. 3741	54.32	PK	2.1	-28.8	11.9	39.52	46	-6.48	91	Horz
299. 2506	56.6	PK	2.4	-28.5	13.3	43.8	46	-2.2	200	Horz
299. 2037	47.37	QP	2.4	-28.5	13.3	34.57	46	-11.43	85	Horz
2 30 - 10	000MHz									
requency	Reading	Detector	ble.TX [c	PreAmp[dB]	g Factors	dBuV/m	art 15B 3	Margin	eight [cr	Polarity
45.8953	56	PK	1	-29.4	10.5	38.1	40	-1.9	100	Vert
45.8953	51.56	QP	1	-29.4	9.8	32.96	40	-7.04	360	Vert
52.0983	56.59	PK	1	-29.4	8	36.19	40	-3.81	100	Vert
51.9777	50.72	QP	1	-29.4	8	30.32	40	-9.68	136	Vert
102.498	57.63	PK	1.5	-29.3	10.5	40.33	43.5	-3.17	100	Vert
196.5128	53.87	PK	1.9	-28.9	11.7	38.57	43.5	-4.93	200	Vert
106.9564	55.09	PK	1.5	-29.3	11.3	38.59	43.5	-4. 91	100	Vert

SPURIOUS EMISSIONS ABOVE 1000 MHz (WORST-CASE CONFIGURATION)

Note: No emissions were detected above the system noise floor.

8.4. POWER LINE CONDUCTED EMISSION

LIMIT

RSS-Gen 7.2.2

Except when the requirements applicable to a given device state otherwise, for any licence-exempt radio communication device equipped to operate from the public utility AC power supply, either directly or indirectly, the radio frequency voltage that is conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in Table 2. The tighter limit applies at the frequency range boundaries.

Table 2 – AC Power Lines Conducted Emission Limits

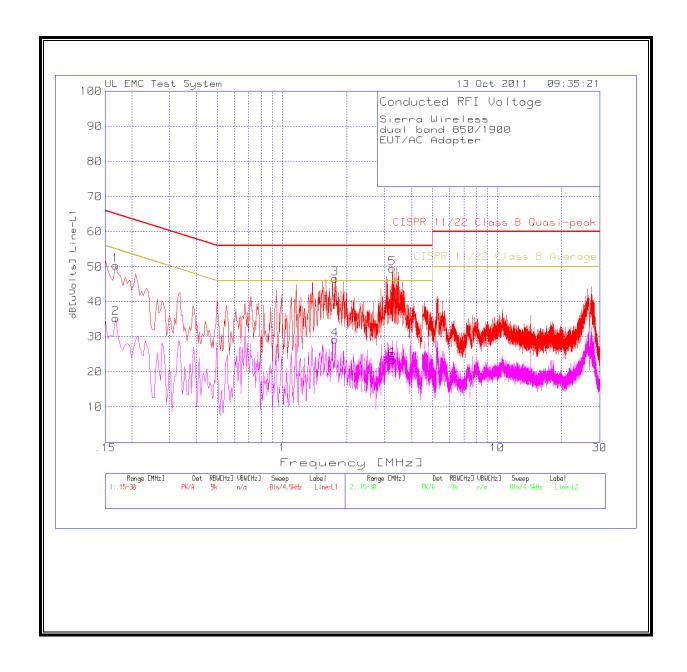
Frequency of Emission (MHz)	Conducted Limit (dBuV)			
	Quasi-peak	Average		
0.15-0.5	66 to 56 *	56 to 46 *		
0.5-5	56	46		
5-30	60	50		

Decreases with the logarithm of the frequency.

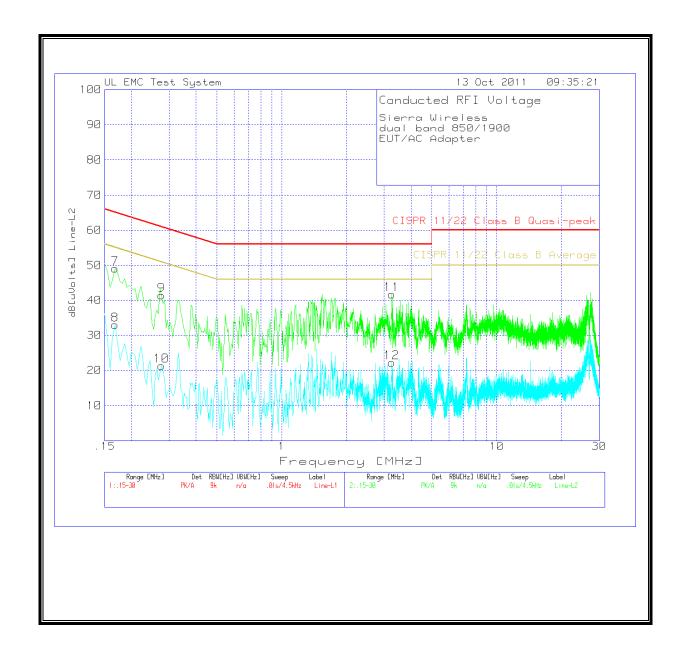
RESULTS

6 WORST EMISSIONS

AC ADAPTER

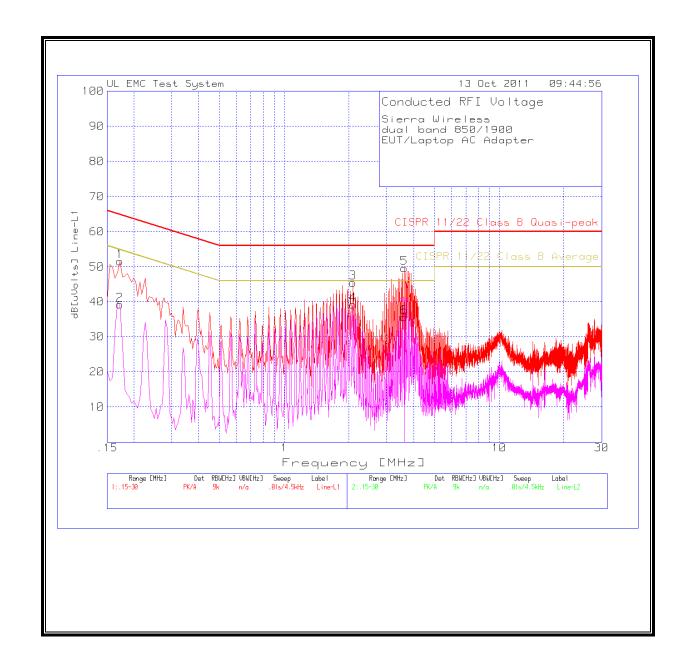

Sierra W	Vireless							
	nd 850/190	00						
EUT/AC A	Adapter							
Line-L1 .	15 - 30 M F	łz						
Frequency	Reading	Detector	LISN [dB]	dB[uVolts]	CISPR 22B Qp	Margin	CISPR 22B Avg	Margin
0.168	50.4	PK	0	50.4	65.1	-14.7	55.1	-4.7
0.168	35. 26	Av	0	35. 26	_	_	55.1	-19.84
1.7655	46.62	PK	0	46.62	56	-9.38	46	0.62
1.7655	29.14	Av	0	29.14	_	_	46	-16.86
3.255	49.51	PK	0	49.51	56	-6.49	46	3.51
3.255	23.31	Av	0	23.31	_	_	46	-22.69
L2 .15 -	30MHz							
st Freque	ter Readi	Detector	LISN [dB]	dB[uVolts]	/22 Class B Qı	Margin	.1/22 Class B A	Margin
0.168	49.15	PK	0	49.15	65.1	-15.95	55.1	-5. 95
0.168	32. 98	Av	0	32.98	_	_	55.1	-22.12
0.276	41.51	PK	0	41.51	60.9	-19.39	50.9	-9.39
0.276	21.35	Av	0	21.35	_	_	50.9	-29.55
3.255	41.77	PK	0	41.77	56	-14.23	46	-4.23
3.255	22. 22	Av	0	22. 22	_	-	46	-23.78

SUPPORT LAPTOP

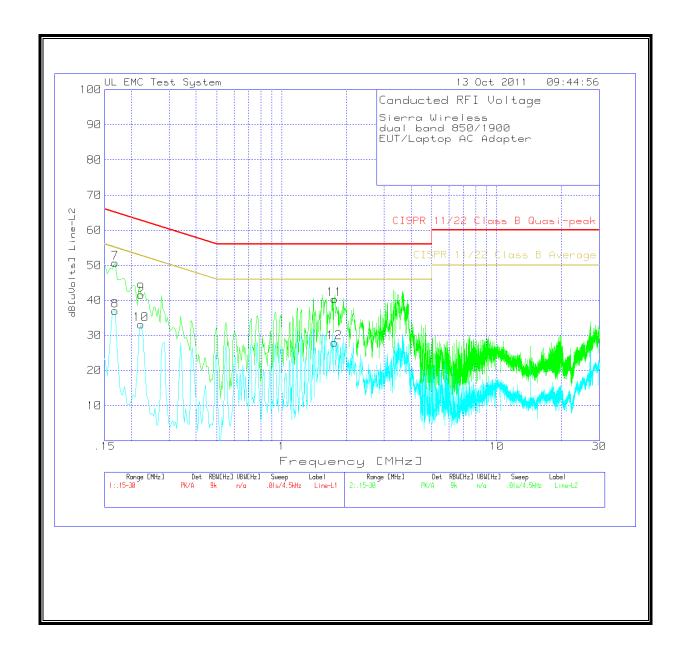

Sierra W	Vireless						
dual ban	nd 850/190	00					
EUT/Lapt	op AC Ada	apter					
Line-L1 .	15 - 30 M F	łz					
Frequency	Reading	Detector	dB[uVolts]	CISPR B QP	Margin	CISPR B Aver	Margin
0.1725	51.59	PK	51.59	64.8	-13.21	54.8	-3.21
0.1725	39.19	Av	39.19	_	_	54.8	-15.61
2.0895	45.52	PK	45.52	56	-10.48	46	-0.48
2.0895	39.17	Av	39.17	_	_	46	-6.83
3.615	49.6	PK	49.6	56	-6.4	46	3.6
3.615	35.51	Av	35.51	_	_	46	-10.49
Line-L2.	15 - 30MH	łz					
Frequency	Reading	Detector	dB[uVolts]	CISPR B QP	Margin	CISPR B Avg	Margin
0.168	50.72	PK	50.72	65.1	-14.38	55.1	-4.38
0.168	37.02	Av	37.02	_	_	55.1	-18.08
0.222	41.61	PK	41.61	62.7	-21.09	52.7	-11.09
0.222	33.03	Av	33.03	_	_	52. 7	-19.67
1.7655	40.29	PK	40. 29	56	-15.71	46	-5. 71
1.7655	27.89	Av	27.89	_	_	46	-18.11

AC ADAPTER

LINE 1 RESULTS



LINE 2 RESULTS



SUPPORT LAPTOP

LINE 1 RESULTS

LINE 2 RESULTS

9. MAXIMUM PERMISSIBLE EXPOSURE

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
(A) Lim	its for Occupational	I/Controlled Exposu	res	
0.3–3.0	614	1.63	*(100)	6
3.0-30	1842/f	4.89/f	*(900/f²)	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500–100,000			5	6
(B) Limits	for General Populati	ion/Uncontrolled Exp	posure	
0.3–1.34	614	1.63	*(100)	30
1.34-30	824/f	2.19/f	*(180/f²)	30

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)—Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300	27.5	0.073	0.2	30
300–1500 1500–100,000			f/1500 1.0	30 30

f = frequency in MHz

* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposure or can not exercise control over their exposure.

exposure or can not exercise control over their exposure.

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

Table 5 Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003-1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/f		6
30–300	28	0.073	2*	6
300–1 500	1.585 $f^{0.5}$	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000–300 000	0.158f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

^{*} Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

 A power density of 10 W/m² is equivalent to 1 mW/cm².
 A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

CALCULATIONS

Given

$$E = \sqrt{(30 * P * G) / d}$$

and

$$S = E ^2 / 3770$$

where

E = Field Strength in Volts/meter

P = Power in Watts

G = Numeric antenna gain

d = Distance in meters

S = Power Density in milliwatts/square centimeter

Combining equations, rearranging the terms to express the distance as a function of the remaining variables, changing to units of Power to mW and Distance to cm, and substituting the logarithmic form of power and gain yields:

$$d = 0.282 * 10 ^ ((P + G) / 20) / \sqrt{S}$$

where

d = MPE distance in cm

P = Power in dBm

G = Antenna Gain in dBi

S = Power Density Limit in mW/cm^2

Rearranging terms to calculate the power density at a specific distance yields

$$S = 0.0795 * 10 ^ ((P + G) / 10) / (d^2)$$

The power density in units of mW/cm² is converted to units of W/m² by multiplying by a factor of 10.

LIMITS

From FCC $\S1.1310$ Table 1 (B), the maximum value of S = 0.5498 mW/cm² (Cell) and S = 1.0 mW/cm² (PCS)

From IC Safety Code 6, Section 2.2 Table 5 Column 4, $S = 5.498 \text{ W/m}^2$ (Cell) and $S = 10 \text{ W/m}^2$ (PCS)

RESULTS

Band	MPE	Output	Max Antenna	FCC Power	IC Power
	Distance	Power	Gain	Density	Density
	(cm)	(dBm)	(dBi)	(mW/cm^2)	(W/m^2)
Cell	20.0	24.30	8.20	0.353	3.534
PCS	20.0	24.25	7.15	0.274	2.744